
Preface

In this book several streams of nonlinear control theory are merged and di-

rected towards a constructive solution of the feedback stabilization problem.

Analytic, geometric and asymptotic concepts are assembled as design tools for

a wide variety of nonlinear phenomena and structures. Differential-geometric

concepts reveal important structural properties of nonlinear systems, but al-

low no margin for modeling errors. To overcome this deficiency, we combine

them with analytic concepts of passivity, optimality and Lyapunov stability.

In this way geometry serves as a guide for construction of design procedures,

while analysis provides robustness tools which geometry lacks.

Our main tool is passivity. As a common thread, it connects all the chapters

of the book. Passivity properties are induced by feedback passivation designs.

Until recently, these designs were restricted to weakly minimum phase systems

with relative degree one. Our recursive designs remove these restrictions. They

are applicable to wider classes of nonlinear systems characterized by feedback,

feedforward, and interlaced structures.

After the introductory chapter, the presentation is organized in two major

parts. The basic nonlinear system concepts - passivity, optimality, and stabil-

ity margins - are presented in Chapters 2 and 3 in a novel way as design tools.

Most of the new results appear in Chapters 4, 5, and 6. For cascade systems,

and then, recursively, for larger classes of nonlinear systems, we construct de-

sign procedures which result in feedback systems with optimality properties

and stability margins.

The book differs from other books on nonlinear control. It is more design-

oriented than the differential-geometric texts by Isidori [43] and Nijmeijer and

Van der Schaft [84]. It complements the books by Krstić, Kanellakopoulos

and Kokotović [61] and Freeman and Kokotović [26], by broadening the class

of systems and design tools. The book is written for an audience of graduate

students, control engineers, and applied mathematicians interested in control

theory. It is self-contained and accessible with a basic knowledge of control

theory as in Anderson and Moore [1], and nonlinear systems as in Khalil [56].
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For clarity, most of the concepts are introduced through and explained by

examples. Design applications are illustrated on several physical models of

practical interest.

The book can be used for a first level graduate course on nonlinear control,

or as a collateral reading for a broader control theory course. Chapters 2, 3,

and 4 are suitable for a first course on nonlinear control, while Chapters 5

and 6 can be incorporated in a more advanced course on nonlinear feedback

design.
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Chapter 1

Introduction

Control theory has been extremely successful in dealing with linear time-

invariant models of dynamic systems. A blend of state space and frequency

domain methods has reached a level at which feedback control design is system-

atic, not only with disturbance-free models, but also in the presence of distur-

bances and modeling errors. There is an abundance of design methodologies

for linear models: root locus, Bode plots, LQR-optimal control, eigenstruc-

ture assignment, H-infinity, µ-synthesis, linear matrix inequalities, etc. Each

of these methods can be used to achieve stabilization, tracking, disturbance

attenuation and similar design objectives.

The situation is radically different for nonlinear models. Although several

nonlinear methodologies are beginning to emerge, none of them taken alone is

sufficient for a satisfactory feedback design. A question can be raised whether

a single design methodology can encompass all nonlinear models of practical

interest, and whether the goal of developing such a methodology should even

be pursued. The large diversity of nonlinear phenomena suggests that, with a

single design approach most of the results would end up being unnecessarily

conservative. To deal with diverse nonlinear phenomena we need a comparable

diversity of design tools and procedures. Their construction is the main topic

of this book.

Once the “tools and procedures” attitude is adopted, an immediate task

is to determine the areas of applicability of the available tools, and critically

evaluate their advantages and limitations. With an arsenal of tools one is

encouraged to construct design procedures which exploit structural proper-

ties to avoid conservativeness. Geometric and analytic concepts reveal these

properties and are the key ingredients of every design procedure in this book.

Analysis is suitable for the study of stability and robustness, but it often

disregards structure. On the other hand, geometric methods are helpful in

1



2 CHAPTER 1. INTRODUCTION

determining structural properties, such as relative degree and zero dynamics,

but, taken alone, do not guarantee stability margins, which are among the

prerequisites for robustness. In the procedures developed in this book, the ge-

ometry makes the analysis constructive, while the analysis makes the geometry

more robust.

Chapters 2 and 3 present the main geometric and analytic tools needed for

the design procedures in Chapters 4, 5, and 6. Design procedures in Chapter 4

are constructed for several types of cascades, and also serve as building blocks

in the construction of recursive procedures in Chapters 5 and 6.

The main recursive procedures are backstepping and forwarding. While

backstepping is known from [61], forwarding is a procedure recently developed

by the authors [46, 95]. This is its first appearance in a book. An important

feature of this procedure is that it endows the systems with certain optimality

properties and desirable stability margins.

In this chapter we give a brief preview of the main topics discussed in this

book.

1.1 Passivity, Optimality, and Stability

1.1.1 From absolute stability to passivity

Modern theory of feedback systems was formed some 50-60 years ago from two

separate traditions. The Nyquist-Bode frequency domain methods, developed

for the needs of feedback amplifiers, became a tool for servomechanism design

during the Second World War. In this tradition, feedback control was an

outgrowth of linear network theory and was readily applicable only to linear

time-invariant models.

The second tradition is more classical and goes back to Poincaré and Lya-

punov. This tradition, subsequently named the state-space approach, employs

the tools of nonlinear mechanics, and addresses both linear and nonlinear mod-

els. The main design task is to achieve stability in the sense of Lyapunov of

feedback loops which contain significant nonlinearities, especially in the ac-

tuators. A seminal development in this direction was the absolute stability

problem of Lurie [70].

In its simplest form, the absolute stability problem deals with a feedback

loop consisting of a linear block in the forward path and a nonlinearity in the

feedback path, Figure 1.1. The nonlinearity is specified only to the extent that

it belongs to a “sector”, or, in the multivariable case, to a “cone”. In other

words, the admissible nonlinearities are linearly bounded. One of the absolute
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Figure 1.1: The absolute stability problem.

stability results is a Lyapunov function construction for this class of systems.

The stability property is “absolute” in the sense that it is preserved for any

nonlinearity in the sector. Hence, a “sector stability margin” is guaranteed.

During a period of several years, the frequency domain methods and the ab-

solute stability analysis coexisted as two separate disciplines. Breakthroughs

by Popov in the late 1950’s and early 1960’s dramatically changed the land-

scape of control theory. While Popov’s stability criterion [87] was of major

importance, even more important was his introduction of the concept of pas-

sivity as one of the fundamental feedback properties [88].

Until the work of Popov, passivity was a network theory concept dealing

with rational transfer functions which can be realized with passive resistances,

capacitances and inductances. Such transfer functions are restricted to have

relative degree (excess of the number of poles over the number of zeros) not

larger than one. They are called positive real because their real parts are

positive for all frequencies, that is, their phase lags are always less than 90

degrees. A key feedback stability result from the 1960’s, which linked passivity

with the existence of a quadratic Lyapunov function for a linear system, is the

celebrated Kalman-Yakubovich-Popov (KYP) lemma also called Positive Real

Lemma. It has spawned many significant extensions to nonlinear systems and

adaptive control.

1.1.2 Passivity as a phase characteristic

The most important passivity result, and also one of the fundamental laws of

feedback, states that a negative feedback loop consisting of two passive systems

is passive. This is illustrated in Figure 1.2. Under an additional detectability

condition this feedback loop is also stable.

To appreciate the content of this brief statement, assume first that the two
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Figure 1.2: The fundamental passivity result.

passive blocks in the feedback connection of Figure 1.2 are linear. Then their

transfer functions are positive real, that is, with the phase lag not larger than

90 degrees. Hence, the phase lag over the entire feedback loop is not larger

than 180 degrees. By the Nyquist-Bode criterion, such a linear feedback loop

is stable for all feedback gains, that is, it possesses an “infinite gain margin”.

When the two blocks in the feedback loop are nonlinear, the concept of pas-

sivity can be seen to extend the Nyquist-Bode 180 degree phase lag criterion

to nonlinear systems. For nonlinear systems, passivity can be therefore inter-

preted as a “phase” property, a complement of the gain property characterized

by various small gain theorems such as those presented in [18].

In the early 1970’s, Willems [120] systematized passivity (and dissipativity)

concepts by introducing the notions of storage function S(x) and supply rate

w(u, y), where x is the system state, u is the input, and y is the output. A

system is passive if it has a positive semidefinite storage function S(x) and a

bilinear supply rate w(u, y) = uTy, satisfying the inequality

S(x(T ))− S(x(0)) ≤
∫ T

0
w(u(t), y(t)) dt (1.1.1)

for all u and T ≥ 0. Passivity, therefore, is the property that the increase

in storage S is not larger than the integral amount supplied. Restated in the

derivative form

Ṡ(x) ≤ w(u, y) (1.1.2)

passivity is the property that the rate of increase of storage is not higher than

the supply rate. In other words, any storage increase in a passive system is due

solely to external sources. The relationship between passivity and Lyapunov

stability can be established by employing the storage S(x) as a Lyapunov

function. We will make a constructive use of this relationship.
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1.1.3 Optimal control and stability margins

Another major development in the 1950’s and 1960’s was the birth of op-

timal control twins: Dynamic Programming and Maximum Principle. An

optimality result crucial for feedback control was the solution of the optimal

linear-quadratic regulator (LQR) problem by Kalman [50] for linear systems

ẋ = Ax+Bu. The well known optimal control law has the form u = −BT P x,

where x is the state, u is the control and P is the symmetric positive definite

solution of a matrix algebraic Riccati equation. The matrix P determines the

optimal value xT P x of the cost functional, which, at the same time, is a Lya-

punov function establishing the asymptotic stability of the optimal feedback

system.

A remarkable connection between optimality and passivity, established by

Kalman [52], is that a linear system can be optimal only if it has a passivity

property with respect to the output y = BTPx. Furthermore, optimal linear

systems have infinite gain margin and phase margin of 60 degrees.

These optimality, passivity, and stability margin properties have been ex-

tended to nonlinear systems which are affine in control:

ẋ = f(x) + g(x)u (1.1.3)

A feedback control law u = k(x) which minimizes the cost functional

J =
∫ ∞

0
(l(x) + u2)dt (1.1.4)

where l(x) is positive semidefinite and u is a scalar, is obtained by minimizing

the Hamiltonian function

H(x, u) = l(x) + u2 +
∂V

∂x
(f(x) + g(x)u) (1.1.5)

If a differentiable optimal value function V (x) exists, then the optimal control

law is in the “LgV -form”:

u = k(x) = −1

2
LgV (x) = −1

2

∂V

∂x
g(x) (1.1.6)

The optimal value function V (x) also serves as a Lyapunov function which,

along with a detectability property, guarantees the asymptotic stability of the

optimal feedback system. The connection with passivity was established by

Moylan [80] by showing that, as in the linear case, the optimal system has an

infinite gain margin thanks to its passivity property with respect to the output

y = LgV .



6 CHAPTER 1. INTRODUCTION

In Chapters 2 and 3 we study in detail the design tools of passivity and

optimality, and their ability to provide desirable stability margins. A particu-

lar case of interest is when V (x) is a Lyapunov function for ẋ = f(x), which is

stable but not asymptotically stable. In this case, the control law u = −LgV
adds additional “damping”. This damping control is again in the “LgV -form”.

It is often referred to as “Jurdjevic-Quinn feedback” [49] and will frequently

appear in this book.

What this book does not include are methods applicable only to linearly

bounded nonlinearities. Such methods, including various small gain theorems

[18], H-infinity designs with bounded uncertainties [21], and linear matrix in-

equality algorithms [7] are still too restrictive for the nonlinear systems consid-

ered in this book. Progress has been made in formulating nonlinear small gain

theorems by Mareels and Hill [71], Jiang, Teel and Praly [48], among others,

and in using them for design [111]. Underlying to these efforts, and to several

results of this book, is the concept of input-to-state stability (ISS) of Son-

tag [103] and its relationship to dissipativity. The absolute stability tradition

has also continued with a promising development by Megretski and Rantzer

[76], where the static linear constraints are replaced by integral quadratic con-

straints.

1.2 Feedback Passivation

1.2.1 Limitations of feedback linearization

Exciting events in nonlinear control theory of the 1980’s marked a rapid devel-

opment of differential-geometric methods which led to the discovery of several

structural properties of nonlinear systems. The interest in geometric methods

was sparked in the late 70’s by “feedback linearization,” in which a nonlinear

system is completely or partially transformed into a linear system by a state

diffeomorphism and a feedback transformation.

However, feedback linearization may result not only in wasteful controls,

but also in nonrobust systems. Feedback linearizing control laws often destroy

inherently stabilizing nonlinearities and replace them with destabilizing terms.

Such feedback systems are without any stability margins, because even the

smallest modeling errors may cause a loss of stability.

A complete or partial feedback linearization is performed in two steps.

First, a change of coordinates (diffeomorphism) is found in which the system

appears “the least nonlinear.” This step is harmless. In the second step, a
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control is designed to cancel all the nonlinearities and render the system linear.

This step can be harmful because it often replaces a stabilizing nonlinearity

by its wasteful and dangerous negative.

Fortunately, the harmful second step of feedback linearization is avoid-

able. For example, a control law minimizing a cost functional like (1.1.4)

does not cancel useful nonlinearities. On the contrary, it employs them, espe-

cially for large values of x which are penalized more. This motivated Freeman

and Kokotović [25] to introduce an “inverse optimal” design in which they

replace feedback linearization by robust backstepping and achieve a form of

worst-case optimality. Because of backstepping, this design is restricted to

a lower-triangular structure with respect to nonlinearities which grow faster

than linear. A similar idea of employing optimality to avoid wasteful cancel-

lations is pursued in this book, but in a different setting and for a larger class

of systems, including the systems that cannot be linearized by feedback.

1.2.2 Feedback passivation and forwarding

Lyapunov designs in this book achieve stability margins by exploiting the

connections of stability, optimality and passivity. Geometric tools are used to

characterize the system structure and to construct Lyapunov functions.

Most of the design procedures in this book are based on feedback passiva-

tion. For the partially linear cascade, including the Byrnes-Isidori normal form

[13], the problem of achieving passivity by feedback was first posed and solved

by Kokotović and Sussmann [59]. A general solution to the feedback passi-

vation problem was given by Byrnes, Isidori and Willems [15] and is further

refined in this book.

Because of the pursuit of feedback passivation, the geometric properties of

primary interest are the relative degree of the system and the stability of its

zero dynamics. The concepts of relative degree and zero dynamics, along with

other geometric tools are reviewed in Appendix A. A comprehensive treatment

of these concepts can be found in the books by Isidori [43], Nijmeijer and van

der Schaft [84], and Marino and Tomei [73].

Achieving passivity with feedback is an appealing concept. However, in the

construction of feedback passivation designs which guarantee stability margins,

there are two major challenges. The first challenge is to avoid nonrobust

cancellations. In this book this is achieved by rendering the passivating control

optimal with respect to a cost functional (1.1.4). It is intuitive that highly

penalized control effort will not be wasted to cancel useful nonlinearities, as

confirmed by the stability margins of optimal systems in Chapter 3.
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The second challenge of feedback passivation is to make it constructive.

This is difficult because, to establish passivity, which is an input-output con-

cept, we must select an output y and construct a positive semidefinite storage

function S(x) for the supply rate uTy. In the state feedback stabilization the

search for an output is a part of the design procedure. This search is guided

by the structural properties: in a passive system the relative degree must not

be larger than one and the zero dynamics must not be unstable (“nonmini-

mum phase”). Like in the linear case, the nonlinear relative degree and the

nonlinear zero-dynamics subsystem are invariant under feedback. If the zero-

dynamics subsystem is unstable, the entire system cannot be made passive

by feedback. For feedback passivation one must search for an output with

respect to which the system will not only have relative degree zero or one,

but also be “weakly minimum phase” (a concept introduced in [92] to include

some cases in which the zero-dynamics subsystem is only stable, rather than

asymptotically stable).

Once an output has been selected, a positive semidefinite storage function

S(x) must be found for the supply rate uTy. For our purpose this storage

function serves as a Lyapunov function. It is also required to be the optimal

value of a cost functional which penalizes the control effort.

One of the perennial criticisms of Lyapunov stability theory is that it is

not constructive. Design procedures developed in this book remove this deffi-

ciency for classes of systems with special structures. Backstepping solves the

stabilization problem for systems having a lower-triangular structure, while

forwarding does the same for systems with an upper-triangular structure. This

methodology, developed by the authors [46, 95], evolved from an earlier nested

saturation design by Teel [109] and recent results by Mazenc and Praly [75].

1.3 Cascade Designs

1.3.1 Passivation with composite Lyapunov functions

The design procedures in this book are first developed for cascade systems.

The cascade is “partially linear” if one of the two subsystems is linear, that is

ż = f(z) + ψ(z, ξ), ψ(z, 0) = 0

ξ̇ = Aξ +Bu
(1.3.1)

where (A,B) is a stabilizable pair. Even when the subsystem ż = f(z) is

GAS, it is the interconnection term ψ(z, ξ) which determines whether the

entire cascade is stabilizable or not.
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Applying the result that a feedback connection of two passive systems is

passive, the cascade (1.3.1) can be rendered passive if it can be represented

as a feedback interconnection of two passive systems. To this end, an output

y1 = h1(ξ) = Cξ is obtained for the ξ-subsystem by a factorization of the

interconnection term:

ψ(z, ξ) = ψ̃(z, ξ)h1(ξ) (1.3.2)

The output y1 of the ξ-subsystem is the input of the z-subsystem. We letW (z)

be the z-subsystem Lyapunov function such that LfW (z) ≤ 0. Then for the

input h1(ξ), the z-subsystem is passive with respect to the output y2 = Lψ̃W

andW (z) is its storage function. It is now sufficient that the ξ-subsystem with

the output y1 = h1(ξ) = Cξ can be made passive by a feedback transformation

u = Kx+Gv. Then a composite Lyapunov function for the whole cascade is

V (z, ξ) = W (z)+ξTPξ, where P > 0 satisfies the Positive Real Lemma for the

(A+BK,BG,BTP ). Such a matrix P exists if the linear subsystem (A,B,C)

is feedback passive. Because the relative degree and the zero dynamics are

invariant under feedback, a structural restriction on (A,B,C) is to be relative

degree one and weakly minimum phase.

A similar construction of a composite Lyapunov function

V (z, ξ) = W (z) + U(ξ) (1.3.3)

is possible when both subsystems in the cascade are nonlinear

ż = f(z) + ψ̃(z, ξ)h1(ξ)

ξ̇ = a(ξ, u)
(1.3.4)

and when the assumption on ż = f(z) is relaxed to be only GS (globally

stable), with a Lyapunov function W (z) such that LfW (z) ≤ 0. Again, the

z-subsystem is passive with the input-output pair u2 = h1(ξ) and y2 = Lψ̃W .

The entire cascade is rendered passive if the ξ-subsystem with output y1 =

h1(ξ) is made passive by feedback. As in the linear case, the relative degree

and zero-dynamics restrictions must be satisfied and a storage function U(ξ)

must be found.

In Chapter 4 several versions of such passivation designs are employed to

stabilize translational oscillations of a platform using a rotating actuator.

1.3.2 A structural obstacle: peaking

One of the novelties of this book is the treatment in Chapter 4 of an often

overlooked obstacle to global and semiglobal stabilization – the peaking phe-

nomenon. In its simplest form this phenomenon occurs in the linear system
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ξ̇ = Aξ + Bu when the gain K in the state feedback u = Kξ is chosen to

place the eigenvalues of A + BK to the left of Re{s} = −a < 0. For a fast

convergence of ξ to zero, the value of a must be large, that is, the gain K must

be high.

Each state component ξi is bounded by γie
−at where γi depends not only

on the initial condition ξ(0), but also on the rate of decay a, that is γi = γ̃ia
πi .

The peaking states are those ξi’s for which the peaking exponent πi is one or

larger, while for the nonpeaking states this exponent is zero. In a partially

linear cascade (1.3.1), an undesirable effect of peaking in the linear subsystem

is that it limits the size of the achievable stability region, as we now illustrate.

In the cascade
ż = −z + yz2

ξ̇1 = ξ2
ξ̇2 = u, y = c1ξ1 + c2ξ2

(1.3.5)

the z-equation can be solved explicitly:

z(t) = e−tz(0)[1− z(0)
∫ t

0
e−τy(τ) dτ ]−1

Clearly, to avoid the escape of z(t) to infinity in finite time, it is necessary

that the following bound be satisfied

z(0)
∫ ∞

0
e−ty(t) dt ≤ 1 (1.3.6)

With partial-state feedback u = k1ξ1 + k2ξ2 the decay of y(t) is exponential,

|y(t)| ≤ γe−at, and the bound (1.3.6) is satisfied if

z(0)γ

a+ 1
≤ 1 (1.3.7)

If y(t) is not peaking, that is if γ does not grow with a, then z(0) can be

allowed to be as large as desired by making a sufficiently large. Thus, when

y is a nonpeaking output of the linear subsystem, that is, when y can be

forced to decay arbitrarily fast without peaking, then the entire cascade can

be semiglobally stabilized.

Even when y is a nonpeaking output, not every feedback law will achieve

fast decay of y without peaking, as we illustrate with the “high-gain” design

u = −a2ξ1 − 2aξ2 (1.3.8)

for ξ-subsystem in (1.3.5). This high-gain control law places the eigenvalues at

λ1 = λ2 = −a. A simple calculation shows that in this case ξ1 is a nonpeaking
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state, while ξ2 is peaking with π2 = 1. Thus, y = ξ1 satisfies (1.3.7) and the

semiglobal stability is achieved. On the other hand, when y = ξ2 the bound

(1.3.6) for (ξ1(0), ξ2(0)) = (1, 0) is

z(0)a2

a2 + 1
≤ 1

and semiglobal stability cannot be achieved: no increase of a will allow z(0)

to be larger than one.

To see that y = ξ2 is in fact a nonpeaking output we now use the “two

time-scale” design

u = −ξ − (a+
1

a
)ξ2 (1.3.9)

which, for large a, renders λ2 = −a “fast”, and λ1 = − 1
a
“slow.” A simple

calculation shows that, with feedback (1.3.9), the output y = ξ2 still has the

fast decay rate a, but is nonpeaking, that is, it satisfies the bound (1.3.7)

which guarantees semiglobal stability.

We have thus demonstrated that with either y = ξ1 (or y = ξ2) semiglobal

stabilization of the cascade (1.3.5) is possible with partial-state feedback de-

sign (1.3.8) (or (1.3.9)), each rendering the decay of y arbitrarily fast without

peaking.

Can global stabilization also be achieved? The answer is affirmative, but

for this we must use full-state feedback u(ξ1, ξ2, z). For y = ξ2 we can design

such a feedback law using passivation discussed in the preceding section, while

for y = ξ1, we can use a backstepping design, to be discussed later. These

two full-state feedback designs satisfy the bound (1.3.6) for all z(0) by forcing

y(t) to depend on z(t) and to contribute to the stabilization process via the

interconnection term yz2.

In the discussion thus far we have mentioned the control laws which avoid

output peaking for y = ξ1 and y = ξ2 in (1.3.5). However, it can be shown that

output peaking cannot be avoided if y = ξ1 − ξ2. In this case, neither global

nor semiglobal stabilization of the cascade (1.3.5) is possible. With y = ξ1−ξ2
the double integrator is “strictly” nonminimum phase and all such systems are

peaking systems.

For the cascade (1.3.1), with ż = f(z) being GAS, the peaking phenomenon

and the structure of the interconnection term ψ(z, ξ) determine whether global

or semiglobal stabilization is possible. If the interconnection term ψ(z, ξ)

contains peaking states multiplied with functions of z which grow faster than

linear, global stabilization may be impossible. To determine whether this is

the case, the interconnection is factored as ψ̃(z, ξ0)Cξ, where Cξ is treated
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as the output of the linear subsystem and ξ0 denotes the nonpeaking states.

Now the problem is to stabilize the linear subsystem while preventing the

peaking in the output Cξ. The class of output nonpeaking linear systems is

characterized in Chapter 4 where it is shown that strictly nonminimum phase

linear systems are peaking systems. Our new analysis encompasses both fast

and slow peaking.

We reiterate that peaking is an obstacle not only to global stabilization,

but also to more practical semiglobal stabilization which is defined as the

possibility to guarantee any prespecified bounded stability region. Our analysis

of peaking in Chapter 4 applies and extends earlier results by Mita [79], Francis

and Glover [20], and the more recent results by Sussmann and Kokotović [105],

and Lin and Saberi [67].

1.4 Lyapunov Constructions

1.4.1 Construction of the cross-term

The most important part of our design procedures is the construction of a

Lyapunov function for an uncontrolled subsystem. In Chapter 5 this task is

addressed with a structure-specific approach and a novel Lyapunov construc-

tion is presented for the cascade

(Σ0)

{

ż = f(z) + ψ(z, ξ)

ξ̇ = a(ξ)
(1.4.1)

where ż = f(z) is globally stable and ξ̇ = a(ξ) is globally asymptotically

stable and locally exponentially stable. Such constructions have not appeared

in the literature until the recent work by Mazenc and Praly [75] and the

authors [46]. Chapter 5 presents a comprehensive treatment of several exact

and approximate Lyapunov constructions.

The main difficulty in constructing a Lyapunov function for (Σ0) is due to

the fact that ż = f(z) is only globally stable, rather than globally asymptoti-

cally stable, so that simple composite Lyapunov functions such asW (z)+U(ξ)

in (1.3.3) are not suitable.

Our main construction is aimed at finding the cross-term Ψ(z, ξ) for a more

general Lyapunov function

V0(z, ξ) =W (z) + Ψ(z, ξ) + U(ξ)

where W (z) and U(ξ) are the Lyapunov functions of the subsystems. The

cross-term Ψ(z, ξ) is needed to achieve nonpositivity of

V̇0 = LfW + LψW + Ψ̇ + LaU
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Because LψW is indefinite, Ψ̇ is constructed to eliminate it, that is Ψ̇ =

−LψW . In Chapter 5 we prove the existence and continuity of Ψ(z, ξ) under

the conditions

‖∂W
∂z
‖ ‖z‖ ≤ cW (z), as ‖z‖ → ∞ (1.4.2)

‖ψ(z, ξ)‖ ≤ γ1(‖ξ‖)‖z‖+ γ2(‖ξ‖) (1.4.3)

The first condition restricts the growth of W to be polynomial. The second

condition restricts the growth of the interconnection term ψ(z, ξ) to be linear

in ‖z‖. These conditions are structural and cannot be removed without ad-

ditional restrictions on f(z) and ψ(z, ξ). An expression for Ψ(z, ξ), which for

special classes of cascades can be obtained explicitly, is the line integral

Ψ(z, ξ) =
∫ ∞

0
LψW (z̃(s; (z, ξ)), ξ̃(s, ξ))ds (1.4.4)

along the solution of (Σ0) which starts at (z, ξ). In general, this integral

is either precomputed, or implemented with on-line numerical integrations.

Approximate evaluations of Ψ(z, ξ) from a PDE can also be employed.

1.4.2 A benchmark example

As an illustration of the explicit construction of the cross-term Ψ(z, ξ) and its

use in a passivation design we consider the system

ẋ1 = x2 + θx23
ẋ2 = x3
ẋ3 = ũ

(1.4.5)

We first let θ = 1 and later allow θ to be an unknown constant parameter.

This system cannot be completely linearized by a change of coordinates and

feedback. For y = x2 + x3 it has the relative degree one and can be written as

ẋ1 = x2 + x22 + (2x2 + y)y
ẋ2 = −x2 + y
ẏ = −y + u

(1.4.6)

where we have set ũ = −2y+ x2 + u. To proceed with a passivation design we

observe that the zero-dynamics subsystem

ẋ1 = x2 + x22
ẋ2 = −x2

is stable, but not asymptotically stable. For this subsystem we need a Lya-

punov function and, to construct it, we consider x1 as z, x2 as ξ and view
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the zero-dynamics subsystem as the cascade system (Σ0). For W = x21 the

line-integral (1.4.4) yields the explicit expression

Ψ(x1, x2) = (x1 + x2 +
x22
2
)2 − x21

which, along with U(x2) = x22, results in the Lyapunov function

V0(x1, x2) = (x1 + x2 +
x22
2
)2 + x22

Returning to the normal form (1.4.6) we get the cascade (1.3.1), in the notation

(z1, z2, ξ) instead of (x1, x2, y). The interconnection term ψT = [2x2+y, 1]
Ty is

already factored because y = ξ and the ξ-subsystem is passive with the storage

function S(y) = y2. Applying the passivation design from Section 1.3.1, where

V0(x1, x2) plays the role ofW (z) and ψ̃T = [2x2+y, 1]
T , the resulting feedback

control is

u = −∂V0
∂x1

(2x2 + y)− ∂V0
∂x2

Using V = V0(x1, x2) + y2 as a Lyapunov function it can be verified that the

designed feedback system is globally asymptotically stable. It is instructive

to observe that this design exploits two nested cascade structures: first, the

zero-dynamics subsystem is itself a cascade; and second, it is also the nonlinear

part of the overall cascade (1.4.6).

An alternative approach, leading to recursive forwarding designs in Chapter

6, is to view the same system (1.4.5) as the cascade of the double integrator

ẋ2 = x3, ẋ3 = ũ with the x1-subsystem. The double integrator part is first

made globally exponentially stable by feedback, say u = −x2 − 2x3 + v. It is

easy to verify that with this feedback the whole system is globally stable. To

proceed with the design, a Lyapunov function V (x) is to be constructed for

the whole system such that, with respect to the passivating output y = ∂V
∂x3

,

the system satisfies a detectability condition. The global asymptotic stability

of the whole system can then be achieved with the damping control v = − ∂V
∂x3

.

Again, the key step is the construction of the cross-term Ψ for the Lyapunov

function V (x). In this case the cross-term is

Ψ(x1, x2, x3) =
1

2
(x1 + 2x2 + x3 +

1

2
(x22 + x23)

2)2 − 1

2
x21

and results in

V (x) =
1

2
(x1 + 2x2 + x3 +

1

2
(x22 + x23)

2)2 +
1

2
x22 +

1

2
x23

which is the desired Lyapunov function for (1.4.5) with u = −x2 − 2x3.
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1.4.3 Adaptive control

While adaptive control is not a major topic of this book, the Lyapunov con-

struction in Chapter 5 is extended to nonlinear systems with unknown constant

parameters, such as the system (1.4.5) with unknown θ. Without a known

bound on θ, the global stabilization problem for this benchmark system has

not been solved before. Its solution can now be obtained by constructing the

same control law as if θ were known. Then the unknown parameter is replaced

by its estimate, and the Lyapunov function is augmented by a term penalizing

the parameter estimation error. Finally, a parameter update law is designed to

make the time-derivative of the augmented Lyapunov function negative. This

step, in general, requires that the estimates be overparameterized. Thus, for

the above example, instead of one, estimates of two parameters are needed.

This adaptive design is presented in Chapter 5.

1.5 Recursive Designs

1.5.1 Obstacles to passivation

With all its advantages, feedback passivation has not yet become a widely used

design methodology. Many passivation attempts have been frustrated by the

requirements that the system must have a relative degree one and be weakly

minimum phase. As the dimension of the system increases, searching for an

output which satisfies these requirements rapidly becomes an unwieldy task.

Even for a highly structured system such as

ż = f(z) + ψ̃(z, ξi)ξi, i ∈ {1, . . . , n}
ξ̇1 = ξ2
ξ̇2 = ξ3

...

ξ̇n = u,

(1.5.1)

with globally asymptotically stable ż = f(z), feedback passivation is difficult

because each candidate output y = ξi fails to satisfy at least one of the two

passivity requirements. Thus, if y = ξ1, the system is minimum phase, but it

has a relative degree n. On the other hand, if y = ξn, the relative degree is

one, but the system is not weakly minimum phase because the zero-dynamics

subsystem contains an unstable chain of integrators. For all other choices y =

ξi, neither the relative degree one, nor the weak minimum phase requirement

are satisfied.
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The recursive step-by-step constructions in Chapter 6 circumvent the struc-

tural obstacles to passivation. At each step, only a subsystem is considered,

for which the feedback passivation is feasible. Each of the two recursive proce-

dures, backstepping and forwarding, removes one of the obstacles to feedback

passivation.

1.5.2 Removing the relative degree obstacle

Backstepping removes the relative degree one restriction. This is illustrated

with the cascade (1.5.1) with i = 1, that is with y = ξ1. With this output, the

relative degree one requirement is not satisfied for the entire system. To avoid

this difficulty, the backstepping procedure first isolates the subsystem

ż = f(z) + ψ̃(z, ξ1)ξ1,

ξ̇1 = u1,
y1 = ξ1

(1.5.2)

With u1 as the input, this system has relative degree one and is weakly min-

imum phase. Therefore, we can construct a Lyapunov function V1(z, ξ1) and

a stabilizing feedback u1 = α1(z, ξ1). In the second step, this subsystem is

augmented by the ξ2-integrator:

ż = f(z) + ψ̃(z, ξ1)ξ1,

ξ̇1 = ξ2
ξ̇2 = u2,
y2 = ξ2 − α1(z, ξ1)

(1.5.3)

and the stabilizing feedback α1(z, ξ1) from the preceding step is used to de-

fine the new passivating output y2. With this output and the input u2 the

augmented subsystem has relative degree one because

ẏ2 = u2 −
∂α1

∂z
(f(z) + ψ̃(z, ξ1)ξ1)−

∂α1

∂ξ1
ξ2 (1.5.4)

By construction, the augmented subsystem is also minimum phase, because

its zero-dynamics subsystem is (1.5.2) with stabilizing feedback u1 = α1(z, ξ1).

Moreover, V1(z, ξ1) is a Lyapunov function for the zero-dynamics subsystem.

By augmenting V1 with y22 we obtain the composite Lyapunov function

V2(z, ξ) = V1(z, ξ1) + y22 = V1(z, ξ1) + (ξ2 − α1(z, ξ1))
2

which now serves for the construction of the new feedback u2 = α2(z, ξ1, ξ2).
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For the case n = 2, the relative degree obstacle to feedback passivation has

thus been overcome in two steps. The procedure is pursued until the output

has a relative degree one with respect to the true input u.

In this way, backstepping extends feedback passivation design to a system

with any relative degree by recursively constructing an output which eventually

satisfies the passivity requirements. At each step, the constructed output is

such that the entire system is minimum phase. However, the relative degree

one requirement is satisfied only at the last step of the procedure.

Backstepping has already become a popular design procedure, particularly

successful in solving global stabilization and tracking problems for nonlin-

ear systems with unknown parameters. This adaptive control development

of backstepping is presented in the recent book by Krstic, Kanellakopoulos

and Kokotović [61]. Backstepping has also been developed for robust control

of nonlinear systems with uncertainties in the recent book by Freeman and

Kokotović [26]. Several backstepping designs are also presented in [73].

1.5.3 Removing the minimum phase obstacle

Forwarding is a new recursive procedure which removes the weak minimum

phase obstacle to feedback passivation and is applicable to systems not handled

by backstepping. For example, backstepping is not applicable to the cascade

(1.5.1) with i = n, because with y = ξn the zero-dynamics subsystem contains

an unstable chain of integrators. The forwarding procedure circumvents this

obstacle step-by-step. It starts with the cascade

ż = f(z) + ψ̃(z, ξn)ξn,

ξ̇n = un,
yn = ξn

(1.5.5)

which ignores the unstable part of the zero dynamics. This subsystem satisfies

both passivation requirements, so that a Lyapunov function Vn(z, ξn) and a

stabilizing feedback un = αn(z, ξn) are easy to construct. The true control

input is denoted by un to indicate that the first step of forwarding starts with

the ξn-equation. The second step moves “forward” from the input, that is it

includes the ξn−1-equation:

ξ̇n−1 = ξn
ż = f(z) + ψ̃(z, ξn)ξn
ξ̇n = un(z, ξn)

(1.5.6)

This new subsystem has the structure of (1.4.1): it is the cascade of a stable

system ξ̇n−1 = 0 with the globally asymptotically stable system (z, ξn), the in-

terconnection term being just the state ξn. The construction with a cross-term
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is used to obtain a Lyapunov function Vn−1(z, ξn, ξn−1) which is nonincreasing

along the solutions of (1.5.6). This means that the system

ξ̇n−1 = ξn
ż = f(z) + ψ̃(z, ξn)ξn,

ξ̇n = un(z, ξn) + un−1,
yn−1 = LgVn−1

(1.5.7)

with the input-output pair (un−1, yn−1) is passive, and the damping control

un−1 = −yn−1 can be used to achieve global asymptotic stability.

By recursively adding a new state equation to an already stabilized sub-

system, a Lyapunov function V1(z, ξn, . . . , ξ1) is constructed and the entire

cascade is rendered feedback passive with respect to the output y = LgV1.

This output is the last one in a sequence of outputs constructed at each step.

With respect to each of these outputs, the entire system has relative degree

one, but the weak minimum phase requirement is satisfied only at the last

step. At each intermediate step, the zero dynamics of the entire system are

unstable.

This description shows that with forwarding the weak minimum phase re-

quirement of feedback passivation is relaxed by allowing instability of the zero

dynamics, characterized by repeated eigenvalues on the imaginary axis. Be-

cause of the peaking obstacle, this weak nonminimum phase requirement can-

not be further relaxed without imposing some other restrictions.

1.5.4 System structures

For convenience, backstepping and forwarding have been introduced using a

system consisting of a nonlinear z-subsystem and a ξ-integrator chain. How-

ever, these procedures are applicable to larger classes of systems.

Backstepping is applicable to the systems in the following feedback (lower-

triangular) form:

ż = f(z) + ψ(z, ξ1)ξ1
ξ̇1 = a1(ξ1, ξ2)

ξ̇2 = a2(ξ1, ξ2, ξ3)
...

ξ̇n = an(ξ1, ξ2, . . . , ξn, u)

(1.5.8)

which, for the input-output pair (u, ξ1), has relative degree n.

Likewise, forwarding is not restricted to systems in which the unstable

part of the zero-dynamics subsystem is a chain of integrators. Forwarding
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only requires that the added dynamics satisfy the assumptions for the con-

struction of the cross-term Ψ. Therefore, the systems which can be stabilized

by forwarding have the following feedforward (upper-triangular) form:

ξ̇1 = f1(ξ1) + ψ1(ξ1, ξ2, . . . , ξn, z, u)

ξ̇2 = f2(ξ2) + ψ2(ξ2, . . . , ξn, z, u)
...

ξ̇n−1 = fn−1(ξn−1) + ψn−1(ξn−1, ξn, z, u)
ż = f(z) + ψ(ξn, z)ξn
ξ̇n = u

(1.5.9)

where ξTi = [ξi1, . . . , ξiq], the subsystems ξ̇i = fi(ξi) are stable, and the inter-

connections terms ψi satisfy a growth condition in ξi.

It is important to stress that, without further restrictions on the z-subsystem,

the triangular forms (1.5.8) and (1.5.9) are necessary, as illustrated by the fol-

lowing example:

ẋ0 = (−1 + x1)x
3
0

ẋ1 = x2 + x23
ẋ2 = x3
ẋ3 = u

(1.5.10)

Because the (x1, x2, x3)-subsystem is not lower-triangular, backstepping is not

applicable. The entire system is upper-triangular, but the growth condition

imposed by forwarding is violated by the interconnection term x30x1. In fact,

it can be shown that (1.5.10) is not globally stabilizable.

Broader classes of systems can be designed by interlacing steps of backstep-

ping and forwarding. Such interlaced systems are characterized by structural

conditions which only restrict the system interconnections, that is, the states

which enter the different nonlinearities. We show in Chapter 6 that, when

a nonlinear system lacks this structural property, additional conditions, like

restrictions on the growth of the nonlinearities, must be imposed to guarantee

global stabilizability.

Backstepping and forwarding designs can be executed to guarantee that a

cost functional including a quadratic cost on the control is minimized. Stability

margins are therefore guaranteed for the designed systems.

1.5.5 Approximate asymptotic designs

The design procedures discussed thus far guarantee global stability properties

with desirable stability margins. However, their complexity increases with the
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dimension of the system, and, for higher-order systems, certain simplified de-

signs are of interest. They require a careful trade-off analysis because the price

paid for such simplifications may be a significant reduction in performance and

robustness.

Simplifications of backstepping and forwarding, presented in Chapter 6,

are two distinct slow-fast designs. They are both asymptotic in the sense that

in the limit, as a design parameter ε tends to zero, the separation of time

scales is complete. They are also geometric, because the time-scale properties

are induced by a particular structure of invariant manifolds.

Asymptotic approximations to backstepping employ high-gain feedback to

create invariant manifolds. The convergence to the manifold is fast, while the

behavior in the manifold is slower. The relationship of such asymptotic designs

with backstepping is illustrated on the cascade

ż = f(z) + ψ̃(z, ξ1)ξ1,

ξ̇1 = ξ2
ξ̇2 = u2,
y2 = ξ2 − α1(z, ξ1)

(1.5.11)

where y2 is the error between ξ2 and the “control law ” α1(z, ξ1) designed to sta-

bilize the (z, ξ1)-subsystem using ξ2 as the “virtual control”. In backstepping

the actual control law is designed to render the cascade (1.5.11) passive from

the input u2 to the output y2. Such a control law is of considerable complexity

because it implements the analytical expressions of the time-derivatives ż and

ξ̇1, available from the first two equations of (1.5.11). A major simplification is

to disregard these derivatives and to use the high-gain feedback

u2 = −ky2 := −
1

ε
y2

where ε is sufficiently small. The resulting feedback system is

ż = f(z) + ψ̃(z, ξ1)ξ1,

ξ̇1 = α1(z, ξ1) + y2
εẏ2 = −y2 − ε(∂α1

∂z
ż + ∂α1

∂ξ1
ξ̇1)

(1.5.12)

This system is in a standard singular perturbation form and, therefore, it has

a slow invariant manifold in an ε-neighborhood of the plane y2 ≡ 0. In this

manifold the behavior of the whole system (1.5.12) is approximately described

by the reduced (z, ξ1)-subsystem. An estimate of the stability region, which

is no longer global, is made by using the level sets of a composite Lyapunov

function.
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The key feature of this design is that the existence of the slow manifold

is enforced by feedback with high-gain 1
ε
. In recursive designs, several nested

manifolds are enforced by increasing gains leading to multiple time scales.

The high-gain nature of these designs is their major drawback: it may lead to

instability due to the loss of robustness to high-frequency unmodeled dynamics

as discussed in Chapter 3.

The simplification of forwarding employs low-gain and saturated feedback

to allow a design based on the Jacobian linearization of the system. This is

the saturation design of Teel [109], which was the first constructive result in

the stabilization of systems in the upper-triangular form (1.5.9). Its relation

to forwarding is illustrated on the benchmark system

ẋ1 = x2 + x23
ẋ2 = x3
ẋ3 = −x2 − 2x3 + v

(1.5.13)

One step of forwarding yields the stabilizing feedback

v = −(x1 + 2x2 + x3 +
1

2
(x1 + x2 + 2x3)

2)(1 + 2x3) (1.5.14)

obtained from the cross-term

Ψ(x1, x2, x3) =
∫ ∞

0
x̃1(s)(x̃2(s) + x̃23(s)) ds

If we replace the control law (1.5.14) by its linear approximation saturated at

a level ε, we obtain the simpler control law

v = −σε(x1 + 2x2 + x3) (1.5.15)

where σε denotes the saturation

σε(s) = s, for |s| ≤ ε
= sign(s) ε, for |s| ≥ ε

(1.5.16)

A justification for the approximation (1.5.15) comes from the exponential sta-

bility of the linear subsystem ẋ2 = x3, ẋ3 = −2x3−x2. The ε-saturated control

law (1.5.15) lets all the solutions of (1.5.13) approach an ε-neighborhood of the

x1-axis, that is the manifold x2 = x3 = 0. Along this manifold, the nonlinear

term x23 can be neglected because it is of higher-order and the behavior of the

entire system in this region is described by

ζ̇ = −σε(ζ) +O(ε2), ζ = x1 + 2x2 + x3 (1.5.17)
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The convergence of ζ is slow, but ζ eventually enters an ε-neighborhood of the

origin. In this neighborhood, the control law (1.5.15) no longer saturates and

the local exponential stability of the system ensures the convergence of the

solutions to zero.

The key feature of the saturation design is the existence of a manifold (for

the uncontrolled system v = 0) to which all the solutions converge and along

which the design of a stabilizing feedback is simplified. With a low-gain sat-

urated feedback, the approach to the manifold is preserved, and, at the same

time, the simplified control law achieves a slow stabilization along the man-

ifold. In recursive designs, this convergence towards several nested invariant

manifolds is preserved when the saturation levels are decreased, which leads

to multiple time scales.

For more general systems in the upper-triangular form (1.5.9), the stabi-

lization achieved with the saturation design is no longer global, but the sta-

bility region can be rendered as large as desired with smaller ε. The fact that,

for a desired stability region, ε may have to be very small, shows potential

drawbacks of this design.

The first drawback is that, while approaching the slow manifold, the system

operates essentially “open-loop” because the ε-saturated feedback is negligible

as long as x2 and x3 are large. During this transient, the state x1 remains

bounded but may undergo a very large overshoot. The control law will have

a stabilizing effect on x1 only after the solution has come sufficiently close to

the slow manifold. Even then the convergence is slow because the control law

is ε-saturated.

The second drawback is that an additive disturbance larger than ε will

destroy the convergence properties of the equation (1.5.17). Both of these

drawbacks suggest that the saturation design should not be pursued if the

saturation level ε is required to be too small.

Even with their drawbacks, the simplified high-gain and saturation designs

presented in Chapter 6 are of practical interest because they reveal structural

limitations and provide conservative estimates of achievable performance.

Backstepping and forwarding are not conservative because they employ

the knowledge of system nonlinearities and avoid high gains for small signals

and low gains for large signals. With guaranteed stability margins they guard

against static and dynamic uncertainties. Progressive simplifications of back-

stepping and forwarding offer a continuum of design procedures which the

designer can use for his specific needs.
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1.6 Book Style and Notation

1.6.1 Style

Throughout this book we have made an effort to avoid a dry “definition-

theorem” style. While definitions are used as the precise form of expression,

they are often simplified. Some assumptions obvious from the context, such

as differentiability, are explicitly stated only when they are critical.

Examples are used to clarify new concepts prior or after their definitions.

They also precede and follow propositions and theorems, not only as illustra-

tions, but often as refinements and extensions of the presented results.

The “example-result-example” style is in the spirit of the book’s main goal

to enrich the repertoire of nonlinear design tools and procedures. Rather than

insisting on a single methodology, the book assembles and employs structure-

specific design tools from both analysis and geometry. When a design pro-

cedure is constructed, it is presented as one of several possible constructions,

pliable enough to be “deformed” to fit the needs of an actual problem.

The main sources of specific results are quoted in the text. Comments on

history and additional references appear at the end of each chapter.

1.6.2 Notation and acronyms

A function f : IRn → IRq is Ck if its partial derivatives exist and are continuous

up to order k, 1 ≤ k < ∞. A C0 function is continuous. A C∞ function is

smooth, that is, it has continuous partial derivatives of any order. The same

notation is used for vector fields in IRn. All the results are presented under the

differentiability assumptions which lead to the shortest and clearest proofs.

This book does not require the formalism of differential geometry and em-

ploys Lie derivatives only for notational convenience. If f : IRn → IRn is a

vector field and h : IRn → IR is a scalar function, the notation Lfh is used for
∂h
∂x
f(x). It is recursively extended to

Lkfh(x) = Lf (L
k−1
f h(x)) =

∂

∂x
(Lk−1f h)f(x)

A C0 function γ : IR+ → IR+ is said to belong to class K, in short γ ∈ K,
if it is strictly increasing and γ(0) = 0. It is said to belong to class K∞ if, in

addition, γ(r)→∞ as r →∞.
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Table 1.1: List of acronyms.

GS global stability CLF control Lyapunov function

GAS global asymptotic stability ZSD zero-state detectability

LES local exponential stability ZSO zero-state observability

OFP output feedback passivity SISO single-input single-output

IFP input feedforward passivity MIMO multi-input multi-output

A C0 function β : IR+ × IR+ → IR+ is said to belong to class KL if for

each fixed s the function β(·, s) belongs to class K, and for each fixed r, the

function β(r, ·) is decreasing and β(r, s)→ 0 as s→∞.

For the reader’s convenience, Table 1.1 contains a list of acronyms used through-

out the book.



Chapter 2

Passivity Concepts as Design
Tools

Only a few system theory concepts can match passivity in its physical and

intuitive appeal. This explains the longevity of the passivity concept from

the time of its first appearance some 60 years ago, to its current use as a

tool for nonlinear feedback design. The pioneering results of Lurie and Popov,

summarized in the monographs by Aizerman and Gantmacher [3], and Popov

[88], were extended by Yakubovich [121], Kalman [51], Zames [123], Willems

[120], and Hill and Moylan [37], among others. The first three sections of this

chapter are based on these references from which we extract, and at times

reformulate, the most important concepts and system properties to be used in

the rest of the book.

We begin by defining and illustrating the concepts of storage function,

supply rate, dissipativity and passivity in Section 2.1. The most useful aspect

of these concepts, discussed in Section 2.2, is that they reveal the properties

of parallel and feedback interconnections in which excess of passivity in one

subsystem can compensate for the shortage in the other.

After these preparatory sections, we proceed to establish, in Section 2.3,

the relationship between different forms of passivity and stability. Particularly

important are the conditions for stability of feedback interconnections. In

Section 2.4, we present a characterization of systems which can be rendered

passive by feedback. The concept of feedback passive systems has evolved from

recent work of Kokotović and Sussmann [59], and Byrnes, Isidori, and Willems

[15]. It is one of the main tools for our cascade and passivation designs.

25
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2.1 Dissipativity and Passivity

2.1.1 Classes of systems

Although the passivity concepts apply to wider classes of systems, we restrict

our attention to dynamical systems modeled by ordinary differential equations

with an input vector u and an output vector y:

(H)







ẋ = f(x, u), x ∈ IRn

y = h(x, u), u, y ∈ IRm
(2.1.1)

- H -u y

Figure 2.1: Input-output representation of (2.1.1).

We will be concerned with the case when the state x(t), as a function of

time, is uniquely determined by its initial value x(0) and the input function

u(t). We assume that u : IR+ → IRm belongs to an input set U of functions

which are bounded on all bounded subintervals of IR+. In feedback designs

u becomes a function of x, so the assumption u ∈ U cannot be a priori veri-

fied. The satisfaction of this assumption for initial conditions in the region of

interest will have to be a posteriori guaranteed by the design.

Another restriction in this chapter is that the system (2.1.1) is “square,”

that is, its input and output have the same dimension m. Finally, an assump-

tion made for convenience is that the system (2.1.1) has an equilibrium at the

origin, that is, f(0, 0) = 0, and h(0, 0) = 0.

We will find it helpful to visualize the system (2.1.1) as the input-output

block diagram in Figure 2.1. In such block diagrams the dependence on the

initial state x(0) will not be explicitly stressed, but must not be overlooked.

The system description (2.1.1) includes as special cases the following three

classes of systems:

• Nonlinear systems affine in the input:

ẋ = f(x) + g(x)u
y = h(x) + j(x)u

(2.1.2)



2.1. DISSIPATIVITY AND PASSIVITY 27

• Static nonlinearity:

y = ϕ(u) (2.1.3)

• Linear systems:
ẋ = Ax+Bu
y = Cx+Du

(2.1.4)

For static nonlinearity y = ϕ(u), the state space is void. In the case of linear

systems, we will let the system H be represented by its transfer function

H(s) := D + C(sI − A)−1B where s = σ + jω is the complex variable.

2.1.2 Basic concepts

For an easy understanding of the concepts of dissipativity and passivity it

is convenient to imagine that H is a physical system with the property that

its energy can be increased only through the supply from an external source.

From an abundance of real-life examples let us think of baking a potato in

a microwave oven. As long as the potato is not allowed to burn, its energy

can increase only as supplied by the oven. A similar observation can be made

about an RLC-circuit connected to an external battery. The definitions given

below are abstract generalizations of such physical properties.

Definition 2.1 (Dissipativity)

Assume that associated with the system H is a function w : IRm × IRm → IR,

called the supply rate, which is locally integrable for every u ∈ U , that is, it

satisfies
∫ t1
t0
|w(u(t), y(t))| dt <∞ for all t0 ≤ t1. Let X be a connected subset

of IRn containing the origin. We say that the system H is dissipative in X

with the supply rate w(u, y) if there exists a function S(x), S(0) = 0, such

that for all x ∈ X

S(x) ≥ 0 and S(x(T ))− S(x(0)) ≤
∫ T

0
w(u(t), y(t)) dt (2.1.5)

for all u ∈ U and all T ≥ 0 such that x(t) ∈ X for all t ∈ [0, T ]. The function

S(x) is then called a storage function. 2

Definition 2.2 (Passivity)

System H is said to be passive if it is dissipative with supply rate w(u, y) =

uTy. 2

We see that passivity is dissipativity with bilinear supply rate. In our

circuit example, the storage function S is the energy, w is the input power,
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and
∫ T
0 w(u(t), y(t)) dt is the energy supplied to the system from the external

sources. The system is dissipative if the increase in its energy during the

interval (0, T ) is not bigger than the energy supplied to the system during

that interval.

If the storage function S(x) is differentiable, we can write (2.1.5) as

Ṡ(x(t)) ≤ w(u(t), y(t)) (2.1.6)

Again, the interpretation is that the rate of increase of energy is not bigger

than the input power.

If H is dissipative, we can associate with it a function Sa(x), called the

available storage, defined as

Sa(x) = sup
u,T≥0

{

−
∫ T

0
w(u(t), y(t)) dt

∣
∣
∣
∣
∣
x(0) = x and ∀t ∈ [0, T ] : x(t) ∈ X

}

(2.1.7)

An interpretation of the available storage Sa(x) is that it is the largest amount

of energy which can be extracted from the system given the initial condition

x(0) = x.

The available storage Sa(x) is itself a storage function and any other storage

function must satisfy S(x) ≥ Sa(x). This can be seen by rewriting (2.1.5) as

S(x(0)) ≥ S(x(0))− S(x(T )) ≥ −
∫ T

0
w(u(t), y(t)) dt,

which yields

S(x(0)) ≥ sup
u,T≥0

{

−
∫ T

0
w(u(t), y(t)) dt

}

= Sa(x(0))

The properties of Sa(x) are summarized in the following theorem due to

Willems [120].

Theorem 2.3 (Available Storage)

The system H is dissipative in X with the supply rate w(u, y) if and only if

Sa(x) is defined for all x ∈ X. Moreover, Sa(x) is itself a storage function and,

if S(x) is another storage function with the same supply rate w(u, y), then

S(x) ≥ Sa(x). 2

For linear passive systems, the available storage function is further char-

acterized in the following theorem by Willems [120] which we quote without

proof.
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Theorem 2.4 (Quadratic storage function for linear systems)

If H is linear and passive, then the available storage function is quadratic

Sa(x) = xTPx. The matrix P is the limit P = limε→0 Pε of the real symmetric

positive semidefinite solution Pε ≥ 0 of the Ricatti equation

PεA+ ATPε + (PεB − CT )(D +DT + εI)−1(BTPε − CT ) = 0

2

The above concepts are now illustrated with several examples.

Example 2.5 (Integrator as a passive system)

An integrator is the simplest storage element:

ẋ = u
y = x

This system is passive with S(x) = 1
2
x2 as a storage function because Ṡ = uy.

Its available storage Sa can be obtained from the following inequalities:

1

2
x20 = S(x0) ≥ Sa(x0) = sup

u,T

{

−
∫ T

0
yu dt

}

≥
∫ ∞

0
y2 dt = x20

∫ ∞

0
e−2t dt =

1

2
x20

The second inequality sign is obtained by choosing u = −y and T =∞. Note

that, for the choice u = −y, the assumption u ∈ U is a posteriori verified by

the fact that with this choice u(t) = −y(t) is a decaying exponential. 2

In most of our examples, the domain X of dissipativity will be the entire

space IRn. However, for nonlinear systems, this is not always the case.

Example 2.6 (Local passivity)

The system
ẋ = (x3 − kx) + u
y = x

is passive in the interval X = [−
√
k,
√
k] ⊂ IR with S(x) = 1

2
x2 as a storage

function because Ṡ = x2(x2 − k) + uy ≤ uy for all x in X. However, we can

verify that it is not passive in any larger subset of IRn: for any constant k̄,

the input u = −(k̄3 − kk̄) and the initial condition x = k̄ yield the constant

solution x(t) ≡ k̄. If the system is passive, then along this solution, we must

have

0 = S(x(T ))− S(x(0)) ≤
∫ T

0
u(t)y(t) dt = −k̄2(k̄2 − k)T

This is violated for k̄ 6∈ [−
√
k,
√
k], and hence, the system is not passive outside

X. 2
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Example 2.7 (RLC circuit)

In the absence of a good model of a potato as a dynamical system, our next

example is a circuit consisting of an inductor L in parallel with a series con-

nection of a resistor R and a capacitor C. External voltage v applied to the

inductor is the input, and the total current i is the output. Considering in-

ductor current iL and capacitor voltage vC as the state variables, the circuit

equations written in the form (2.1.1) are:

i̇L =
1

L
v

v̇C =
1

RC
(v − vC)

i = iL +
1

R
(v − vC)

(2.1.8)

The energy stored in the inductor is 1
2
Li2L and the energy stored in the capacitor

is 1
2
Cv2C . Therefore, the total energy in the circuit is

E =
1

2
Li2L +

1

2
Cv2C

and its rate of change is

Ė = vi− 1

R
(v − vC)2 ≤ vi

Thus the system (2.1.8) is dissipative, and the bilinear form of the supply

rate w(v, i) = vi means that it is passive. Physically, the supply rate vi is

the power supplied by the voltage source. It is of interest to observe that

the system obtained by considering i as the input and v as the output is also

passive with respect to the same supply rate.

2

Example 2.8 (Mass-spring-damper system)

A system made of passive elements may not be passive for some input-output

pairs, as illustrated by a mass-spring-damper system, with an external force

acting on the mass considered as the input u. The state equations for the mass

position x and velocity v are

ẋ = v
v̇ = − k

m
x− b

m
v + 1

m
u

where k > 0 is the spring constant, m > 0 is the mass, and b > 0 is the viscous

friction coefficient. The energy is

E =
1

2
mv2 +

1

2
kx2
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and its rate of change is

Ė = uv − bv2 ≤ uv (2.1.9)

Thus, when the velocity is considered as the output, the mass-spring-damper

system is passive. Its storage function is the energy E and the supply rate is

the input power uv. However, the same system is not passive if the position x

is taken to be the output y = x, so that the transfer function is

H(s) =
1

ms2 + bs+ k

The output y(t) for the input u(t) = sin(ωt) with x(0) = 0, v(0) = 0, is

y(t) = A(ω) sin(ωt + φ(ω)) where A(ω) > 0 is the magnitude and φ(ω) the

phase of H(jω). Passivity of the system would imply

S(x(
2π

ω
))− S(0) ≤

∫ 2π
ω

0
A(ω) sin(ωt+ φ(ω)) sin(ωt) dt

for some storage function S(x). Because S(0) = 0 and S(x(T )) > 0, this would

require that

0 ≤ 2π

ω
A(ω) cos(φ(ω)) (2.1.10)

However, for ω sufficiently large, φ(ω) drops below −90◦ so that cos(φ(ω)) < 0.

This contradicts (2.1.10), which shows that the mass-spring-damper system

with the mass position as the output and the force acting on the mass as the

input, cannot be passive. As we shall see, the same conclusion is immediate

from the fact that the relative degree of H(s) is larger than one.

2

2.2 Interconnections of Passive Systems

2.2.1 Parallel and feedback interconnections

Our design methods will exploit the structure of systems formed as inter-

connections of subsystems with certain passivity properties. The two basic

structures, feedback and parallel, are presented in Figure 2.2.

Assuming that both H1 and H2 are in the form (2.1.1), we first must

make sure that the interconnection is also in the form (2.1.1) for which well-

posedness can be deduced from the standard results on the existence of solu-

tions of ordinary differential equations. This is obviously true for the parallel

interconnection, which constitutes the new system

ẋ1 = f1(x1, u)
ẋ2 = f2(x2, u)
y = h1(x1, u) + h2(x2, u)
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Figure 2.2: Feedback and parallel interconnections.

However, the feedback interconnection may not be in the form (2.1.1), and

may fail to have a well-defined solution even locally if h1 depends on u1 and

h2 depends on u2. A static feedback loop created by the two throughputs

may obliterate the dynamics of H1 and H2 so that their differential equations

cannot be satisfied, except, possibly, for some special initial conditions.

Example 2.9 (Ill-posedness of feedback interconnections)

It is easy to see that with d1 = 0, d2 6= 0 the feedback interconnection of

H1 :
ẋ1 = −x1 + d1u1
y1 = x1 + d1u1

H2 : y2 = d2u2

represents a system of the form (2.1.1); hence, it is well-posed.

However, if d1 = −1, d2 = 1, the feedback interconnection is ill-posed be-

cause of the static loop which imposes the constraint x1(t) ≡ r(t) and violates

the state equation of H1. This can be readily seen from the fact that the

interconnection conditions

u1(t) = −y2(t) + r(t), u2(t) = y1(t)

along with the output functions

y1(t) = x1(t)− u1(t), u2(t) = y2(t)

result in y1 = y2. Hence, x1(t) ≡ r(t), which leaves no room for the dynamics

of ẋ1 = −x1 + u1, except in the special case when x1(0) = r(0).

2

To avoid ill-posedness of the feedback interconnection, it is sufficient to

require that at least one throughput be zero. Thus, when ∂h1

∂u1
≡ 0, that is
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when y1 = h1(x1), the feedback interconnection defines a new system

ẋ1 = f1(x1,−h2(x2, h1(x1)) + r) =: f̃(x1, x2, r)
ẋ2 = f2(x2, h(x1))
y = h1(x1)

which is in the form (2.1.1), and hence, well-posed. Unless explicitly stated

otherwise, all feedback interconnections in this book will satisfy

either
∂h1
∂u1
≡ 0, or

∂h2
∂u2
≡ 0. (2.2.1)

We now present interconnection passivity properties which will be fre-

quently used in this book.

Theorem 2.10 (Interconnections of passive systems)

Suppose that H1 and H2 are passive. Then the two systems, one obtained by

the parallel interconnection, and the other obtained by the feedback intercon-

nection, are both passive.

Proof: By passivity of H1 and H2, there exist S1(x1) and S2(x2) such

that Si(xi(T )) − Si(xi(0)) ≤
∫ T
0 u

T
i yi dt, i = 1, 2. Define x := (x1, x2) and

S(x) = S1(x1) + S2(x2) and note that S(x) is positive semidefinite.

For the parallel interconnection the output is y = y1 + y2, so that

S(x(T ))− S(x(0)) ≤
∫ T

0
(uTy1 + uTy2) dt =

∫ T

0
uTy dt

This proves that the parallel interconnection is passive.

For the feedback interconnection we have

S(x(T ))− S(x(0)) ≤
∫ T

0
(uT1 y1 + uT2 y2) dt

Substituting u2 = y1 and u1 = r − y2 we obtain

S(x(T ))− S(x(0)) ≤
∫ T

0
rTy1 dt

which proves that the feedback interconnection is passive.

2
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M(x) H MT (x)- - --y ȳuū

Figure 2.3: Pre- and post-multiplication by a state-dependent matrix.

A transformation of the input and output, which often appears in intercon-

nections, is depicted in Figure 2.3. For a matrix M(x) depending on the state

of the system, the new input and output satisfy u =M(x)ū and ȳ =M T (x)y.

It is not difficult to see that, if H is passive with S(x), then the transformed

system is also passive with the same storage function:

S(x(T ))− S(x(0)) ≤
∫ T

0
uTy dt =

∫ T

0
ūTMT (x)y dt =

∫ T

0
ūT ȳ dt

The passivity property of H remains the same even if the matrix M is a

function of the state of the other system in the interconnection. We will

encounter such a situation in Chapter 4.

Proposition 2.11 (Interconnections with pre- and post-multiplication)

Let M be a matrix which depends on the states of the systems H1 and H2.

Then the parallel and feedback interconnections of H1 and H2 remain passive

if either one or both of the systems H1 and H2 are pre-multiplied byM(x1, x2)

and post-multiplied by MT (x1, x2).

2

2.2.2 Excess and shortage of passivity

What can happen when one of the systems in the interconnection is not pas-

sive? Can an “excess of passivity” of the other system assure that the inter-

connection is passive? To answer these questions let us select a system which

clearly is not passive. The simplest system of this kind is the constant neg-

ative gain y = −ku, where k > 0. This system is static, its state space is

void, and the only possible storage function is S = 0. With yu = −ku2 as the

supply rate, the integral in (2.1.5) is negative, which violates the definition of

passivity. An analogous multivariable system is the matrix gain −kI where I

is the m×m identity and k > 0 is a scalar.
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Let H be passive and consider its parallel interconnection with −kI. For

this interconnection to be passive, its supply rate uT ȳ must satisfy (2.1.5).

Since ȳ = y − ku we have

uTy = uT ȳ + kuTu

It follows that the parallel interconnection of H with −kI is passive if H is

dissipative with respect to the supply rate w(u, y) = uTy− νuTu, with ν ≥ k.

This is verified by rewriting the dissipation inequality for H as

S(x(T ))− S(x(0)) ≤
∫ T

0
uT ȳ dt− (ν − k)

∫ T

0
uTu dt

Thus, if ν ≥ k then the interconnection is passive with S(x) as the storage

function.

The analogous situation arises in the feedback interconnection of H with

−kI. The input to the system H is u = r+ ky. The interconnected system is

passive if H is dissipative with respect to the supply rate

w(u, y) = uTy − ρyTy (2.2.2)

with ρ ≥ k, because

S(x(T ))− S(x(0)) ≤
∫ T

0
yT r dt− (ρ− k)

∫ T

0
yTy dt ≤

∫ T

0
yT r dt

In each of the two cases a particular “excess of passivity” of H has com-

pensated for the lack of passivity of −kI and guaranteed the passivity of the

interconnection. The opposite situation arises when the system H is not pas-

sive, but has a certain dissipativity property; for example, if the constant ρ in

the supply rate (2.2.2) is negative. The feedback interconnection of H with

the matrix gain kI may still be passive if k + ρ > 0 because then

S(x(T ))− S(x(0)) ≤
∫ T

0
yT r dt− (ρ+ k)

∫ T

0
yTy dt ≤

∫ T

0
yT r dt

In this case ρ being negative indicates a “shortage of passivity” which can

be compensated by output feedback u = −kI + r. Similarly, a “shortage of

passivity” ofH, which is dissipative with the supply rate w(u, y) = uTy−νuTu,
ν < 0, can be compensated by feeding forward the input: ȳ = y+ku, k+ν > 0.

The possibility of achieving passivity of interconnections which combines

systems with “excess” and “shortage” of passivity motivates us to introduce

the following definition.
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Definition 2.12 (Excess/Shortage of Passivity)

System H is said to be

• Output Feedback Passive (OFP) if it is dissipative with respect to

w(u, y) = uTy − ρ yTy for some ρ ∈ IR.

• Input Feedforward Passive (IFP) if it is dissipative with respect to

w(u, y) = uTy − ν uTu for some ν ∈ IR. 2

We quantify the excess and shortage properties with the notation IFP(ν)

and OFP(ρ). According to our convention, positive sign of ρ and ν means

that the system has an excess of passivity. In this case, the concepts of IFP

and OFP coincide with Input Strict Passivity and Output Strict Passivity

introduced by Hill and Moylan [38]. Conversely, negative sign of ρ and ν

means that the system has a shortage of passivity.

Another common concept in passivity theory is strict passivity defined in

[18] by requiring that

∫ T

0
uTy dt ≥ ν

∫ T

0
uTu dt+ β

for some ν > 0 and β ∈ IR. This concept coincides with IFP with positive ν.

Example 2.13 (Excess of passivity - feedforward)

Consider a system represented by the transfer function H(s) = s+1
s
. Its mini-

mal realization in Figure 2.4 consists of an integrator in parallel with a positive

unity gain. This system is IFP(1) because, when connected in parallel with

1

1
s

-

-

- ? -u y

Figure 2.4: An illustration that s+1
s

is IFP(1).

a negative unity gain, it becomes an integrator which is passive. The “excess

of passivity” is provided by the feedforward path with positive gain. To show

this analytically we use
ẋ = u
y = x+ u
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and the storage function S(x) = 1
2
x2. Then Ṡ = xu = uy − u2 proves the

IFP(1) property.

2

Example 2.14 (Excess of passivity - feedback)

The system
ẋ = −x+ u
y = arctan(x)

with the storage function S(x) =
∫ x
0 arctan(z)dz is OFP(1) because it is dissi-

pative with the supply rate uy−y2. This is clear from Ṡ = arctanx(−x+u) ≤
−y2 + yu. Let us interpret this conclusion with the help of the block diagram

in Figure 2.5.

arctan(.) -1
s

1

-

¾

6

--
−

u x y

Figure 2.5: A system which is OFP(1) because |y| ≤ |x|.

The excess of passivity in this case is provided by the negative unity gain

feedback around the integrator. A positive unity gain feedback from y does

not destroy passivity because |y| ≤ |x|. 2

Example 2.15 (Sector nonlinearity)

Consider a static nonlinearity y = ϕ(u), where ϕ(·) in Figure 2.6 belongs to

a sector [α, β]:

αu2 ≤ uϕ(u) ≤ βu2, 0 ≤ α ≤ β

If the inequalities are strict, we use the notation (α, β).

The state space of this system is void and the only choice for the storage

function is S ≡ 0. By manipulating the bounds on ϕ we obtain

uy − αu2 ≥ 0 and uy − 1
β
y2 ≥ 0

Thus, the sector nonlinearity y = ϕ(u) is IFP(α) as well as OFP( 1
β
). 2
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y = αu

y = βuy

u

y = ϕ(u)

Figure 2.6: Sector nonlinearity ϕ(·).

Example 2.16 (Shortage of passivity)

The system
ẋ = x+ u
y = x

is OFP(−1) with the storage function S(x) = 1
2
x2 because Ṡ = y2+uy. Clearly,

k = 1 is exactly the amount of output feedback required to compensate for

the “shortage of passivity,” that is to make the system passive. 2

The following scaling property of OFP and IFP systems will be useful in

later chapters.

Proposition 2.17 (IFP/OFP Scaling)

For the systems H and αH, where α is a constant, the following statements

are true:

(i) If H is OFP(ρ) then αH is OFP( 1
α
ρ).

(ii) If H is IFP(ν) then αH is IFP(αν).

Proof: The output yα of the system αH is just yα = αy where y is the

output of H. Define a storage function for αH by Sα = αS. Then (i) follows

from

Sα(x(T ))− Sα(x(0)) = α(S(x(T ))− S(x(0))) ≤ α
∫ T

0
(uTy − ρ yTy) dt

=
∫ T

0
(uTyα −

1

α
ρ yTαyα) dt
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The proof of (ii) is similar.

2

An excess/shortage of passivity in Definition 2.12 is quantified by linear

feedback or feedforward terms, ρy or νu. For nonlinear systems such properties

may hold only locally, that is in some neighborhood of x = 0. For global

properties of nonlinear systems a possible extension of the excess/shortage

definitions would be to replace ρy and νu by

ρ(y) = [ρ1(y1), . . . , ρm(ym)]
T ,

ν(u) = [ν1(u1), . . . , νm(um)]
T ,

(2.2.3)

where ρi(yi), νi(ui) are in the sector (0,+∞) or (−∞, 0), i = 1, . . . ,m. Instead

of extended definitions, we will use ρ(y) and ν(u) as needed in specific problems

like in the following example.

Example 2.18 (Nonlinear excess/shortage of passivity)

For the system
ẋ = x3 + u
y = x

a linear feedback u = −ρy+ū cannot achieve passivity outside the set [−√ρ,√ρ].
It was indeed shown in Example 2.6 that the system

ẋ = x3 − ρx+ ū
y = x

is passive only in the interval [−√ρ,√ρ]. However, the nonlinear output feed-
back ρ(y) = −ky3 achieves passivity for all k ≥ 1, because the system

ẋ = (1− k)x3 + ū, k ≥ 1
y = x

has a storage function S(x) = 1
2
x2 which satisfies Ṡ ≤ ūy. 2

We conclude our discussion of passivity concepts with an illustration of

their usefulness in feedback stabilization. As will be shown in the next sec-

tion, passivity implies stability, and one way to stabilize a plant is to achieve

passivity of the feedback interconnection of the plant-controller feedback loop.

In Figure 2.7 the controller is H1 and the plant is H2. If the plant is unstable

and, therefore, not passive, but known to be OFP(−ρ) with ρ > 0, this short-

age of passivity can be compensated for by a negative ρ-feedback around H2

which makes this feedback subsystem passive. To preserve the overall feed-

back interconnection unchanged, a feedforward −ρI is connected in parallel
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ρI

H2

¾

?

ρI

H1
- ? - - --

-

6

IFP(ρ) OFP(−ρ)
−

− −

Figure 2.7: Feedback interconnection of the controller H1 and the plant H2.

with the controller H1. If the controller H1 is IFP(ρ), that is if it has the

excess of passivity ρ, then its parallel connection with −ρI is passive. Thus, a

shortage of passivity (and lack of stability) of the plant H2 has been compen-

sated for by the excess of passivity of the controller H1. The net effect is the

same as in a feedback interconnection of two passive systems.

2.3 Lyapunov Stability and Passivity

2.3.1 Stability and convergence theorems

Lyapunov stability and input-output stability are widely used in control theory.

This book mostly employs Lyapunov stability, which we now briefly review.

To begin with, we remind the reader that Lyapunov stability and asymptotic

stability are properties not of a dynamical system as a whole, but rather of its

individual solutions. Consider the time-invariant system

ẋ = f(x) (2.3.1)

where x ∈ IRn and f : IRn → IRn is locally Lipschitz continuous. The solution

of (2.3.1) which starts from x0 at time t0 ∈ IR is denoted as x(t;x0, t0), so

that x(t0;x0, t0) = x0. Because the solutions of (2.3.1) are invariant under

a translation of t0, that is, x(t + T ;x0, t0 + T ) = x(t;x0, t0), the stability

properties of x(t;x0, t0) are uniform, that is they do not depend on t0. Without

loss of generality, we assume t0 = 0 and write x(t;x0) instead of x(t;x0, 0).

Lyapunov stability is a continuity property of x(t;x0, t0) with respect to

x0. If the initial state x0 is perturbed to x̃0, then, for stability, the perturbed
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solution x(t; x̃0) is required to stay close to x(t;x0) for all t ≥ 0. In addition,

for asymptotic stability, the error x(t; x̃0) − x(t;x0) is required to vanish as

t→∞. So, the solution x(t;x0) of (2.3.1) is

• bounded, if there exists a constant K(x0) such that

‖x(t;x0)‖ ≤ K(x0), ∀t ≥ 0;

• stable, if for each ε > 0 there exists δ(ε) > 0 such that

‖x̃0 − x0‖ < δ ⇒ ‖x(t; x̃0)− x(t;x0)‖ < ε, ∀t ≥ 0;

• attractive, if there exists an r(x0) > 0 such that

‖x̃0 − x0‖ < r(x0)⇒ lim
t→∞
‖x(t; x̃0)− x(t;x0)‖ = 0;

• asymptotically stable, if it is stable and attractive;

• unstable, if it is not stable.

Some solutions of a given system may be stable and some unstable. In

particular, (2.3.1) may have stable and unstable equilibria, that is, constant

solutions x(t;xe) ≡ xe satisfying f(xe) = 0. The above definitions of stability

properties of an equilibrium xe involve only initial states close to xe, that is

they are local. If an equilibrium is attractive, then it has a region of attraction

- a set Ω of initial states x0 such that x(t;x0) → xe as t → ∞ for all x0 ∈ Ω.

Our attention will be focused on global stability properties (GS and GAS):

• xe is GS – globally stable – if it is stable and if all the solutions of (2.3.1)

are bounded.

• xe is GAS – globally asymptotically stable – if it is asymptotically stable

and its region of attraction is IRn.

In certain situations we will need exponential stability for which we stress its

local character:

• xe is locally exponentially stable (LES), if there exist positive constants

α, γ and r such that

‖x0 − xe‖ < r ⇒ ‖x(t;x0)− xe‖ ≤ γ exp(−αt)‖x0 − xe‖
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Any equilibrium under investigation can be translated to the origin by

redefining the state x as z = x − xe. For simplicity, we will assume that the

translation has been performed, that is, f(0) = 0, and thus the equilibrium

under investigation is xe = 0. When, for brevity, we say that “the system

(2.3.1) is GS or GAS”, we mean that its equilibrium xe = 0 is GS or GAS.

While global asymptotic stability of xe = 0 prevents the existence of other

equilibria, the reader should keep in mind that it is not so with global stability.

When we say that the system (2.23) is globally stable, we refer to global

stability of xe = 0.

Example 2.19 (Global stability - several equilibria)

The scalar system

ẋ = −x(x− 1)(x− 2)

has three equilibria: xe = 0,+1,+2. The equilibria xe = 0 and xe = 2 are

asymptotically stable, while xe = +1 is unstable. Both xe = 0 and xe = 2 are

globally stable. 2

The direct method of Lyapunov aims at determining the stability properties

of x(t;x0) from the properties of f(x) and its relationship with a positive

definite function V (x). Global results are obtained if this function is radially

unbounded: V (x) → ∞ as ‖x‖ → ∞. From among many classical stability

tools we will mostly use those due to Barbashin, Krasovsky, LaSalle, and

Yoshizawa [6, 63, 122], which, specialized for our needs, are now formulated

as two theorems and one corollary:

Theorem 2.20 (Stability)

Let x = 0 be an equilibrium of (2.3.1) and suppose f is locally Lipschitz con-

tinuous. Let V : IRn → IR+ be a C1 positive definite and radially unbounded

function V (x) such that

V̇ =
∂V

∂x
(x)f(x) ≤ 0, ∀x ∈ IRn

Then x = 0 is globally stable (GS) and all solutions of (2.3.1) converge to

the set E where V̇ (x) ≡ 0. If V̇ is negative definite, then x = 0 is globally

asymptotically stable (GAS). 2

For a sharper characterization of convergence properties we employ the

concept of invariant sets. A set M is called an invariant set of (2.3.1) if any

solution x(t) that belongs to M at some time t1 belongs to M for all future

and past time:

x(t1) ∈M ⇒ x(t) ∈M, ∀t ∈ IR
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A set P is positively invariant if this is true for all future time only:

x(t1) ∈ P ⇒ x(t) ∈ P, ∀t ≥ t1

An important result describing convergence to an invariant set is LaSalle’s

Invariance Principle.

Theorem 2.21 (Invariance Principle: convergence)

Let Ω be a positively invariant set of (2.3.1). Suppose that every solution

starting in Ω converges to a set E ⊂ Ω and let M be the largest invariant set

contained in E. Then, every bounded solution starting in Ω converges to M

as t→∞. 2

An application of the Invariance Principle is the following asymptotic sta-

bility condition.

Corollary 2.22 (Asymptotic stability)

Under the assumptions of Theorem 2.20, let E = {x ∈ IRn | V̇ (x) = 0}. If

no solution other than x(t) ≡ 0 can stay for all t in E, then the equilibrium

x = 0 is globally asymptotically stable (GAS). 2

Theorem 2.21 has been the most dependable work horse in the analysis of

nonlinear time-invariant systems. While the main stability theorem (Theorem

2.20) establishes that the solutions are bounded and converge to the set E

where V̇ ≡ 0, Theorem 2.21 sharpens this result by establishing the conver-

gence to a subset of E. Thanks to its invariance, this subset can be found by

examining only those solutions which, having started in E, remain in E for all

t.

In control systems, such invariance and convergence results are made pos-

sible by system’s observability properties. Typically, the convergence of the

system output y to zero is established first, and then the next task is to inves-

tigate whether some (or all) of the states converge to zero. For this task we

need to examine only the solutions satisfying y(t) ≡ 0. If it is known before-

hand that y(t) ≡ 0 implies x(t) ≡ 0, then the asymptotic stability of x = 0

is established, as in Corollary 2.22. An example will help us to visualize the

situation.

Example 2.23 (Invariant set and observability)

Consider the system
ẋ1 = x2
ẋ2 = −x1 − φ(x2) (2.3.2)
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φ

x2

Figure 2.8: The function φ(·).

x1

x2

Figure 2.9: The shaded strips defined by φ(x2) = 0.

where φ(s) is shown in Figure 2.8. Using the simplest Lyapunov function

V = 1
2
x21 +

1
2
x22, we obtain

V̇ = −x2φ(x2) ≤ 0 (2.3.3)

By the main stability theorem, the solutions are bounded and converge to the

set E in in Figure 2.9 which consists of the axis x2 = 0 and the vertical shaded

strips.

Let us treat
√

x2φ(x2) as the output y so that V̇ = −y2. Corollary 2.22

instructs us to investigate only the solutions for which y(t) = 0 for all t. It is

not hard to see that this excludes all the shaded strips in Figure 2.9 because

on them the system behaves like a harmonic oscillator and its solution leaves

every strip in finite time. In other words, none of these strips contains an

invariant set. We are left with x2(t) ≡ 0, which forces x1(t) ≡ 0, and proves

asymptotic stability of (x1, x2) = (0, 0).

The observability interpretation for the system (2.3.2) with the output

y =
√

x2φ(x2) is that y(t) ≡ 0 implies x(t) ≡ 0. This is the “zero state
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observability” property defined in the next section.

2

2.3.2 Stability with semidefinite Lyapunov functions

We now discuss how to prove stability with a Lyapunov function which is

positive semidefinite, rather than positive definite. For this we need the notion

of conditional stability. The stability properties of a solution x(t;x0), x0 ∈ Z ⊂
IRn, are said to be conditional to Z if the perturbed initial condition x̃0 is also

restricted to Z. So, the solution x(t;x0) of (2.3.1) is

• stable conditionally to Z, if x0 ∈ Z and for each ε > 0 there exists

δ(ε) > 0 such that

‖x̃0 − x0‖ < δ and x̃0 ∈ Z ⇒ ‖x(t; x̃0)− x(t;x0)‖ < ε, ∀t ≥ 0;

• attractive conditionally to Z, if x0 ∈ Z and there exists an r(x0) such

that

‖x̃0 − x0‖ < r(x0) and x̃0 ∈ Z ⇒ lim
t→∞
‖x(t; x̃0)− x(t;x0)‖ = 0

• asymptotically stable conditionally to Z, if it is both stable and attractive

conditionally to Z.

• globally asymptotically stable conditionally to Z, if it is asymptotically

stable conditionally to Z and r(x0) = +∞.

Although weaker than stability, conditional stability may help us to prove

stability as in the following theorem due to Iggidr, Kalitine, and Outbib [42].

Theorem 2.24 (Stability with positive semidefinite V )

Let x = 0 be an equilibrium of ẋ = f(x) and let V (x) be a C1 positive

semidefinite function such that V̇ ≤ 0. Let Z be the largest positively invariant

set contained in {x | V (x) = 0}. If x = 0 is asymptotically stable conditionally

to Z, then x = 0 is stable.

Proof: The proof is by contradiction. Suppose that x = 0 is unstable. Then,

for ε > 0 small enough, there exist a sequence (xi)i≥1 → 0 in IRn and a

sequence (ti)i≥1 in IR+ such that

∀t ∈ [0, ti) : ‖x(t;xi)‖ < ε, ‖x(ti;xi)‖ = ε (2.3.4)
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The new sequence zi = x(ti;xi) belongs to a compact set, so a subsequence

converges to z with ‖z‖ = ε. Because x = 0 is an equilibrium and f is

locally Lipschitz continuous, continuity of the solutions implies that ti → ∞
as i → ∞. We now establish two properties of the solution starting at z and

evolving backward in time, that is for all τ ≤ 0:

(i) ‖x(τ ; z)‖ ≤ ε;

(ii) V (x(τ ; z)) = 0.

We prove (i) by contradiction. Let τ1 < 0 such that ‖x(τ1; z)‖ > ε and pick

a constant ν > 0 small enough such that ‖x(τ1; z)‖ > ε + ν. By continuity of

the solutions, there exists a constant δ = δ(ν) > 0 such that

‖z − z̃‖ < δ ⇒ ‖x(τ1; z)− x(τ1; z̃)‖ < ν

For i sufficiently large, we have ‖zi − z‖ < δ and ti > ti + τ1 > 0. But this

implies ‖x(τ1; zi)‖ = ‖x(ti + τ1;xi)‖ > ε which contradicts (2.3.4).

To prove (ii), we use the continuity of V (x) which, because V (0) = 0,

implies that V (xi) → 0 as i → ∞. Because V is nonincreasing along the

solutions, we also have that

∀t ≥ 0 : lim
i→∞

V (x(t;xi)) = 0

Now, if we pick any τ < 0, then there exists i such that ti + τ > 0. Therefore,

V (x(τ ; z)) = lim
i→∞

V (x(τ ; zi)) = lim
i→∞

V (x(ti + τ ;xi)) = 0

It remains to prove that (i) and (ii) cannot hold if the equilibrium x = 0

is asymptotically stable conditionally to Z. Because ε > 0 can be chosen

arbitrary small, we can assume without loss of generality that for any initial

condition x0 ∈ Z with ‖x0‖ ≤ ε the solution converges to zero. So, there

exists a constant T = T (ε) > 0, independent of x0, such that ‖x(T ;x0)‖ ≤
ε
2
. Because of (ii), one possible choice for x0 is x(−T ; z). But then ε

2
≥

‖x(T ;x0)‖ = ‖x(T − T ; z)‖ = ‖z‖ = ε which is a contradiction.

2

We discuss two typical situations in which global stability is established

with semidefinite Lyapunov functions.

Example 2.25 (Global invariant manifold)

The conditions of Theorem 2.24 are satisfied by the system

ẋ1 = −x31 + x1x2
ẋ2 = −x2 (2.3.5)
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with the Lyapunov function V (x) = x22. The equilibrium (x1, x2) = (0, 0)

is globally asymptotically stable conditionally to the set x2 = 0, which is a

global invariant manifold of (2.3.5). The system reduced to this manifold is

ẋ1 = −x31. This manifold is also the largest positively invariant set of (2.3.5)

contained in V (x) = 0. By Theorem 2.24, the equilibrium (x1, x2) = (0, 0) is

stable because V̇ = −2x22 ≤ 0.

To prove global asymptotic stability of the origin, we first show that all the

off-manifold solutions are bounded. With x2(t) = e−tx2(0) the solutions of

ẋ1 = −x31 + x1x2 (2.3.6)

are bounded. This follows from

d

dt
x21 = −2x41 + 2x21e

−tx2(0) ≤ −x41 + e−2tx22(0)

as x21(t) must decrease if |x1(t)| >
√

e−tx2(0). Thanks to this “bounded input –

bounded state” property of (2.3.6), the equilibrium (x1, x2) = (0, 0) is globally

stable. By Theorem 2.21 it is also GAS because in the set where V̇ = −2x22 = 0,

x1 → 0.

2

In our next example global boundedness is established with a radially un-

bounded Lyapunov function which is only positive semidefinite.

Example 2.26 (Semidefinite, radially unbounded Lyapunov function)

Defining ϕ(x1) = 0 for |x1| ≤ 1, x1 − 1 for x1 > 1, x1 + 1 for x1 < −1, we
analyze stability of the system

ẋ1 = −x31 − x21ϕ(x1) + x1x2
ẋ2 = −x1ϕ(x1)− x2 (2.3.7)

For this purpose we use the Lyapunov function

V =
1

2
ϕ2(x1) +

1

2
x22

which is radially unbounded and positive semidefinite because V = 0 in Z =

{|x1| ≤ 1, x2 = 0}. It is easy to see that Z is a positively invariant set of

(2.3.7) which in this set reduces to ẋ1 = −x31. Therefore, (x1, x2) = (0, 0) is

asymptotically stable conditionally to Z. To satisfy Theorem 2.24, we verify

that V̇ ≤ 0. Noting that d
dx1

(ϕ2(x1)) = 2ϕ(x1) we get

V̇ = ϕ(x1)(−x31 − x21ϕ(x1) + x1x2)− x1x2ϕ(x1)− x22
= −x31ϕ(x1)− x21ϕ2(x1)− x22 ≤ 0
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Hence, the equilibrium (x1, x2) = (0, 0) is stable. The boundedness of the

solutions of (2.3.7) follows from the fact that V is radially unbounded. This

proves global stability. To establish asymptotic stability we note that the

solutions converge to the set where V̇ = 0. This set is again Z. By Theorem

2.21, the equilibrium (x1, x2) = (0, 0) is GAS because all the solutions in Z

converge to (0, 0).

2

The above examples clearly indicate the three steps in the proof of GAS.

Local stability is first established either with a positive definite or a positive

semidefinite Lyapunov function, as in Theorems 2.20 and 2.24. In the sec-

ond step the global boundedness is guaranteed via the convergence to a global

invariant manifold and a bounded-input bounded-state property, or with a

radially unbounded Lyapunov function. Finally, asymptotic sability is estab-

lished with V̇ < 0 as in Theorem 2.20, or with V̇ ≤ 0 and the Invariance

Principle (Theorem 2.21).

2.3.3 Stability of passive systems

The definitions of dissipativity and passivity do not require that the storage

function S be positive definite. They are also satisfied if S is only positive

semidefinite. As a consequence, in the presence of an unobservable unstable

part of the system, they allow x = 0 to be unstable. For instance, the unstable

system ẋ1 = x1, ẋ2 = u, y = x2 is passive with the storage function S = 1
2
x22.

For dissipativity to imply Lyapunov stability, we must exclude such sit-

uations. In linear systems this is achieved with a detectability assumption,

which requires that the unobservable part of the system be asymptotically

stable. We now define an analogous concept for nonlinear systems.

Definition 2.27 (Zero-state detectability and observability)

Consider the system H with zero input, that is ẋ = f(x, 0), y = h(x, 0),

and let Z ⊂ IRn be its largest positively invariant set contained in {x ∈
IRn| y = h(x, 0) = 0}. We say that H is zero-state detectable (ZSD) if x = 0

is asymptotically stable conditionally to Z. If Z = {0}, we say that H is

zero-state observable (ZSO). 2

Whenever we use the ZSD property to establish a global result, we assume

that x = 0 is GAS conditionally to Z. One of the benefits from this detectabil-

ity property is that passivity and stability are connected even when the storage

function S(x) is only positive semidefinite. The main benefit, however, is that
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asymptotic stability is achieved with the simplest feedback u = −y. To avoid

the well-posedness issue in (iii), we assume that the throughput is absent:

y = h(x).

Theorem 2.28 (Passivity and stability)

Let the system H be passive with a C1 storage function S and h(x, u) be C1

in u for all x. Then the following properties hold:

(i) If S is positive definite, then the equilibrium x = 0 of H with u = 0 is

stable.

(ii) If H is ZSD, then the equilibrium x = 0 of H with u = 0 is stable.

(iii) When there is no throughput, y = h(x), then the feedback u = −y
achieves asymptotic stability of x = 0 if and only if H is ZSD.

When the storage function S is radially unbounded, these properties are global.

Proof: (i) If H is passive, then with u = 0, the storage function S(x) satisfies

Ṡ(x) ≤ 0. If S is positive definite, the equilibrium x = 0 of ẋ = f(x, 0) is

stable by Theorem 2.20.

(ii) To prove stability of x = 0 when S is only positive semidefinite, we first

show that

S(x) = 0⇒ h(x, 0) = 0 (2.3.8)

Because S(x) ≥ 0 for all x, Ṡ(x) ≤ uTy = uTh(x, u) must be nonnegative for

all u whenever S(x) = 0. Because h(x, u) is C1 in u, we let y = h(x, u) =

h(x, 0) + η(x, u)u. We obtain that, for all x ∈ {x| S(x) = 0} and all u,

0 ≤ Ṡ(x) ≤ uTh(x, 0) + uTηT (x, u)u (2.3.9)

The only possibility for (2.3.9) to be satisfied for all u is that h(x, 0) = 0

whenever S(x) = 0.

As a consequence, the largest positively invariant set Z of ẋ = f(x, 0) con-

tained in {x| S(x) = 0} is also contained in {x| h(x, 0) = 0}. By the ZSD

assumption, x = 0 is asymptotically stable conditionally to Z. Therefore, the

assumptions of Theorem 2.24 are satisfied, which proves stability of x = 0.

(iii) Because h is independent of u, the feedback loop with u = −y is well

posed. For u = −y, the time-derivative of S satisfies

Ṡ(x) ≤ −yTy ≤ 0
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The stability part is established as in the proof of (ii). By Theorem 2.21,

the bounded solutions of ẋ = f(x,−y) converge to the largest invariant set of

ẋ = f(x, 0) contained in E = {x| h(x) = 0}. If H is ZSD, this set is x = 0,

which proves asymptotic stability.

Conversely, if the equilibrium x = 0 of ẋ = f(x,−y) is asymptotically

stable, then it is asymptotically stable conditionally to any subset Z. In par-

ticular, this is the case when Z is the largest positively invariant set contained

in E = {x|y = h(x) = 0} which proves that H is ZSD.

Finally, if S(x) is radially unbounded and Ṡ(x) ≤ 0, all solutions are

bounded, so the stability properties are global. 2

Example 2.29 (Local stabilization with u = −y)
The system

ẋ1 = f1(x1, x2, u)
ẋ2 = u
y = x2

is passive with the positive semidefinite storage function S(x1, x2) =
1
2
x22 since

Ṡ = uy. It is ZSD if and only if the equilibrium x1 = 0 of ẋ1 = f1(x1, 0, 0)

is asymptotically stable. By Theorem 2.28, this is a necessary and sufficient

condition for local stabilization of the equilibrium (x1, x2) = (0, 0) using the

feedback u = −y.
2

In our stability studies, we will usually deduce stability from the positive

definiteness of the storage function and then use the ZSD property to establish

asymptotic stability. Occasionally, we will use parts of Theorem 2.28 which

allow the storage function to be positive semidefinite.

2.3.4 Stability of feedback interconnections

Theorem 2.28 will now be extended to the stability properties of feedback

interconnections.

Theorem 2.30 (Feedback interconnection of dissipative systems)

Assume that the systems H1 and H2 are dissipative with the supply rates

wi(ui, yi) = uTi yi − ρTi (yi)yi − νTi (ui)ui, i = 1, 2 (2.3.10)

where νi(.) and ρi(.) are the nonlinear functions defined in (2.2.3). Furthermore

assume that they are ZSD and that their respective storage functions S1(x1)

and S2(x2) are C1. Then the equilibrium (x1, x2) = (0, 0) of the feedback

interconnection in Figure 2.2 with r ≡ 0, is
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(i) stable, if νT1 (v)v + ρT2 (v)v ≥ 0 and νT2 (v)v + ρT1 (v)v ≥ 0 for all v ∈ IRm;

(ii) asymptotically stable, if νT1 (v)v + ρT2 (v)v > 0 and νT2 (v)v + ρT1 (v)v > 0

for all v ∈ IRm/{0}.
If both S1(x1) and S2(x2) are radially unbounded, then these properties are

global.

Proof: (i) A storage function for the feedback interconnection is S(x1, x2) =

S1(x1) + S2(x2). Using the interconnection identities u1 = −y2, u2 = y1, the

time-derivative of S is

Ṡ ≤ −(ν2 + ρ1)
T (y1)y1 − (ν1 + ρ2)

T (y2)y2 ≤ 0

If S is positive definite, this proves stability. If S is only semidefinite, we

deduce stability from Theorem 2.24. Because S = 0 implies S1 = S2 = 0, the

argument in the proof of Theorem 2.28 shows that

S(x) = 0⇒ h1(x1, 0) = h2(x2, 0) = 0

By our standing assumption which assures well-posedness, either h1 or h2 or

both are independent of the input. Without loss of generality we assume that

h1(x1, u1) = h1(x1). Hence S(x) = 0 ⇒ y1 = h1(x1) = 0 and also S(x) =

0 ⇒ y2 = h2(x2, u2) = h2(x2, y1) = h2(x2, 0) = 0. Using the interconnection

identities, we obtain

S = 0⇒ y1 = y2 = u1 = u2 = 0

The largest positively invariant set Z of ẋ1 = f(x1, 0), ẋ2 = f2(x2, 0) in

{(x1, x2)|S(x1, x2) = 0} is also included in {(x1, x2)|y1 = y2 = 0}. Because

H1 and H2 are ZSD, the equilibrium (x1, x2) = (0, 0) is asymptotically stable

conditionally to Z. By Theorem 2.24, this proves stability.

(ii) If νT1 (v)v + ρT2 (v)v > 0 and νT2 (v)v + ρT1 (v)v > 0, for all v 6= 0, then

all bounded solutions converge to the set {(x1, x2)|y1 = y2 = 0}. By the In-

variance Principle, every bounded solution converges to the largest invariant

set in E, that is (x1, x2) = (0, 0) since H1 and H2 are ZSD. From (i) we know

that the solutions are bounded in a neighborhood of (x1, x2) = (0, 0) which

proves local asymptotic stability.

When S1(x1) and S2(x2) are radially unbounded, so is S(x), and hence,

the stability properties are global.

2

An important special case is when ρ(y) and ν(u) are linear functions ρy

and νu, respectively.
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Corollary 2.31 (Feedback interconnections of OFP and IFP systems)

If H1 and H2 are dissipative with radially unbounded storage functions S1 and

S2 then the equilibrium (x1, x2) = (0, 0) of their feedback interconnection is:

(i) GS, if H1 and H2 are passive.

(ii) GAS, if H1 and H2 are OFP with ρ1, ρ2 > 0.

(iii) GAS, if H1 and H2 are IFP with ν1, ν2 > 0. 2

To further refine Theorem 2.30, we need the following definition, which for

a linear system means that the zeros of its transfer function are in the open

left-half plane.

Definition 2.32 (Zero-input detectability)

The system H is said to be Zero-Input Detectable (ZID) if y ≡ 0 implies

u(t)→ 0 as t→∞. 2

Theorem 2.33 (Interconnection stability)

Under the assumptions of Theorem 2.30 the equilibrium (x1, x2) = (0, 0) of the

feedback interconnection is stable if νT1 (v)v+ρ
T
2 (v)v > 0 and νT2 (v)v+ρ

T
1 (v)v ≥

0 for all v ∈ IRm. If, in addition, either H1 is GAS when u1 = 0, or H2 is

ZID, then (x1, x2) = (0, 0) is asymptotically stable. If S1(x1) and S2(x2) are

radially unbounded, these properties are global. The same is true with the

interchange of the subscripts 1 and 2.

Proof: Stability is proved as in Theorem 2.30. To examine the convergence

of solutions, we deduce from

Ṡ ≤ −(ν1 + ρ2)
T (y2)y2 ≤ 0 (2.3.11)

that all bounded solutions converge to

E = {(x1, x2) | y2 = u1 = 0} (2.3.12)

By the invariance theorem (Theorem 2.21), we need to investigate only the

solutions which, having started in E, remain in E.

Case 1: H1 is GAS. If H1 with u1 = 0 is GAS, then x1(t) → 0 along each

solution which remains in E. Therefore, these solutions converge to

E ′ = {(x1, x2) | y2 = u1 = x1 = 0} ⊂ E (2.3.13)
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Applying the Invariance Principle one more time, we examine the convergence

of bounded solutions that remain in E ′. Along these solutions, y2 ≡ u2 ≡ 0

because x1 ≡ 0 and u1 ≡ 0 imply y1 ≡ u2 ≡ 0. By ZSD, this proves that x2(t)

converges to zero.

Case 2: H2 is ZID. Then, by definition, u2(t)→ 0 along the solutions which

remain in E. So, each such solution which is bounded converges to

E ′′ = {(x1, x2) | y2 = u1 = u2 = y1 = 0} ⊂ E (2.3.14)

Applying the invariance theorem, we only examine bounded solutions that

remain in E ′′. Their convergence to zero follows from the ZSD assumption.

If S1(x1) and S2(x2) are radially unbounded, all solutions are bounded and

the asymptotic stability is global. 2

From Theorem 2.33 we now characterize stable feedback interconnections

which are of primary importance for the rest of the book.

Theorem 2.34 (Stability of OFP/IFP feedback interconnections)

Assume that in the feedback interconnection the systemH1 is GAS and IFP(ν),

and the systemH2 is ZSD and OFP(ρ). Then (x1, x2) = (0, 0) is asymptotically

stable if ν+ρ > 0. If, in addition, their storage functions S1 and S2 are radially

unbounded, then (x1, x2) = (0, 0) is GAS.

2

The above result shows how the shortage of passivity in one system can be

compensated for by the excess of passivity in the other system.

Example 2.35 (OFP/IFP interconnection)

Let the systems

H1 :
ẋ1 = x2
ẋ2 = −x1 − φ(x2) + u1
y1 = x2 + u1

, H2 :
ẋ3 = x4
ẋ4 = −x3 + 1

2
x4 + u2

y2 = x4

be in the feedback interconnection: u1 = −y2 and u2 = y1. With the function

φ as in Example 2.23, H1 is GAS with u1 ≡ 0. We also readily verify that

H1 is IFP(1) with S1 =
x2
1

2
+

x2
2

2
and H2 is unstable, ZSD, OFP(− 1

2
) with

S2 =
x2
3

2
+

x2
4

2
. By Theorem 2.34 we therefore conclude that the equilibrium

(x1, x2, x3, x4) = (0, 0, 0, 0) of the interconnected system is GAS. 2

For asymptotic stability of the interconnection, the conditions “H1 is GAS”

or “H2 is ZID” in Theorem 2.33 are only sufficient.
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Example 2.36 (Relaxing the GAS and ZID assumptions)

Consider H1 and H2 as in Example 2.35 but with φ ≡ 0. The passivity prop-

erties of H1 and H2 are unchanged and global stability of the interconnection

follows from Theorem 2.34. On the other hand, H1 is no longer GAS with

u1 = 0. Neither is H2 ZID, because y2 ≡ 0 only implies x4 = ẋ3 ≡ 0 and

therefore admits the solution

x3 ≡ u2 ≡ const 6= 0 (2.3.15)

So, Theorem 2.34 cannot be applied. Nevertheless, by the main stability

theorem, the solutions converge to the set E where y2 = u1 = 0. Applying

Theorem 2.21, we examine the solutions which remain in E. These solutions

verify (2.3.15) and therefore we have y1 ≡ const. In E, u1 ≡ 0 and thus

y1 ≡ x2 ≡ const. Hence 0 ≡ ẋ2 = −x1 − φ(x2) from which we conclude that

x1 ≡ const. This implies x2 ≡ 0, x1 ≡ 0 and so 0 ≡ y1 ≡ u2 ≡ x3. The only

solution remaining in E for all t is (x1, x2, x3, x4) = (0, 0, 0, 0) which proves

GAS. 2

Finally, we illustrate that the feedback interconnection of an OFP(ρ) sys-

tem with an IFP(ν) system with ν + ρ > 0 need not be GAS.

Example 2.37 (Lack of asymptotic stability)

Consider again the situation of Example 2.35 with H1 replaced by

H ′
1 :

ẋ1 = u1
y1 = x1 + u1

Then H ′
1 is IFP(1) (see Example 2.13) but not GAS with u1 = 0. It can be

verified that the feedback interconnection of H ′
1 and H2 admits any constant

solution of the form (x1, x3, x4) ≡ (c, c, 0). The equilibrium (x1, x2, x3, x4) =

(0, 0, 0, 0) is stable, but not asymptotically stable.

This lack of asymptotic stability for the interconnection of H ′
1 and H2 is

obvious in the frequency domain. Namely, H ′
1(s) has a pole at s = 0 while

H2(s) has a zero at s = 0, leading to a pole-zero cancellation on the imaginary

axis when the feedback loop is closed. 2

2.3.5 Absolute stability

A system H is said to be absolutely stable if its feedback interconnection with

any static nonlinearity in a sector (α, β) is globally asymptotically stable. This

property is of interest as a robustness property of feedback systems, and will

be used in our study of stability margins in the next chapter.
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Figure 2.10: Block diagram illustrating absolute stability.

Proposition 2.38 (Absolute stability)

Let H1 be a ZSD system with scalar output y = h(x). Consider its feedback

interconnection with a static nonlinearity ϕ in the sector (α, β), β > 0. For

global asymptotic stability of x = 0, it is sufficient that the parallel inter-

connection of H1 and 1
β
be OFP(−k) with a C1 radially unbounded storage

function S, where

k =
αβ

β − α (2.3.16)

Proof: Consider the loop transformation indicated in Figure 2.10 by dotted

lines. Denote by H̄1 the parallel interconnection of H1 and 1
β

and by H̄2

the positive feedback interconnection of the sector nonlinearity block H2 with
1
β
. Then the feedback interconnections of H1 with H2, and H̄1 and H̄2, are

equivalent. Because H̄1 is OFP(−k), the storage function S satisfies

Ṡ ≤ ȳ1(ū1 + kȳ1) = −ū2(ȳ2 − kū2) (2.3.17)

Using the linear sector bound and u2 = ū2 +
1
β
y2 we obtain

u2y2 ≥ αu22 = αu2(ū2 +
1

β
y2)⇒ u2(y2 − αū2 −

α

β
y2) ≥ 0
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u2(y2 −
α

β
y2 − αū2) =

β − α
α

u2(y2 − kū2)⇒ u2(y2 − kū2) ≥ 0 (2.3.18)

Because | y2 |≤ βu2 (the inequality being strict for y2 6= 0), u2 and ū2 always

have the same sign so that u2 can be replaced by ū2 in the inequality (2.3.18),

that is

ū2(y2 − kū2) ≥ 0 (2.3.19)

Thus H̄2 is IFP(k), and the excess of passivity of H̄2 compensates for the

shortage of passivity of H̄1 to make the interconnection passive. This proves

global stability.

To prove asymptotic stability, we note that the inequality (2.3.19) is strict

when y2ū2 6= 0. In view of (2.3.17), the solutions converge to the largest

invariant set where ȳ1 = ū1 = 0. In this set the solutions converge to zero

because H1 is ZSD and so is H̄1. This proves that the interconnection is GAS.

2

When H1 is linear, Proposition 2.38 is known as the circle criterion and

will be discussed in Chapter 3.

2.3.6 Characterization of affine dissipative systems

Hill and Moylan [37] provided a characterization of input-affine dissipative

systems

ẋ = f(x) + g(x)u
y = h(x) + j(x)u

(2.3.20)

which will help us to identify their structural properties.

Theorem 2.39 (Characterization of IFP and OFP)

Let S be a C1 positive semidefinite function. A system H is dissipative with

respect to the supply rate

w(u, y) = uTy − ρ yTy − ν uTu (2.3.21)

with the storage function S if and only if there exist functions q : IRn → IRk,

and W : IRn → IRk×m, for some integer k, such that

LfS(x) = −1
2
qT (x)q(x)− ρhT (x)h(x)

LgS(x) = hT (x)− 2ρhT (x)j(x)− qT (x)W (x)

W T (x)W (x) = −2νI + j(x) + jT (x)− 2ρjT (x)j(x)

(2.3.22)
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Proof: First assume that there exist functions q(x),W (x) which satisfy the

conditions (2.3.22). Then, along the solutions of the system (2.3.20),

Ṡ ≤ Ṡ + 1
2
(q +Wu)T (q +Wu)

= LfS + LgSu+ 1
2
(qT q + 2qTWu+ uTW TWu)

= −ρhTh+ hTu− 2ρhT ju+ 1
2
uT (−2νI + j(x) + jT (x)− 2ρjT (x)j(x))u

= uTy − ρyTy − νuTu = w(u, y)

Thus, the system (2.3.20) is dissipative with the supply rate w(u, y) and S(x)

is a storage function.

Conversely, assume that the system (2.3.20) is dissipative with the supply

rate w(u, y) and the storage function S, that is

Ṡ ≤ w(u, y)

Then, by defining d(x, u) = −Ṡ + w(u, y) we obtain

0 ≤ d(x, u) = −Ṡ + w(u, y) = −LfS − LgSu+ uTy − ρyTy − νuTu =
−LfS − ρhTh− (LgS + 2ρhT j − hT )u− uT (νI − 1

2
(j + jT )− ρjT j)u

(2.3.23)

Because d(x, u) is quadratic in u and nonnegative for all u and x, there exist

(nonunique) matrix valued functions q(x) and W (x) such that

d(x, u) =
1

2
[q(x) +W (x)u]T [q(x) +W (x)u] (2.3.24)

Then (2.3.22) follows from (2.3.23) and (2.3.24) by equating the terms of the

like powers in u. 2

For systems without throughput (j(x) ≡ 0), the theorem readily extends

to the situations in which a nonlinear function ρ(y) is used instead of a linear

term ρy, as in Example 2.18.

A structural property of input-affine IFP systems implied by Theorem 2.39

is that they must have relative degree zero.1

Corollary 2.40 (Relative degree zero)

If the system (2.3.20) is IFP(ν) with ν > 0 and with a C1 storage function,

then the matrix j(0) is nonsingular, that is, the system (2.3.20) has relative

degree zero.

Proof: The last equality of (2.3.22) implies that

j(x) + jT (x) ≥ W T (x)W (x) + 2νI > 0 (2.3.25)

1The concept of a relative degree for nonlinear systems is presented in Appendix A.
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for all x, which implies that j(x) is nonsingular for all x.

2

For a passive affine system (2.3.20) without throughput, j(x) ≡ 0, the

conditions (2.3.22) reduce to

LfS(x) ≤ 0 (2.3.26)

(LgS)
T (x) = h(x) (2.3.27)

If the system is linear
ẋ = Ax+Bu
y = Cx,

(2.3.28)

then there exists a quadratic storage function S(x) = xTPx, with P ≥ 0, and

the passivity conditions become algebraic:

PA+ ATP ≤ 0
BTP = C

(2.3.29)

The equivalence of these conditions with the frequency-domain characteriza-

tion of passivity was established by the celebrated Kalman-Yakubovich-Popov

Lemma. The KYP Lemma is given here for the case when (A,B,C) is a

minimal realization.

Theorem 2.41 (KYP Lemma)

If for the linear system (A,B,C) there exists a symmetric positive definite

matrix P satisfying (2.3.29), then the transfer function H(s) = C(sI −A)−1B
is positive real, that is, it satisfies the conditions

(i) Re(λi(A)) ≤ 0, 1 ≤ i ≤ n;

(ii) H(jω) +HT (−jω) ≥ 0 for all ω ∈ IR, jω 6= λi(A);

(iii) the eigenvalues of A on the imaginary axis are simple and the corre-

sponding residues lims→s0(s − s0)H(s), are Hermitian and nonnegative

definite matrices.

Conversely, if H(s) is positive real, then for any minimal realization of H(s),

there exists P > 0 which satisfies the passivity conditions (2.3.29). 2

Extensions of the KYP Lemma to nonminimal realizations of H(s) and to

MIMO systems can be found in [2, 41, 107, 108]. In the next chapter, the

KYP Lemma will be useful in the definitions of stability margins for nonlinear

systems.
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2.4 Feedback Passivity

2.4.1 Passivity: a tool for stabilization

The task of stabilization is the simplest when an output function y = h(x) can

be found such that the system

ẋ = f(x) + g(x)u
y = h(x)

(2.4.1)

with u as the input and y as the output is passive. Then we know from

Theorem 2.28 that stability is achieved if we close the feedback loop with

u = −y. If, in addition, the system (2.4.1) is ZSD, the interconnection is

GAS.

However, searching for an output y = h(x) such that the system is passive

with a positive definite storage function requires that the system be stable

when u = 0. To remove this restriction, we include feedback as a means to

achieve passivity. Instead of being stable, the uncontrolled system is assumed

to be stabilizable. Therefore, we need to find an output y = h(x) and a

feedback transformation

u = α(x) + β(x)v, (2.4.2)

with β(x) invertible, such that the system

ẋ = f(x) + g(x)α(x) + g(x)β(x)v
y = h(x)

(2.4.3)

is passive.

If a feedback transformation (2.4.2) can be found to render the system

(2.4.3) passive, we call the original system (2.4.1) feedback passive. The selec-

tion of an output y = h(x) and the construction of a passivating transforma-

tion (2.4.2) is referred to as feedback passivation. Under a ZSD assumption,

asymptotic stability of the passive system (2.4.3) is simply achieved with the

additional feedback v = −κy, κ > 0.

As we will show next, the crucial limitation of the feedback passivation

design is that the output must have two properties which cannot be modified

by feedback. To identify these properties, we will use the characterization of

passive systems given in Theorem 2.39. We first consider the linear systems.
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2.4.2 Feedback passive linear systems

For a controllable and observable linear system

ẋ = Ax+Bu
y = Cx

, (2.4.4)

where B and C have full rank, passivity is equivalent to the conditions (2.3.29):

PA+ATP ≤ 0 and BTP = C, where P is a positive definite matrix. It follows

from BTP = C that the matrix

CB = BTPB (2.4.5)

is positive definite; hence the system (2.4.4) has relative degree one (see Ap-

pendix A). A linear change of coordinates

(

ξ0
y

)

=

(

T
C

)

x (2.4.6)

exists such that TB = 0. In the new coordinates (2.4.6), the system (2.3.28)

is in normal form (see Appendix A)

ξ̇0 = Q11ξ0 +Q12y
ẏ = Q21ξ0 +Q22y + CBu

(2.4.7)

Because CB is nonsingular, we can use the feedback transformation

u = −(CB)−1(Q21ξ0 +Q22y − v)

and reduce (2.4.4) to

ξ̇0 = Q11ξ0 +Q12y
ẏ = v

(2.4.8)

so that yi(s) =
1

s
vi(s) where

1

s
is an integrator – the simplest relative degree

one transfer function.

The normal form (2.4.8) clearly shows that all the solutions which satisfy

the constraint that the output be zero, y(t) ≡ 0, are defined by the zero-

dynamics subsystem ξ̇0 = Q11ξ0. The eigenvalues of Q11 are, in fact, the zeros

of the transfer function C(sI−A)−1B of the system (2.4.4). It is clear that the

zero-dynamics subsystem in (2.4.8) remains unchanged by any feedback control

v(ξ0, y) and the same is true for the relative degree. If the zero-dynamics

subsystem is asymptotically stable, that is if the zeros are in the open left half
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plane, the system is said to beminimum phase. If the zero-dynamics subsystem

is only Lyapunov stable, then the system is said to be weakly minimum phase.

We now return to the passivity conditions (2.3.29). Partitioning the matrix

P according to the state partition (ξ0, y), the passivity condition BTP = C

yields

P12 = P T
21 = 0, P22 = (CB)−1 (2.4.9)

and the first condition in (2.3.29) reduces to

P11Q11 +QT
11P11 ≤ 0 (2.4.10)

This is a Lyapunov inequality for Q11 which shows that (2.4.7) is a weakly

minimum phase system.

We see that, if the linear system (2.4.4) is passive, then it has relative

degree one and is weakly minimum phase. Feedback passivation as a design

tool is restricted by the fact that these two properties are invariant under the

feedback transformation

u = Kx+Gv, G nonsingular, (2.4.11)

The two structural properties, relative degree one and weak minimum phase,

are not only necessary but also sufficient for a linear system to be feedback

passive.

Proposition 2.42 (Linear feedback passive systems )

The linear system (2.4.4) where C has full rank, is feedback passive with a

positive definite storage function S(x) = xTPx if and only if it has relative

degree one and is weakly minimum phase.

Proof: The necessity was established in the discussion above. The sufficiency

follows from the fact that the feedback

v = −2QT
12P11ξ0 + v̄ (2.4.12)

transforms (2.4.8) into a passive system with the storage function

S(ξ0, y) = ξT0 P11ξ0 +
1

2
yTy (2.4.13)

A straightforward calculation shows that Ṡ ≤ v̄Ty. 2

We know from Theorem 2.28 that ZSD passive systems are stabilizable.

For linear systems the converse is also true as we now show following [92].
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Proposition 2.43 (Stabilizability and detectability)

Under the assumptions of Proposition 2.42 a passive linear system is stabiliz-

able if and only if it is detectable.

Proof: Because for linear systems detectability is equivalent to ZSD, by

Theorem 2.28, passivity and detectability imply stabilizability. To prove the

proposition we need to establish that the converse is also true. Using passivity

conditions (2.3.29) we have already established that a storage function for the

passive system (2.4.7) must be of the form

S(ξ0, y) = ξT0 P11ξ0 +
1

2
yT (CB)−1y (2.4.14)

The system ξ̇0 = Q11ξ0 is Lyapunov stable; we let Q11 = diag{Qh, Qc}, where
Qh is Hurwitz and Qc is skew symmetric so that Qc + QT

c = 0. The corre-

sponding partitioned form of the system (2.4.7) is

ξ̇h = Qhξh +Ghy

ξ̇c = Qcξc +Gcy
ẏ = Dhξh +Dcξc +Q22y + CBu

(2.4.15)

Because Qh is Hurwitz and CB is nonsingular, stabilizability of (A,B,C) is

equivalent to controllability of (Qc, Gc). We now show that for passive systems

this is equivalent to the observability of (Dc, Qc) and hence, to detectability

of (A,B,C).

In the new coordinates (ξh, ξc, y) the storage function (2.4.14) becomes

S = ξTh Phξ +
1

2
ξTc ξc +

1

2
yT (CB)−1y (2.4.16)

Its derivative along the solutions of (2.4.15) is

Ṡ = 2ξTh Ph(Qhξh +Ghy) + ξTc Gcy + yT (CB)−1Dhξh + yT (CB)−1Dcξc+
yT (CB)−1Q22y + yTu

By passivity Ṡ ≤ uTy, and hence, the two sign-indefinite terms which contain

ξc must cancel out, that is

GT
c = −(CB)−1Dc (2.4.17)

Because (Qc, Gc) is controllable and Q
T
c = −Qc, (2.4.17) implies that (Dc, Q

T
c )

is observable, that is (A,B,C) is detectable. 2



2.4. FEEDBACK PASSIVITY 63

2.4.3 Feedback passive nonlinear systems

For input-affine nonlinear systems

ẋ = f(x) + g(x)u
y = h(x)

(2.4.18)

we will proceed in full analogy with the linear case and assume that the ma-

trices g(0) and ∂h
∂x
(0) have full rank. The nonlinear analog of the matrix CB

is
∂ẏ

∂u
=
∂h

∂x

∂ẋ

∂u
=
∂h

∂x
g = Lgh (2.4.19)

The system (2.4.18) has relative degree one at x = 0 if the matrix Lgh(0) is

invertible (see Appendix A).

Proposition 2.44 (Relative degree of nonlinear passive systems)

If the system (2.4.18) is passive with a C2 storage function S(x) then it has

relative degree one at x = 0.

Proof: To derive the analog of the linear equation BTPB = CB we differenti-

ate both sides of the passivity condition (2.3.27) and, upon the multiplication

by g(x), obtain
∂

∂x
(gT (x)

∂S

∂x

T

(x))g(x) =
∂h

∂x
(x)g(x) (2.4.20)

At x = 0, ∂S
∂x
(0) = 0, and (2.4.20) becomes

gT (0)
∂2S

∂x2
(0)g(0) = Lgh(0)

The Hessian ∂2S
∂x2 of S at x = 0 is symmetric positive semidefinite and can be

factored as RTR. This yields

Lgh(0) = gT (0) RTR g(0) (2.4.21)

which is the desired nonlinear analog of BTPB = CB. However, RTR need

not be positive definite and we need one additional condition which we obtain

by differentiating (2.3.27):

∂h

∂x
(0) = gT (0)RTR (2.4.22)

Since by assumption ∂h
∂x
(0) has rank m, the matrix Rg(0) must have full rank

m. With this we use (2.4.21) to conclude that Lgh(0) is nonsingular. This

means that the system (2.4.18) has relative degree one. 2

From the proof of Proposition 2.44 we conclude that passivity of the system

and full rank of ∂h
∂x
(0) guarantee full rank of g(0). This also excludes nonlinear
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systems which, because the rank of Lgh(x) drops at x = 0, have no relative

degree at x = 0. If we remove the rank assumption for ∂h
∂x
(0), such systems

may still be passive, but their relative degree may not be defined. For example,

the system ẋ = xu with output y = x2 is passive with the storage function

S(x) = x2, but its relative degree at x = 0 is not defined.

If the system (2.1.2) has relative degree one at x = 0, we can define a local

change of coordinates (z, ξ) = (T (x), h(x)) and rewrite (2.4.18) in the normal

form
ż = q(z, ξ) + γ(z, ξ)u

ξ̇ = a(z, ξ) + b(z, ξ)u
y = ξ

(2.4.23)

where b(z, ξ) = Lgh(x) is locally invertible near x = 0. As in the linear case,

the zero dynamics are defined as the dynamics which satisfy the constraint

y(t) ≡ 0, see Appendix A. For the system (2.4.23), the requirement y ≡ 0 is

satisfied with the feedback law

u = −b−1(z, 0)a(z, 0)
which is well-defined locally around z = 0. So, the zero-dynamics subsystem

exists locally and is described by the differential equation

ż = q(z, 0)− γ(z, 0)b−1(z, 0)a(z, 0) := fzd(z) (2.4.24)

Definition 2.45 (Minimum phase and weak minimum phase)

The system (2.4.18) is minimum phase if the equilibrium z = 0 of its zero-

dynamics subsystem (2.4.24) is asymptotically stable. It is weakly minimum

phase if it is Lyapunov stable and there exists a C2 positive definite function

W (z) such that LfzdW ≤ 0 in a neighborhood of z = 0. 2

Proposition 2.46 (Weak minimum phase of passive systems)

If the system (2.4.18) is passive with a C2 positive definite storage function

S(x) then it is weakly minimum phase.

Proof: By definition, the zero dynamics of the system (2.4.18) evolve in the

manifold ξ = h(x) = 0. In this manifold, the second passivity condition

(LgS)
T (x) = h(x) implies LgS = 0, and, because Ṡ ≤ uTy = 0 we have

Ṡ = LfS + LgSu = LfS ≤ 0

Thus, S(x) is nonincreasing along the solutions in the manifold h(x) = 0 and

the equilibrium z = 0 of (2.4.24) is stable. 2

As in the linear case, the relative degree and the zero dynamics are invariant

under the feedback transformation (2.4.2) because Lgh(0) is simply multiplied
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by b(0) and (2.4.24) is unchanged. So the relative degree one and the weak

minimum phase conditions are necessary for feedback passivity. As in the

linear case, they are also sufficient and the passivating transformation can be

derived from the normal form (2.4.23).

To pursue the analogy with the linear case, we consider the special case

when the z-coordinates can be selected such that γ ≡ 0 in (2.4.23). (A general

case is covered in [15].) The normal form (2.4.23) then reduces to

ż = q(z, ξ)

ξ̇ = a(z, ξ) + b(z, ξ)u
y = ξ

(2.4.25)

and the zero-dynamics subsystem is ż = q(z, 0). We rewrite the first equation

of (2.4.25) as

ż = q(z, 0) + p(z, ξ)ξ (2.4.26)

where p(z, ξ) is smooth if q(z, ξ) is smooth because the difference q̃(z, ξ) =

q(z, ξ)− q(z, 0) vanishes at ξ = 0 and can be expressed as

q̃(z, ξ) =
∫ 1

0
(
∂q̃(z, ζ)

∂ζ
)

∣
∣
∣
∣
∣
ζ=sξ

ξds

Using (2.4.26), we proceed as in the linear case: if the system is weakly mini-

mum phase, a C2 positive definite function W (z) exists such that

Ẇ (z) = Lq(z,0)W + Lp(z,ξ)Wξ ≤ Lp(z,ξ)Wξ

Therefore, with the feedback transformation

u(ξ, z) = b−1(z, ξ)(−a(z, ξ)− (Lp(z,ξ)W )T + v) (2.4.27)

the positive definite function

S(z, ξ) =W (z) +
1

2
ξT ξ

satisfies Ṡ ≤ yTv. So, the feedback transformation (2.4.27) renders the system

(2.4.18) passive, as summarized in the following theorem.

Theorem 2.47 (Feedback passivity)

Assume that rank ∂h
∂x
(0) = m. Then the system (2.4.18) is feedback passive

with a C2 positive definite storage function S(x) if and only if it has relative

degree one at x = 0 and is weakly minimum phase. 2
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This theorem is of major interest for feedback passivation designs in Chap-

ter 4. A brief example will serve as a preview.

Example 2.48 (Feedback passivation design)

By selecting the output y = x2 for

ẋ1 = x21x2
ẋ2 = u

(2.4.28)

we obtain a relative degree one system which is already in the normal form

(2.4.25). Its zero-dynamics subsystem ẋ1 = 0 is only stable, that is, (2.4.28)

is weakly minimum phase. Feedback transformation (2.4.27) is

u = v + x31

and renders the system
ẋ1 = x21x2
ẋ2 = −x31 + v
y = x2

(2.4.29)

passive with the storage function S(x) = 1
2
x21 +

1
2
x22. Since y(t) ≡ v(t) ≡ 0

implies x1(t) = x2(t) ≡ 0, the additional output feedback v = −y achieves

GAS of (x1, x2) = (0, 0). Note that the original system 2.4.28 with y = x2 is

neither ZSO nor ZSD, but the transformed system (2.4.29) is ZSO. 2

In the above example the feedback passivity property is global, while in

Theorem 2.47 it is only local. Global results for feedback passivity depend on

the existence of a global normal form (2.4.25). Existence conditions which are

coordinate independent can be found in [15].

2.4.4 Output feedback passivity

We now briefly specialize our discussion to OFP systems. According to Defini-

tion 2.12, they are feedback passive with the feedback transformation restricted

to the form

u = −ρ(h(x)) + v, (2.4.30)

where ρ is a nonlinear function as in (2.2.3). The relative degree one and

weak minimum phase conditions, which are necessary for feedback passivity,

are also necessary for OFP. The following proposition provides an additional

simple test.

Proposition 2.49 (Additional test for output feedback passivity)

If the system (2.4.18) is OFP with a C2 positive definite storage function S(x),

then Lgh(0) is symmetric positive definite.
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Proof: For a passive system, it was proven in Proposition 2.44 that the matrix

Lgh(0) given by (2.4.21) is symmetric positive definite. This matrix remains

unchanged by the output feedback transformation (2.4.30), so the condition is

also necessary for output feedback passivity. 2

Under what sufficient condition can the system (2.4.25) be rendered passive

by output feedback? Because of the close relationship between passivity and

stability, this problem is connected with the output feedback stabilization of

nonlinear systems in the normal form (2.4.25). An example taken from [14]

shows that the relative degree one and minimum phase conditions are not

sufficient.

Example 2.50 (Minimum phase does not imply OFP)

The second order system

ż = −z3 + ξ

ξ̇ = z + u
y = ξ

(2.4.31)

has relative degree one and is minimum phase since its zero-dynamics subsys-

tem is ż = −z3. So, (2.4.31) is feedback passive. We now prove that it is

not OFP. The output feedback u = −ky yields a closed-loop system whose

Jacobian linearization at (z, ξ) = (0, 0) has the characteristic polynomial

λ2 + kλ− 1 = 0 (2.4.32)

and is unstable for any k > 0. So the feedback u = −ky+ v cannot render the

system passive, irrespective of the choice of k. 2

To guarantee OFP we also require the minimum phase property of the

Jacobian linearization.

Proposition 2.51 (Local output feedback passivity)

The system (2.4.18) is locally OFP with a quadratic positive definite storage

function S(x) if its Jacobian linearization at x = 0 is minimum phase and

Lgh(0) is symmetric positive definite. 2

In this case, standard results of linear theory ensure stabilization of the

linear approximation by high-gain output feedback. The associated quadratic

Lyapunov function is a storage function for the original system and the high-

gain output feedback renders the system passive.
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2.5 Summary

The presentation of passivity concepts and results in this chapter has been

geared to their subsequent use as design tools for feedback stabilization. The

relationship of Lyapunov stability and passivity is one of the focal points, with

the stress on the use of storage functions as Lyapunov functions. Because

storage functions are allowed to be only positive semidefinite, rather than

definite, the same assumption has been made about Lyapunov functions, and

stability properties conditional to a set have been introduced. The stability

analysis then relies on zero-state detectability properties.

The interplay of passivity and stability in feedback interconnections, which

is of paramount importance for feedback stabilization designs, has been given

a thorough treatment in Sections 2.2 and 2.3. In a feedback loop, the shortage

of passivity in the plant to be controlled can be compensated for by the excess

of passivity in the controller. To employ the concepts of shortage and excess

of passivity as design tools, output feedback passive (OFP) and input feedfor-

ward passive (IFP) systems have been defined. As a special case, the classical

absolute stability theorem has been proven using these concepts.

The chapter ends with feedback passivity, the property that a system can

be made passive with state feedback. Recent passivity results have been pre-

sented which characterize the structural properties of feedback passive systems

without throughput: the relative degree one and weak minimum phase. A full

understanding of these properties is required in the rest of the book, and, in

particular, in Chapters 4 and 6.

2.6 Notes and References

The students in the 1950’s who, like one of the authors of this book, learned

about passivity in a network synthesis course, and about absolute stability in

a control theory course, were unsuspecting of the deep connection between the

two concepts. This connection was revealed in the results of V.M. Popov, such

as [87]. It stimulated a series of extensions by Yakubovich [121], Kalman [51],

Naumov and Tsypkin [83], Sandberg [94], Zames [123] and many other authors.

Written in the midst of that development, the monograph by Aizerman and

Gantmacher [3], presents an eyewitness report on Lurie’s pioneering results

[70] and the impact of Popov’s breakthrough [87]. Popov and circle stability

criteria and various forms of the Positive Real Lemma (Kalman-Yakubovich-

Popov Lemma) have since been used in many areas of control theory, especially

in adaptive control [40, 61, 82].
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Broader implications of passivity were analyzed by Popov in a series of

paper, and the book [88]. These include the results on passivity of parallel

and feedback interconnections of passive systems, playing the central role in

this chapter. The book by Anderson and Vongpanitlerd [2] contains a presen-

tation of the theory of linear passive systems, while the book by Desoer and

Vidyasagar [18] treats dissipativity of input-output operators.

The starting point of our presentation is the state space approach pre-

sented in the 1972 paper by Willems [120]. This approach has been used by

Hill and Moylan [37, 38] to establish conditions for stability of feedback inter-

connections of nonlinear dissipative systems, which motivated the concepts of

excess and shortage of passivity, and of OFP and IFP systems presented in

this chapter. Our treatment of these results reconciles the semidefiniteness of

storage functions with the properties of Lyapunov functions needed to prove

stability.

The characterization of dissipative nonlinear input-affine systems, which

is a nonlinear generalization of the KYP Lemma, is due to Hill and Moylan

[37]. Kokotović and Sussmann [59] have shown that feedback passive (“feed-

back positive real”) linear systems are restricted by relative degree one and

weak minimum phase requirements. General feedback passivity conditions for

nonlinear systems have been derived by Byrnes, Isidori, and Willems [15].
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Chapter 3

Stability Margins and
Optimality

For stabilization of an unstable system, feedback is a necessity. With uncer-

tainties in the operating environment, and in system components, feedback is

needed to preserve stability and improve performance. However, feedback can

also be dangerous. A tighter feedback loop, instead of achieving better perfor-

mance, may cause instability. To guard against such dangers, the quantitative

concepts of gain and phase stability margins were among the frequency domain

tools of the classical Nyquist-Bode designs.

Although stability margins do not guarantee robustness, they do charac-

terize certain basic robustness properties that every well-designed feedback

system must possess. It will be shown in this chapter that optimal feedback

systems satisfy this requirement because of their passivity properties.

The classical gain and phase margins, reviewed in Section 3.1, quantify the

feedback loop’s closeness to instability. Gain margin is the interval of gain

values for which the loop will remain stable. Phase margin is an indicator

of the amount of phase lag – and hence, of dynamic uncertainty – that the

feedback loop can tolerate.

While the concept of gain margin extends to nonlinear feedback systems,

the concept of phase margin does not. In Section 3.2 we interpret absolute

stability as a stability margin and we define the notions of nonlinear gain,

sector and disk stability margins. They are useful for input uncertainties which

do not change the relative degree of the system. Such uncertainties include

static nonlinearities, uncertain parameters and unmodeled dynamics of the

type of pole-zero pairs. Dynamic uncertainties which change the system’s

relative degree are much more difficult to handle. We assume that they are

71
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faster than the rest of the system and treat them as singular perturbations.

Optimal control as a design tool for nonlinear systems is introduced in

Section 3.3, where we present a connection between optimality and passivity

established by Moylan [80] for nonlinear systems. In Section 3.4 these results

are used to express stability margins achieved by optimal stabilization.

Optimal nonlinear control has a major handicap: it requires the solution of

the complicated Hamilton-Jacobi-Bellman (HJB) partial differential equation.

In Section 3.5 we follow the inverse path of Freeman and Kokotović [25, 26],

which exploits the fact that for an optimal problem to be meaningful, it is not

necessary to completely specify its cost functional. If a cost functional imposes

a higher penalty for larger control effort in addition to a state cost term, it

will result in desirable stability margins.

In Section 3.5 we employ the Artstein-Sontag control Lyapunov functions

[4, 98] and Sontag’s formula [101] to construct optimal value functions and

optimal feedback laws for meaningful control problems.

3.1 Stability Margins for Linear Systems

3.1.1 Classical gain and phase margins

We begin with a review of the classical stability margins for the linear SISO

system

(H)

{

ẋ = Ax+ bu
y = cx

(3.1.1)

also described by its transfer function

H(s) = c(sI − A)−1b (3.1.2)

In assuming that there is no throughput, d = 0, we have made the restriction

to strictly proper transfer functions (the relative degree of H is at least one).

In addition, throughout this chapter we assume that (A, b, c) is a minimal

realization of the transfer function H(s).

Classical gain and phase margins are equivalently defined on Nyquist and

Bode plots of the transfer functionH(s). They describe the stability properties

of H(s) in the feedback loop with gain k, as in Figure 3.1. We will use the

Nyquist plot ofH(s) which, in the complex plane, is the image of the imaginary

axis under the mapping H, that is the curve

Γ
∆
= {(a, jb) | a = Re{H(jω)}, b = Im{H(jω)}, ω ∈ (−∞,∞)} (3.1.3)
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Figure 3.1: Simple static gain feedback.

For a proper rational transfer function H, which has no poles on the imaginary

axis, the Nyquist plot is a closed, bounded curve. An example is the plot in

Figure 3.2(a). In the case of poles on the imaginary axis, the Nyquist plot is

unbounded, as in Figure 3.2(b). We imagine that unbounded plots connect at

infinity.

For the feedback system in Figure 3.1, the absence of right half plane poles

of H(s)
1+kH(s)

is deduced from the relative position of the point − 1
k
with respect

to the Nyquist curve.

Proposition 3.1 (Nyquist criterion)

Suppose that the Nyquist plot of H is bounded and let µ be the number of

poles of H in the open right half-plane. If the Nyquist curve of H(s) encircles

the point (− 1
k
, j0) in the counterclockwise direction µ times when ω passes

from −∞ to +∞, then the feedback interconnection with the constant gain k

is GAS. 2

The Nyquist criterion is necessary and sufficient for asymptotic stability.

If the Nyquist curve of H passes through the point (− 1
k
, j0), the closed-loop

system has a pole on the imaginary axis, and hence, is not asymptotically

stable. When H has one or several poles on the imaginary axis, the Nyquist

criterion still applies, with each pole on the imaginary axis circumvented by a

small half-circle in the right half-plane.

The Nyquist criterion defines a gain margin:

• gain margin is an interval (α, β) ⊂ IR such that for each constant

κ ∈ (α, β), the point (− 1
κ
, j0) satisfies the encirclement condition of

the Nyquist criterion.
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Figure 3.2: Nyquist plots for H(s) = 1
(s+q)(s+1)

, q = 1 in (a) and q = 0 in (b).

The intersection with the real axis 1
q
for plot (b) is at infinity.

In both plots in Figure 3.2 the gain margin is (0,∞).

Phase margin is introduced to guard against the effects of unmodeled dy-

namics which cause phase delays. The worst case is a pure time delay element

e−sτ in the series with H(s). The addition of such an element causes the rota-

tion of each point in the Nyquist curve by the angle −τω. Motivated by this

consideration, phase margin is defined as follows:

• phase margin φk for a nominal gain k > 0 is the minimal rotation of the

Nyquist curve that causes it to pass through the point (− 1
k
, j0).

In general, phase margin depends on the nominal gain k. We see from

the plots in Figure 3.2 that the closer the point (− 1
k
, j0) gets to the origin,

the smaller is the angle for which the Nyquist curve can be rotated without

the encirclement of that point. In these two plots the phase margin decreases

when k increases. For example, in the plot 3.2(b), if k = 1 the phase margin

is 51.8◦, and if k = 20 the phase margin is only 12.8◦. However, this is not

always the case and a general relation between phase and gain margins does

not exist.
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3.1.2 Sector and disk margins

The absolute stability conditions (Proposition 2.38) define a stability margin

because they guarantee that the feedback loop of H(s) with static nonlinearity

ϕ(·) remains asymptotically stable as long as the nonlinearity belongs to a

sector (α, β), that is as long as αy2 < yϕ(y) ≤ βy2, ∀y ∈ IR.

Definition 3.2 (Sector margin)

H has a sector margin (α, β) if the feedback interconnection of H with a static

nonlinearity ϕ(·) is GAS for any locally Lipschitz nonlinearity ϕ in the sector

(α, β).

2

A special case of the sector nonlinearity ϕ(y) is the linear function κy

which belongs to the sector (α, β) whenever κ ∈ (α, β). So, if H(s) has a

sector margin (α, β), it also has a gain margin (α, β). In 1949 Aizerman [3]

made a conjecture that the converse is also true. This conjecture was shown to

be incorrect in [86] and in many other counter-examples. One of them, taken

from [119], is particularly instructive.

Example 3.3 (Gain margin versus sector margin )

Consider the feedback interconnection of the transfer function H(s) = s+1
s2

with a static nonlinearity ϕ(·), described by

ẋ1 = x2
ẋ2 = −ϕ(x1 + x2)

(3.1.4)

Clearly, H has a gain margin (0,∞), that is, the feedback loop of H(s) with

ϕ(y) = κy, is GAS for any gain 0 < κ < ∞. Next consider the nonlinearity

depicted in Figure 3.3 and defined by

ϕ(y) =







y

(e+ 1)e
, for y ≤ 1

e−y

(ey + 1)
, for y ≥ 1

(3.1.5)

In this case, the solution of (3.1.4) with initial conditions x1(0) =
e−1
e
, x2(0) =

1
e
satisfies x2(t) = e−(x1(t)+x2(t)) for all t ≥ 0. This proves that the solution x1(t)

is increasing for all t. Clearly, the closed-loop system is not asymptotically

stable. In fact, it can be shown that x1(t) grows unbounded. 2

Gain and sector margins characterize the class of static uncertainties which

the feedback loop can tolerate without losing asymptotic stability. Phase mar-

gin pertains to dynamic uncertainties, but, as a frequency domain concept,

cannot be directly generalized to nonlinear systems.
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Figure 3.3: Nonlinear function ϕ(y).

We now introduce a disk margin as an indicator of the feedback loop’s

robustness to dynamic uncertainties. For α < β, we denote by D(α, β) the

open disk in the complex plane with its center on the real axis and its boundary

intersecting the real axis at the points (− 1
α
, j0) and (− 1

β
, j0) when αβ > 0.

When αβ < 0, D(α, β) denotes the complement of the closed disk with its

center on the real axis and its boundary intersecting the real axis at the points

(− 1
α
, j0) and (− 1

β
, j0). When α = 0, D(0, β) denotes the open half-plane to

the left of the line Re{a+ jb} = − 1
β
. In all these cases we call D(α, β) a disk.

Definition 3.4 (Disk margin)

Let µ be the number of poles of H(s) in the open right half-plane. We say that

H has a disk margin D(α, β) if the Nyquist curve of H(s) does not intersect

the disk D(α, β) and encircles it µ times in the counterclockwise sense.

2

How are different margins related to each other? Let us consider the case

0 < α < β in Figure 3.4. If H has a disk margin D(α, β), then it has a gain

margin of (α, β), since for any k ∈ (α, β) the point (− 1
k
, j0) is in the interior

of the disk and the encirclement condition is satisfied. For a phase margin

we first need to specify a nominal gain k∗ > 0 such that (− 1
k∗
, j0) ∈ D(α, β).

Then phase margin is not smaller than φk in Figure 3.4.

The following result from [9] establishes a connection between passivity

and disk margin.
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Figure 3.4: Phase and gain margins for systems with D(α, β) disk margin.

Proposition 3.5 (Disk margin and positive realness)

For β > 0 the following holds:

(i) If H(s) has a disk margin D(α, β), then the transfer function

H̄(s) =
H(s) + 1

β

αH(s) + 1
(3.1.6)

is positive real.

(ii) If the Nyquist curve of H(s) does not intersect D(α, β) but encircles it

counterclockwise fewer times than the number of poles of H(s) in the

open right half-plane, then the transfer function H̄(s) in (3.1.6) is not

positive real. 2

This theorem allows us to reformulate Proposition 2.38 for linear systems

as the well known circle criterion [9, 83, 94, 123].

Proposition 3.6 (Circle criterion)

If H has a disk margin D(α, β), with β > 0, then the feedback interconnection

of H and the static nonlinearity ϕ(·) is GAS for any nonlinearity in the sector

(α, β). 2
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Thus a disk margin D(α, β) implies a sector margin (α, β). However, the

converse is not true, as shown by the following example.

Example 3.7 (Sector margin versus disk margin)

The system
ẋ1 = −x1 + x2
ẋ2 = −x2 + u
y = x1

(3.1.7)

has a sector margin (0,∞), because for any nonlinearity ϕ in the sector (0,∞),

the feedback system with u = −ϕ(y),

ẋ1 = −x1 + x2
ẋ2 = −x2 − ϕ(x1) (3.1.8)

is GAS. This is proven with the Lyapunov function

V (x1, x2) =
1

2
x21 +

∫ x1

0
ϕ(s) ds+

1

2
x22 (3.1.9)

Its time-derivative for (3.1.8) is negative definite: V̇ = −x21 + x1x2 − x22 −
x1φ(x1).

In spite of its sector margin (0,∞), the system (3.1.7) does not have a disk

margin D(α,∞) for any α. This can be verified on the Nyquist plot of its

transfer function H(s) = 1
(s+1)2

in Figure 3.2(a).

This example also shows that a sector margin does not imply a phase

margin. It is clear from the Nyquist plot in Figure 3.2(a) that the phase

margin decreases to zero when the nominal gain k is increased. On the other

hand, the sector margin remains (0,∞) for all k > 0.

2

To summarize: a system with a disk margin D(α, β) has both gain and

sector margins (α, β), and a phase margin φk(α, β). This shows that disk

margin guarantees stronger robustness properties than the other three margins.

Furthermore, disk margin will allow us to characterize the class of dynamic

uncertainties which do not destabilize the feedback loop. This is done in the

next section.

3.1.3 Disk margin and output feedback passivity

When β =∞, the disk boundary passes through the origin, and a disk margin

is D(α,∞), denoted simply by D(α). This stability margin is equivalent to the
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OFP(-α) property. In one direction this follows immediately from Proposition

3.5. When we let β →∞, then a disk margin D(α) for H(s) implies that

W̄ (s) =
H(s)

αH(s) + 1
(3.1.10)

is positive real. By KYP Lemma (Theorem 2.41), any minimal realization of

H̄(s) is passive. This means that the feedback interconnection of H and a

scalar gain α is passive, that is, H is OFP(−α). The following proposition

shows that the converse is also true.

Proposition 3.8 (D(α) is OFP(−α))
If H is OFP(−α) then it has a disk margin D(α).

Proof: By assumption, H̄(s) in (3.1.10) is positive real. By applying the KYP

Lemma to the following state space representation of H̄(s):

ẋ = (A− αbc)x+ bu
y = cx

(3.1.11)

we obtain a positive definite matrix P such that

(A− αbc)TP + P (A− αbc) ≤ 0
Pb = cT

(3.1.12)

Adding and subtracting jωP from the right hand side of the inequality in

(3.1.12) and multiplying by −1 we get

(−jωI − AT )P + P (jωI − A) + αcT bTP + αPbc ≥ 0 (3.1.13)

Next, multipling both sides of (3.1.13) by bT (−jωI −AT )−1 from the left and

by (jωI − A)−1b from the right, and substituting Pb = cT , we obtain

c(jωI − A)−1b+ bT (−jωI − AT )−1cT+
+2αbT (−jωI − AT )−1cT c(jωI − A)−1b ≥ 0

Noting that c(jωI − A)−1b = H(jω) we rewrite the above inequality as

H(jω) +H(−jω) + 2αH(jω)H(−jω) ≥ 0 (3.1.14)

If α > 0, we divide the inequality (3.1.14) by 2α and rewrite it as

(
1

2α
+H(−jω)

)(
1

2α
+H(jω)

)

≥ 1

4α2
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or equivalently
∣
∣
∣
∣

1

2α
+H(jω)

∣
∣
∣
∣ ≥

1

2α

Therefore the Nyquist curve of H(s) does not intersect the disk D(α). Anal-

ogously, if α < 0, we divide (3.1.14) by 2α and reverse the inequality sign to

obtain ∣
∣
∣
∣

1

2α
+H(jω)

∣
∣
∣
∣ ≤

1

2|α|
Again, the Nyquist curve of H(s) does not intersect D(α). Finally, because
H

1+αH
is positive real, it follows from Proposition 3.5, part (ii), that the number

of encirclements of the disk by the Nyquist curve ofH(s) is equal to the number

of the poles of H(s) in the right half-plane. 2

With α = 0, from (3.1.14) we recover the positive realness property that,

if the linear system H is passive, the Nyquist curve of its transfer function lies

in the closed right half plane: its real part is nonnegative. Finally, disk margin

D(0, β) is an IFP property.

Proposition 3.9 (D(0, β) is IFP(− 1
β
))

H has a disk margin D(0, β) if and only if H is IFP(− 1
β
).

Proof: This property is a direct consequence of the fact that H is IFP(− 1
β
)

if and only if H ′ = H + 1
β
is passive. It is clear that H ′(s) has a disk margin

D(0,∞), that is the Nyquist curve of H ′(s) is in the closed right half plane, if

and only ifH(s) = H ′(s)− 1
β
has a disk marginD(0, β) because the subtraction

of 1
β
just shifts the Nyquist curve by − 1

β
.

2

The following example illustrates the Nyquist plot of an IFP system, and

will be helpful in the proof of the subsequent theorem.

Example 3.10 (Nyquist plot of an IFP system)

For p = 1 the Nyquist curve of the transfer function

G(s) =
p

(s+ 1)2

is given in Figure 3.2(a). This transfer function has a disk margin D(0, 8
p
)

so that the system is IFP(− p
8
). This is verified in Figure 3.2(a) because the

Nyquist curve of G(s) lies to the right of the vertical line passing through the

minimal value of Re{G(jω)}. This minimal value is equal to − p
8
at ω =

√
3.

The imaginary part at ω =
√
3 is Im{G(j

√
3)} = −p

√
3

8
.
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Figure 3.5: Nyquist plot for G(s) =
1

8
+

1

(s+ 1)2
.

Note now that the Nyquist plot of G(s) augmented by a throughput term

r > 0,

G′(s) = r +
p

(s+ 1)2

is translated to the right. By selecting r = p
8
, as shown in Figure 3.5 for p = 1,

we make Re{G′(jω)} nonnegative, that is, we make the transfer function G′(s)

positive real. By changing p we can make the graph touch the imaginary axis

at any symmetric pair of purely imaginary points.

By increasing r the shift is further to the right and r = ν + p
8
renders

Re{G′(jω)} ≥ ν. Because G(s) has no poles in the right half plane this means

that G′(s) has a disk margin D(0,− 1
ν
) and, by Proposition 3.9, any minimal

realization of G′(s) is IFP(ν). 2

The equivalence between a disk margin D(α) and the OFP(−α) property
provides us with a characterization of the dynamic uncertainties which do not

cause the loss of stability. Such a characterization will be essential for our

definition of a disk margin for nonlinear systems.
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Theorem 3.11 (Disk margin and IFP uncertainties)

For linear systems, the following statements are equivalent:

(i) H1 has a disk margin D(α);

(ii) H1 is OFP(−α);

(iii) The feedback loop formed of H1 and any linear system H2 which is GAS

and IFP(ν), with ν > α, is GAS.

Proof: (i) ⇒ (ii) follows from Proposition 3.5 with β =∞. (ii) ⇒ (iii) is an

application of the interconnection Theorem 2.34. What remains to be proven

is (iii) ⇒ (i).

We prove that H1 has a disk margin D(α) by contradiction. First, if the

Nyquist curve ofH1(s) does not enter the disk, but the number of encirclements

is not equal to µ, then, by Nyquist criterion, the feedback interconnection of

H1 and k is unstable for any k > α. This is because the Nyquist curve does

not encircle the point − 1
k
µ times. Hence, since k is an IFP(k) system and

k > α, we have a contradiction.

The second case is when the Nyquist curve of H1(s) intersects the disk

D(α). Assume that there exists ω1 > 0 such that H1(jω1) := a + jb ∈ D(α)

with b < 0 (the case b > 0 is treated below; if b = 0 we can always find another

point inside the disk with b 6= 0). This implies that

(
1

2α
+ a)2 + b2 <

1

4α2

and thus α < −a
a2+b2

.

Let G(s) be a positive real transfer function with its poles in the open left

half-plane and satisfying the condition G(jω1) = jb
a2+b2

. Such a function is

provided by Example 3.10:

G(s) =
p

8
+

pω2
1

(
√
3s+ ω1)2

, p =
8√
3

−b
a2 + b2

> 0

Then

H2(s) :=
−a

a2 + b2
+G(s)

satisfies H2(jω1) = − a−jb
a2+b2

and defines a GAS system H2 which is IFP( −a
a2+b2

).

Because α < −a
a2+b2

, H2 is IFP(ν), with ν > α.

However, the feedback interconnection of H1 and H2 is not GAS because

1 +H1(jω1)H2(jω1) = 0 (3.1.15)
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We conclude that the closed-loop system has poles on the imaginary axis,

which contradicts the asymptotic stability of the interconnection.

The case when H1(jω1) = a+ jb ∈ D(α) with b > 0 is handled in a similar

way with

H2(s) =
−a

a2 + b2
+
p

8
+

ps2

( 1√
3
s+ ω1)2

, p = 8
√
3

b

a2 + b2
> 0

2

3.2 Input Uncertainties

3.2.1 Static and dynamic uncertainties

For linear systems the stability margins discussed in Section 3.1 delineate types

of uncertainties with which the feedback loop retains asymptotic stability. We

now extend this analysis to a wider class of nonlinear feedback systems shown

in Figure 3.6 where u and y are of the same dimension and ∆ represents

modeling uncertainty. In the nominal case ∆ is identity, and the feedback

-
∆ H k- - - - -

6

u x y

Figure 3.6: Nonlinear feedback loop with the control law k(x) and input un-
certainty ∆.

loop consists of the (nominal) nonlinear plant H in the feedback loop with the

nominal control u = −k(x) =: −y. We denote the nominal system by (H, k)

and the perturbed system by (H, k,∆).

The block-diagram in Figure 3.6 restricts modeling uncertainties to be at

the input. This is a common physical situation, in particular when simplified

models of actuators are used for the design.

As we shall see, our disk margin will guarantee robustness with respect to

the input uncertainties which do not change the relative degree of the nominal

model. This restricts the relative degree of ∆ to be 0. Uncertainties which
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cause a change in the relative degree are more severe. For general nonlinear

systems with such uncertainties we can at most preserve the desired stability

properties in a certain region of attraction. For fast unmodeled dynamics,

which can be characterized as singular perturbations, we will be able to give

estimates of that region.

The input uncertainties ∆ which do not change the relative degree can be

static or dynamic. The two most common static uncertainties are

• unknown static nonlinearity ϕ(·) which belongs to a known sector (α, β),

including, as a special case, the unknown static gain,

• unknown parameters belonging to known intervals in which the relative

degree remains the same.

It is important to clarify the above restriction on parametric uncertainty.

Example 3.12 (Parametric uncertainty)

In the following three systems
1

s+ q1
(3.2.1)

s+ q2
(s+ 1)(s+ 2)

(3.2.2)

ẋ1 = f(x1, x2) + q3u
ẋ2 = u, y = x1

(3.2.3)

the unknown parameter is denoted by qi, i = 1, 2, 3. The admissible intervals

of parameter uncertainties do not include q3 = 0, because then the relative

degree changes from one to two, even though the dynamic order of the system

remains two. No such restriction is imposed on q1 and q2, because even when

at q2 = 2 the input-output description reduces to 1
s+1

, the relative degree

remains the same. Likewise, no finite variation of q1 can change the relative

degree of (3.2.1).

It should also be pointed out that the value q3 = 0 must not be used for the

nominal model, because for any variation of q3 the relative degree will drop

from two to one.

2

In linear systems a dynamic uncertainty which does not change the relative

degree is due to neglected pole-zero pairs. For example, in the system (3.2.2),

if q2 is known to be close to 2, the designer may choose to treat 1
s+1

as the

nominal plant and to neglect the dynamics s+q2
s+2

which thus becomes the input

unmodeled dynamics ∆.
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In some cases, parametric uncertainty can be represented as an input dy-

namic uncertainty ∆. As an illustration, we consider again (3.2.1). Instead

of q1 which is unknown, we let an estimate q̂1 be used in the nominal plant

H. Then the difference ∆ between the actual plant and the nominal plant

becomes

∆ =
s+ q̂1
s+ q1

(3.2.4)

In this way a parametric uncertainty q1 − q̂1 is converted into a dynamic

uncertainty which does not change the relative degree of the nominal plant,

as in the case (3.2.2). The fact that the actual plants in the two cases are of

different dynamic order is of no consequence for the stability analysis. All that

matters is that the control design for the nominal system possesses sufficient

stability margin, which tolerates ∆ as an input uncertainty.

When ∆ represents an uncertainty which changes the relative degree, the

concepts of gain, sector, and disk margins are no longer applicable, except

when ∆ has relative degree one and the nominal system is passive.

It is common practice to neglect the dynamics of the devices which are

much faster than the rest of the system. In this case we have to deal with fast

unmodeled dynamics. The separation of time scales into slow and fast allows

the design to be performed on the nominal slow model. This has been justified

by the theory of singular perturbations [57]. A standard singular perturbation

form is

ẋ = fc(x, z, u), x ∈ IRn1

µż = qc(x, z, u), z ∈ IRn2
(3.2.5)

where µ > 0 is the singular perturbation parameter. In the nominal model we

set µ = 0 and obtain

ẋ = fc(x, h(x, u), u) (3.2.6)

where h(x, u) satisfies qc(x, h(x, u), u) = 0, that is z = h(x, u) is a root of

qc(x, z, u) = 0. Thus the order of the nominal slow model (3.2.6) is n1, while

that of the actual system (3.2.5) is n1 + n2. In general, such an increase in

model order leads to an increase in the relative degree.

A fundamental property of the singular perturbation model is that it pos-

sesses two time scales: the slow time scale of the x-dynamics, and a fast time

scale of the z-dynamics. The separation of time scales is parameterized by µ:

with smaller µ, the z-state is faster, as can be seen from the fact that ż is

proportional to 1
µ
. Hence the term fast unmodeled dynamics.
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3.2.2 Stability margins for nonlinear feedback systems

To deal with uncertainties which do not change the relative degree we extend

the concept of stability margins to nonlinear feedback systems. The extension

of the definitions of gain and sector margins is straightforward.

Definition 3.13 (Gain margin)

The nonlinear feedback system (H, k) is said to have a gain margin (α, β) if

the perturbed closed-loop system (H, k,∆) is GAS for any ∆ which is of the

form diag{κ1, . . . , κm} with constants κi ∈ (α, β), i = 1, . . . ,m. 2

Definition 3.14 (Sector margin)

The nonlinear feedback system (H, k) is said to have a sector margin (α, β) if

the perturbed closed-loop system (H, k,∆) is GAS for any ∆ which is of the

form diag{ϕ1(·), . . . , ϕm(·)} where ϕi(·)’s are locally Lipschitz static nonlin-

earities which belong to the sector (α, β). 2

Phase margin, which is defined in the frequency domain, cannot be ex-

tended to the nonlinear case. In contrast, disk margin, which is also defined in

the frequency domain, can be extended to nonlinear systems using the char-

acterization given in Theorem 3.11.

Definition 3.15 (Disk margin)

The nonlinear feedback system (H, k) is said to have a disk margin D(α) if

the closed-loop system (H, k,∆) is GAS for any ∆ which is GAS and IFP(ν),

ν > α, with a radially unbounded storage function. 2

When (H, k) is a SISO linear system, the above definition of disk margin

coincides with Definition 3.4 which defines the notion of disk margin in terms

of the Nyquist curve of the transfer function. This is guaranteed by the equiv-

alence of (i) and (iii) in Theorem 3.11. Note that the above assumptions on

∆ are such that Theorem 2.34 guarantees a D(α) disk margin for any ZSD,

OFP(−α) nonlinear feedback system.

A nonlinear system having a disk margin D(α) also has gain and sector

margins (α,∞). This is so because constant gain and static nonlinearity are

IFP uncertainties with void state space.

3.2.3 Stability with fast unmodeled dynamics

Do wider stability margins imply improved robustness with respect to fast

unmodeled dynamics? Unfortunately, this is not always the case and judicious
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trade-offs may be required. For example, an increase in the nominal gain may

increase stability margins, but it may also increase the bandwidth thus leading

to higher danger of instability caused by fast unmodeled dynamics.

Example 3.16 (Trade-off between two types of robustness)

For k > 1 the nominal system

H(s) =
1

s− 1

is stabilized with the control law u = −ky. By choosing larger k we increase

0

-2

2

5 0

Im

Re

Figure 3.7: Nyquist plot of H(s) = k
s−1 with k = 1 and k = 5.

the disk margin of the system as shown in Figure 3.7 where the smaller circle

corresponds to k = 1 and the larger circle corresponds to k = 5. This tells

us that with larger nominal gain k, the feedback system can tolerate larger

uncertainty. However, this is true only for uncertainties which do not change

the relative degree. With ∆(s) = 100
(s+10)2

, which has relative degree two, the

perturbed systems is unstable for k > 16.6. 2

The representation of fast unmodeled dynamics in the standard singular

perturbation form (3.2.5) is natural for many physical plants and will be illus-

trated by a robotic example from [104].

Example 3.17 (Single-link manipulator)

For the single link with joint flexibility, shown in Figure 3.8, actuatorM deliv-

ers a torque τm to the motor shaft which is coupled, via the gear transmission
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l
θl mg

k

M
θm

Figure 3.8: Single-link manipulator with joint flexibility.

with ratio n, to the link of length l, mass m, and moment of inertia 1
3
ml2.

When the flexibility is modeled by a linear torsional spring with stiffness k,

the equations of motion are

1

3
ml2θ̈l +Blθ̇l +

mgl

2
sin θl + ζ = 0 (3.2.7)

Jmθ̈m +Bmθ̇m +
1

n
ζ = τm (3.2.8)

ζ = k(θl −
1

n
θm) (3.2.9)

Introducing the notation

a1 = −
3Bl

ml2
, a2 = −

3g

2l
, a3 =

Bm

Jm
− 3Bl

ml2
, a4 = −

Bm

Jm

A1 = −
3

ml2
, A2 = A1 −

1

nJm
, b =

1

nJm

we rewrite the equations of motion in terms of θl, ζ, and
1
k
as a small parameter:

θ̈l = a1θ̇l + a2 sin θl + A1ζ
1
k
ζ̈ = a4

1
k
ζ̇ + A2ζ + a3θ̇l + a2 sin θl + bτm

A common actuator for this application is a DC-motor. Its torque is τm = kmI,

where km is a motor constant and I is the armature current governed by

L

R
İ = −I − β

R
θ̇m +

1

R
v (3.2.10)
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with R and L being the armature resistance and inductance, and β the speed

voltage constant. The control input is the armature voltage v. In (3.2.10) the

time constant L
R
is exhibited as another small parameter. We can represent 1

k

and L
R
as functions of a single small parameter:

1√
k
= c

L

R
= µ

with
√
k rather than k, because

√
k is proportional to the natural frequency

of the flexible mode. Using the state variables

x1 = θl, x2 = θ̇l, z1 = ζ, z2 =
1√
k
ζ̇, z3 = I

it is easy to verify that the above equations constitute a fifth order singularly

perturbed system in the standard form (3.2.5):

ẋ1 = x2
ẋ2 = a1x2 + a2 sinx1 + A1z1
µż1 = z2
µż2 = a3x2 + a2 sinx1 + µa4z2 + A2z1 + bkmz3
µż3 = a5z3 + a6µz2 + a6x2 + u

where a5 = −c, a6 = − cβn
R
, and u = c

R
v is the control input. In the nominal

model we neglect the fast unmodeled dynamics by letting µ = 0, that is 1√
k
= 0

and L
R
= 0. The nominal slow model is the second order system

ẋ1 = x2
ẋ2 = ã1x2 + ã2 sin x1 + ã3u,

where ã1 = a1+A1(bkm
βn
R
−a3A−12 ), ã2 = (1−A−12 A1)a2, and ã3 = −A1A

−1
2 bkm.

It represents the single link manipulator with a rigid joint driven by an ideal

DC-motor. The armature current transients and the flexible mode are the fast

unmodeled dynamics. 2

In the above example, the perturbation block ∆ with input u and output z1
is a dynamic system with relative degree three, it is not passive, and hence,

cannot be handled by our stability margins. This situation is typical of fast

unmodeled dynamics, for which we need a different robustness indicator. A

sufficient time-scale separation between “fast” unmodeled dynamics and the

“slow” nominal model validates a design based on the nominal model. For this

purpose, we extend a stability result [57] for the system

ẋ = fc(x, z, u), x ∈ IRnx (3.2.11)

µż = qc(x, z, u), z ∈ IRnz (3.2.12)
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When we let the nominal feedback control law be u = −k(x) and denote

fc(x, z,−k(x)) =: f(x, z), qc(x, z,−k(x)) =: q(x, z),

we obtain the standard singular perturbation form

ẋ = f(x, z), x ∈ IRnx (3.2.13)

µż = q(x, z), z ∈ IRnz (3.2.14)

where, without loss of generality, we assume that f(0, 0) = 0 and q(0, 0) = 0.

For this system the following stability result is proven in Appendix B.

Theorem 3.18 (Robustness with respect to fast unmodeled dynamics)

Let the following assumptions be satisfied:

(i) The equation

0 = q(x, z)

obtained by setting µ = 0 in (3.2.14) has a unique C2 solution z = z̄(x)

(i) The equilibrium x = 0 of the reduced (slow) model

ẋ = f(x, z̄(x)) (3.2.15)

is GAS and LES.

(iii) For any fixed x ∈ IRnx the equilibrium ze = z̄(x) of the subsystem (3.2.14)

is GAS and LES.

Then for every two compact sets Cx ∈ IRnx and Cz ∈ IRnz there exists µ∗ > 0

such that for all 0 < µ ≤ µ? the equilibrium (x, z) = (0, 0) of the system

(3.2.13), (3.2.14) is asymptotically stable and its region of attraction contains

Cx × Cz. 2

We refer to this form of asymptotic stability as “semiglobal in µ” because

a larger size of the region of attraction requires a smaller singular perturbation

parameter µ, that is, a wider time-scale separation between the nominal model

and the fast unmodeled dynamics.
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3.3 Optimality, Stability, and Passivity

3.3.1 Optimal stabilizing control

We now introduce optimal control as a design tool which guarantees stability

margins. Of the two types of optimality conditions, Pontryagin-type neces-

sary conditions (“Maximum Principle”) and Bellman-type sufficient conditions

(“Dynamic Programming”), the latter is more suitable for feedback design over

infinite time intervals [1]. This will be our approach to the problem of finding

a feedback control u(x) for the system

ẋ = f(x) + g(x)u, (3.3.1)

with the following properties:

(i) u(x) achieves asymptotic stability of the equilibrium x = 0

(ii) u(x) minimizes the cost functional

J =
∫ ∞

0
(l(x) + uTR(x)u) dt (3.3.2)

where l(x) ≥ 0 and R(x) > 0 for all x.

For a given feedback control u(x), the value of J , if finite, is a function of

the initial state x(0): J(x(0)), or simply J(x). When J is at its minimum, J(x)

is called the optimal value function. Preparatory for our use of the optimal

value function J(x) as a Lyapunov function, we denote it by V (x). When we

want to stress that u(x) is optimal, we denote it by u∗(x). The functions V (x)

and u∗(x) are related to each other via the following optimality condition.

Theorem 3.19 (Optimality and stability)

Suppose that there exists a C1 positive semidefinite function V (x) which sat-

isfies the Hamilton-Jacobi-Bellman equation

l(x) + LfV (x)− 1

4
LgV (x)R−1(x)(LgV (x))T = 0, V (0) = 0 (3.3.3)

such that the feedback control

u∗(x) = −1

2
R−1(x)(LgV )T (x) (3.3.4)

achieves asymptotic stability of the equilibrium x = 0. Then u∗(x) is the opti-

mal stabilizing control which minimizes the cost (3.3.2) over all u guaranteeing

limt→∞ x(t) = 0, and V (x) is the optimal value function.
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Proof: Substituting

v = u+
1

2
R−1(x)(LgV (x))T

into (3.3.2) and using the HJB-identity we get the following chain of equalities:

J =
∫ ∞

0
(l + vTRv − vT (LgV )T +

1

4
LgV R

−1(LgV )T ) dt

=
∫ ∞

0
(−LfV +

1

2
LgV R

−1(LgV )T − LgV v) dt+
∫ ∞

0
vTR(x)v dt

= −
∫ ∞

0

∂V

∂x
(f + gu) dt+

∫ ∞

0
vTR(x)v dt = −

∫ ∞

0

dV

dt
+
∫ ∞

0
vTR(x)v dt

= V (x(0))− lim
T→∞

V (x(T )) +
∫ ∞

0
vTR(x)v dt

Because we minimize (3.3.2) only over those u which achieve limt→∞ x(t) = 0,

the above limit of V (x(T )) is zero and we obtain

J = V (x(0)) +
∫ ∞

0
vTR(x)v dt

Clearly, the minimum of J is V (x(0)). It is reached for v(t) ≡ 0 which proves

that u∗(x) given by (3.3.4) is optimal and that V (x) is the optimal value

function.

2

Example 3.20 (Optimal stabilization)

For the optimal stabilization of the system

ẋ = x2 + u

with the cost functional

J =
∫ ∞

0
(x2 + u2) dt (3.3.5)

we need to find a positive semidefinite solution of the HJB equation

x2 +
∂V

∂x
x2 − 1

4

(

∂V

∂x

)2

= 0, V (0) = 0

Solving it first as the quadratic equation in ∂V
∂x

we get

∂V

∂x
= 2x2 + 2x

√
x2 + 1

where the positive sign is required for the optimal value function to be positive

semidefinite:

V (x) =
2

3
(x3 + (x2 + 1)

3
2 − 1) (3.3.6)
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It can be checked that V (x) is positive definite and radially unbounded. The

control law

u∗(x) = −1

2

∂V

∂x
= −x2 − x

√
x2 + 1 (3.3.7)

achieves GAS of the resulting feedback system

ẋ = −x
√
x2 + 1

and hence, is the optimal stabilizing control for (3.3.5). 2

In the statement of Theorem 3.19 we have assumed the existence of a

positive semidefinite solution V (x) of the HJB equation. For the LQR-problem

the HJB equation (3.3.3) can be solved with the help of an algebraic Ricatti

equation whose properties are well known. For further reference we quote a

basic version of this well known result.

Proposition 3.21 ( LQR-problem)

For optimal stabilization of the linear system

ẋ = Ax+Bu (3.3.8)

with respect to the cost functional

J =
∫ ∞

0
(xTCTCx+ uTRu)dt, R > 0

consider the Ricatti equation

PA+ ATP − PBR−1BTP + CTC = 0 (3.3.9)

If (A,B) is controllable and (A,C) is observable, then (3.3.9) has a unique

positive definite solution P ∗, the optimal value function is V (x) = xTP ∗x, and

the optimal stabilizing control is

u∗(x) = −R−1BTP ∗x

If (A,B) is stabilizable and (A,C) is detectable then P ∗ is positive semidefinite.

2

A proof of this result can be found in any standard text, such as [1]. For our

further discussion, the semidefiniteness of l(x) = xTCTCx is of interest because

it shows the significance of an observability property. It is intuitive that “the

detectability in the cost” of the unstable part of the system is necessary for

an optimal control to be stabilizing. A scalar example will illustrate some of

the issues involved.
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Example 3.22 (Optimal control and “detectability in the cost”)

For the linear system

ẋ = x+ u

and the cost functional

J =
∫ ∞

0
u2 dt (3.3.10)

we have A = 1, B = 1, C = 0, R = 1. The Ricatti equation and its solutions

P1 and P2 are

2P − P 2 = 0, P1 = 0, P2 = 2 (3.3.11)

It can also be directly checked that the solutions of the HJB equation

x
∂V

∂x
− 1

4
(
∂V

∂x
)2 = 0, V (0) = 0

are V1(x) = 0 and V2(x) = 2x2, that is V1(x) = P1x
2, V2(x) = P2x

2. The

smaller of the two, V1(x), gives the minimum of the cost functional, but the

control law u(x) = 0 is not stabilizing. The reason is that l(x) = 0 and the

instability of ẋ = x is not detected in the cost functional.

According to Theorem 3.19, in which the minimization of J is performed

only over the set of stabilizing controls, V2(x) = 2x2 is the optimal value

function and u(x) = −2x is the optimal stabilizing control.

The assumptions of Theorem 3.19 can be interpreted as incorporating a

detectability condition. This can be illustrated by letting the cost functional

J in (3.3.10) be the limit, as ε→ 0, of the augmented cost functional

J ε =
∫ ∞

0
(ε2x2 + u2)dt

in which the state is observable. The corresponding Ricatti equation, and its

solutions P ε
1 and P ε

2 are

2P − P 2 + ε2 = 0, P ε
1 = 1−

√
1 + ε, P ε

2 = 1 +
√
1 + ε

The HJB solutions V ε
1 (x) = (1 −

√
1 + ε)x2 and V ε

2 (x) = (1 +
√
1 + ε)x2

converge, as ε → 0, to V1(x) = 0 and V2(x) = 2x2, respectively. This reveals

that V1(x) = 0 is the limit of V ε
1 (x) which, for ε > 0, is negative definite while

J ε must be nonnegative. Hence V ε
1 (x) cannot be a value function, let alone

an optimal value function. The optimal value function for J ε is V ε
2 (x) and

Theorem 3.19 identifies its limit V2(x) as the optimal value for J . 2

In our presentation thus far we have not stated the most detailed conditions

for optimality, because our approach will be to avoid the often intractable task

of solving the HJB equation (3.3.3). Instead, we will employ Theorem 3.19

only as a test of optimality for an already designed stabilizing control law.
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3.3.2 Optimality and passivity

In the special case R(x) = I, that is when (3.3.2) becomes

J =
∫ ∞

0
(l(x) + uTu) dt (3.3.12)

the property that the system (3.3.1) is stabilized with a feedback control which

minimizes (3.3.12) is closely related to a passivity property. The following

result is a variant of Theorem 4 in [81].

Theorem 3.23 (Optimality and passivity)

The control law u = −k(x) is optimal stabilizing for the cost functional (3.3.12)

if and only if the system
ẋ = f(x) + g(x)u
y = k(x)

(3.3.13)

is ZSD and OFP(- 1
2
) with a C1 storage function S(x).

Proof: The control law u = −k(x) is optimal stabilizing for (3.3.12) if

(i) it achieves asymptotic stability of x = 0 for (3.3.13), and

(ii) there exists a C1, positive semidefinite, function V (x) such that

k(x) = 1
2
(LgV )T

l(x) = 1
4
LgV (LgV )T − LfV ≥ 0

(3.3.14)

To verify that condition (ii) is equivalent to the OFP(- 1
2
) property, we note

that with S(x) = 1
2
V (x) the equalities (3.3.14) become

LgS = kT

LfS = −l + 1
2
kTk

This means that the system (3.3.13) satisfies Theorem 2.39 with ν = 0, ρ = − 1
2

and any q such that qT q = 2l. So, (ii) is satisfied if and only if the system

(3.3.13) is OFP(- 1
2
).

In view of (i) the equilibrium x = 0 of

ẋ = f(x)− g(x)k(x) (3.3.15)

is asymptotically stable. In particular, near x = 0, the solutions of ẋ = f(x)

that satisfy y = k(x) ≡ 0 converge to zero. Hence the system (3.3.13) is ZSD.

So, u = −k(x) being an optimal stabilizing control implies the OFP(- 1
2
) and

ZSD properties of (3.3.13).
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Conversely, by Theorem 2.33, these two properties imply that the equi-

librium x = 0 for (3.3.13) with any feedback control u = −κy, κ > 1
2
, is

asymptotically stable. Therefore (i) is satisfied, which shows that OFP(- 1
2
)

and ZSD imply optimal stabilization. 2

Example 3.24 (Optimality and passivity)

From Example 3.20 we know that for the system

ẋ = x2 + u

and the cost functional J =
∫∞
0 (x2+u2) dt the optimal stabilizing control law

is u = −x2 − x
√
x2 + 1. Now Theorem 3.23 implies that the system

ẋ = x2 + u

y = x2 + x
√
x2 + 1

(3.3.16)

is OFP(−1
2
). This is verified by taking the time-derivative of the storage

function S(x) = 1
2
V (x) = 1

3
(x3 + (x2 + 1)

3
2 − 1). We get

Ṡ =
1

2

∂V

∂x
(x2 + u) = (x2 + x

√
x2 + 1)(x2 + u) = yx2 + yu

From the expression for y in (3.3.16) we see that if x < 0, then y < 0, and

hence, yx2 < 0. Otherwise yx2 ≤ 1
2
y2, which can be verified by a simple

calculation. In either case we obtain

Ṡ(x) ≤ 1

2
y2 + yu

which proves that (3.3.16) is OFP(− 1
2
). The ZSD property is immediate be-

cause y = 0 implies x = 0.

2

In Section 2.4 we have given structural conditions for output feedback

passivity. We now use Theorem 3.23 to show how these conditions apply to

optimal stabilization. The violation of any one of these conditions excludes

the possibility for a given stabilizing feedback u = −k(x) to be optimal for

any functional of the form (3.3.12).

Proposition 3.25 (Structural conditions for optimality)

If u = −k(x) is optimal stabilizing for (3.3.12) and if ∂k
∂x
(0) has full rank, then
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the system (3.3.13) has relative degree one, is weakly minimum phase, and

Lgk(0) is symmetric positive definite.

Conversely, if the system (3.3.13) has relative degree one, its Jacobian

linearization at x = 0 is minimum phase, and Lgk(0) is symmetric positive

definite, then there exists ε∗ > 0 such that for all ε ∈ (0, ε∗], the feedback

u = −1
ε
k(x) is optimal stabilizing for (3.3.12). 2

Example 3.26 (Structural obstacle to optimality)

For the linear system

ẋ1 = x2
ẋ2 = −x2 + u

the linear stabilizing control law u = −x1 has a gain margin (0,∞). This

means that for any κ > 0 the control u = −κx1 is also stabilizing. However,

for the output y = x1 the relative degree is two, so the stabilizing control

u = −x1 cannot be optimal with respect to any cost of the form (3.3.12). 2

For our future use we examine when the optimality and stability properties

are global. This is certainly the case when the optimal control u∗ achieves GAS

and the optimal value function V is positive definite and radially unbounded.

Alternative assumptions, needed when V is only positive semidefinite, are

discussed in the following two examples.

Example 3.27 (Optimality with a global invariant manifold)

For the nonlinear system

ẋ1 = −x31 + x1u
ẋ2 = u

(3.3.17)

and the cost functional

J =
∫ ∞

0
(x22 + u2) dt (3.3.18)

the solution to the HJB equation V = x22 is only positive semidefinite. The

corresponding control is u = − 1
2
∂V
∂x

= −x2. Because in the set {x : V (x) = 0}
the closed-loop system reduces to ẋ1 = −x31, from Theorems 2.24 and 2.21

we conclude that x = 0 is asymptotically stable, and hence, u = −x2 is the

optimal stabilizing control.

To examine the global behavior, we use the “bounded-input bounded-state”

property of ẋ1 = −x31+x1u, see Example 2.25. Furthermore, in the closed-loop

system x2 = −u = e−tx2(0). It follows that all solutions are bounded and, by

Theorem 2.21, the origin is GAS. 2



98 CHAPTER 3. STABILITY MARGINS AND OPTIMALITY

In the above example the optimal stabilization is achieved globally despite

the unobservability of x1 in the cost functional. This was so because of the

strong stability property of the x-subsystem: bounded x2 produces bounded

x1 and, moreover, if x2 converges to 0, so does x1. In the following example,

the situation where the unobservable subsystem does not possess this strong

stability property, but the properties are global thanks to the existence of a

radially unbounded value function.

Example 3.28 (Optimality with positive semidefinite radially unbounded V )

The problem of minimizing (3.3.18) for the system

ẋ1 = −x31 + x31u
ẋ2 = u

(3.3.19)

results in the optimal value function V (x) = x22 and the control law u = −x2
which are the same as in Example 3.27 and asymptotic stability of x = 0 is

established in the same way, with exponential convergence of x2. However,

in this case the x1-subsystem is not bounded-input bounded-state. In fact,

whenever x2(0) > 1, the solutions of the closed-loop system for sufficiently

large x1(0) escape to infinity in finite time.

Even though the Jacobian linearization of (3.3.19) is not stabilizable, we

can achieve global asymptotic stability and retain the exponential convergence

of x2 if we use a cost which penalizes x1 only when it is far from 0 as in

J =
∫ ∞

0

(

2ϕ(x1)x
3
1 + (ϕ(x1) + x2)

2 + u2
)

dt (3.3.20)

where ϕ(x1) = 0 for |x1| ≤ 1, x1 − 1 for x1 > 1, x1 + 1 for x1 < −1. This

renders x1 is unobservable in the cost when |x1| ≤ 1. The solution of the HJB

equation

V = ϕ2(x1) + x22 (3.3.21)

is C1 positive semidefinite and radially unbounded. The corresponding con-

trol law

u = −ϕ(x1)x31 − x2
is equal to −x2 in a neighborhood of x = 0 and thus achieves asymptotic sta-

bility of the closed-loop system and exponential convergence of x2. Moreover,

because V is radially unbounded and satisfies

V̇ = −2ϕ(x1)x31 − 2(ϕ(x1) + x2)
2 ≤ 0

all the solutions are bounded. Since V̇ ≡ 0 ⇒ |x1| ≤ 1 ⇒ x2 = 0 ⇒ x1 → 0,

by Theorem 2.21, x = 0 is GAS. 2
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The above two examples represent alternative means for achieving global

properties of optimal feedback systems. The approach which uses radially

unbounded optimal value functions is more suitable for our designs and is

adopted in the following definition.

Definition 3.29 (Optimal globally stabilizing control)

The control law

u∗(x) = −1

2
R−1(x)(LgV )T (x) (3.3.22)

is optimal globally stabilizing if

(i) it achieves global asymptotic stability of x = 0 for the system (3.5.1).

(ii) V is a C1, positive semidefinite, radially unbounded function which sat-

isfies the Hamilton-Jacobi-Bellman equation (3.3.3).

2

With this definition, we obtain the following global version of Theorem

3.23.

Theorem 3.30 (Global optimality and passivity)

The control law u = −k(x) is optimal globally stabilizing for the cost functional

(3.3.12) if and only if the system

ẋ = f(x) + g(x)u
y = k(x)

(3.3.23)

is ZSD and OFP(- 1
2
) with a C1, radially unbounded storage function S(x). 2

3.4 Stability Margins of Optimal Systems

3.4.1 Disk margin for R(x) = I

Theorems 2.34 and 3.30 show that optimal stabilization for a cost functional

guarantees a disk stability margin.

Proposition 3.31 (Disk margin of optimal stabilization)

If u = −k(x) is optimal globally stabilizing for

J =
∫ ∞

0
(l(x) + uTR(x)u) dt (3.4.1)

then u = −k(x) achieves a disk margin D( 1
2
). 2



100 CHAPTER 3. STABILITY MARGINS AND OPTIMALITY

A well known special case is that the LQR-design for linear systems guar-

antees the disk margin D( 1
2
) and hence, a gain margin ( 1

2
,∞) and a phase

margin ±60◦.
The constant 1

2
in the above statements is relative to the nominal feedback

k(x). Disk margin, and therefore gain, phase, and sector margins, can be

increased by rescaling the control law using the scaling lemma (Lemma 2.17).

Proposition 3.32 (Scaling and high gain)

If the control law u = −k(x) is optimal globally stabilizing for the cost func-

tional (3.4.1), then the feedback law u = − 1
ε
k(x), ε ≤ 1, has the disk margin

D( ε
2
). 2

When ε → 0, the disk margin tends to D(0) which means that the gain and

sector margins tend to (0,∞), and the phase margin tends to 90◦. Thus,

as ε → 0, the stability margins of optimal stabilization designs tend to the

stability margins of a passive system. However, there is a caveat: when ε is

small, the loop gain with the control u = − 1
ε
k(x) is very high. In general,

this reduces the robustness to unmodeled dynamics which change the relative

degree of the system as shown in Example 3.16. Thus ε is a design parameter

which reflects a trade-off between different types of robustness.

3.4.2 Sector margin for diagonal R(x) 6= I

By employing the connection between optimality and passivity, we have shown

in Proposition 3.31 that an optimal stabilizing feedback law for a cost func-

tional (3.4.1), where R(x) = I, achieves a disk margin. Does a similar property

hold when R(x) 6= I? The answer is negative: for a more general cost func-

tional

J =
∫ ∞

0
(l(x) + uTR(x)u) dt (3.4.2)

the connection with passivity established in Theorem 3.23 no longer holds.

Example 3.33 (Lack of passivity when R(x) 6= I)

For a > 0 we consider the system

ẋ1 = −ax1 + 1
4
R−1(x)(x1 + x2) + u

ẋ2 =
1
4
R−1(x)(x1 + x2) + u

(3.4.3)

and the cost functional

J =
∫ ∞

0
(ax21 +R(x)u2) dt,
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with

R(x) =
1

1− 1
2
σ(2+2a2

a
x2(x1 − 1

1+a2x2))
> 0, (3.4.4)

where σ(·) saturates at one. By direct substitution it can be verified that the

positive definite solution of the HJB equation (3.3.3) is

V (x) =
1

2
x21 +

1

2
x22

and that the corresponding control

u(x) = −1

2
R−1(x)(x1 + x2) (3.4.5)

is stabilizing because

V̇ = −ax21 −
1

4
R−1(x)(x1 + x2)

2 < 0, for all x 6= 0

Hence u(x) in (3.4.5) is an optimal globally stabilizing control.

However, Theorem 3.23 does not apply because the system

ẋ1 = −ax1 + 1
4
R−1(x)(x1 + x2) + u

ẋ2 =
1
4
R−1(x)(x1 + x2) + u

y = 1
2
R−1(x)(x1 + x2)

(3.4.6)

is not OFP(-1
2
). We show this by proving the equivalent statement that the

system
ẋ1 = −ax1 + u
ẋ2 = u
y = 1

2
R−1(x)(x1 + x2)

(3.4.7)

is not passive.

For x1(0) =
a

1+a2 , x2(0) = 0, and u(t) = cos t the solution of (3.4.7) is

x1(t) =
1

1+a2 sin t+
a

1+a2 cos t

x2(t) = sin t

Along this solution, R−1(x(t)) = 1− 1
2
sin(2t) and

∫ T

0
u(t)y(t) dt =

∫ T

0

1

2

(

1− 1

2
sin(2t)

)(

1

2

a2 + 2

a2 + 1
sin(2t) +

a

1 + a2
cos2 t

)

dt

For T = 2nπ, n = 1, 2, . . . we are left with

∫ 2nπ

0
u(t)y(t) =

∫ 2nπ

0

1

2

a

1 + a2
cos2 t dt−

∫ 2nπ

0

1

8

a2 + 2

a2 + 1
sin2(2t) dt (3.4.8)
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For a > 2 +
√
2, the right hand side of (3.4.8) is negative and converges to

−∞ as n→∞. Thus the system (3.4.7) with a > 2+
√
2 is not passive. This

shows that, when R(x) is not constant, the connection between optimality and

passivity no longer holds.

2

In the absence of a disk margin, a sector margin exists when R(x) is a

diagonal matrix.

Proposition 3.34 (Sector margin of optimal stabilizing control)

If the control law u = −k(x) is optimal globally stabilizing for a cost functional

(3.4.2) with

R(x) = diag{r1(x), . . . , rm(x)}, (3.4.9)

then it achieves a sector margin ( 1
2
,∞).

Proof: By assumption, the optimal stabilizing feedback u = −k(x) is of the

form

k(x) =
1

2
R−1(x)(LgV (x))T (3.4.10)

where the optimal value function V is radially unbounded. Moreover, along

the solutions of the closed-loop system

ẋ = f(x)− g(x)k(x) =: F (x), (3.4.11)

the time-derivative of V is

V̇ = LFV (x) = LfV (x)− LgV k(x) = −l(x)−
1

4
(LgV )R−1(LgV )T (x) ≤ 0

When u is replaced by ϕ(u), where ϕ = diag{ϕ1, . . . , ϕm}, with ϕi in the

sector (1
2
,∞), the closed-loop system becomes

ẋ = f(x) + g(x)ϕ(−k(x)) = f(x)− g(x)ϕ(k(x)) =: F̃ (x) (3.4.12)

and the time-derivative of V is

V̇ = LF̃V = LFV +LgV (ϕ(k(x))− k(x)) = −l(x)+LgV (x)(ϕ(k(x))− 1

2
k(x))

Using (3.4.9),(3.4.10), l(x) ≥ 0, and ϕ(k(x)) = diag{ϕ1(k1(x)), . . . , ϕm(km(x))},
we obtain

V̇ = LF̃V ≤ −2k(x)TR(x)(ϕ(k(x))− 1

2
k(x))

= −2
m∑

i=1

[ri(x)ki(x)(ϕi(ki(x))−
1

2
ki(x))] ≤ 0
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Now, because sϕ(s) > 1
2
s2, for all s 6= 0, we obtain that V̇ (x) = 0 implies

k(x) = ϕ(k(x)) = 0. Thus the solutions of (3.4.12) converge to the set E

where k(x) = 0.

The GAS of the system (3.4.12) is established as follows. Because V is

radially unbounded, the solutions of the two systems (3.4.11) and (3.4.12) are

bounded and converge to the same invariant set E where k(x) = ϕ(k(x)) = 0,

which means that

∀x ∈ E : F (x) = F̃ (x) = f(x)

Because the equilibrium x = 0 of the system ẋ = F (x) is GAS, the solutions

of ẋ = F (x) which remain in E for all t converge to 0. Then the same must

hold for the solutions of ẋ = F̃ (x) which remain in E. By Theorem 2.21 this

proves global attractivity of x = 0 for the system ẋ = F̃ (x). Stability follows

from Theorem 2.24 because Z = {x|V (x) = 0} ⊂ {x|V̇ (x) = 0}, and hence,

x = 0 is asymptotically stable conditionally to Z.

2

In the above proof, the assumption that R(x) is diagonal is crucial for the

negativity of

−k(x)TR(x)(ϕ(k(x))− 1

2
k(x)) (3.4.13)

With R nondiagonal, the negativity of (3.4.13) can be violated even with a

constant positive definite matrix R and with linear gains φi(s) = αis, α >
1
2
.

For linear multivariable systems, it is known from [1, 64] that an LQR design

with nondiagonal R may result in an arbitrary small gain margin.

To summarize, optimal stabilization of the system ẋ = f(x) + g(x)u for

the cost functional

J =
∫ ∞

0
(l(x) + uTR(x)u) dt

• achieves a disk margin D( 1
2
) if R(x) = I,

• achieves a sector margin ( 1
2
,∞) if R(x) is diagonal,

• but does not guarantee any stability margin for a general R(x).

3.4.3 Achieving a disk margin by domination

Although for a general positive definite R(x) an optimal globally stabilizing

control

u(x) = −1

2
R−1(x)(LgV (x))T (3.4.14)
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does not achieve a desired stability margin, it can still be used as a starting

point for a domination redesign in which the control is rendered optimal for a

cost with R(x) = I and achieves a disk margin D( 1
2
).

We define a continuous dominating function γ : IR+ → IR+ which satisfies

the two conditions

γ(V (x))I ≥ R−1(x), ∀x ∈ IRn (3.4.15)

lim
t→∞

∫ t

0
γ(s)ds = +∞ (3.4.16)

Such a function always exists if V (x) is radially unbounded. One possible

choice is

γ(s) = a+ sup
{x:V (x)≤s}

λmax(R
−1(x)), a > 0

with λmax denoting the largest eigenvalue. The redesigned optimal value func-

tion

Ṽ (x) :=
∫ V (x)

0
γ(s)ds

inherits the properties of V (x): it is C1, positive semidefinite (because γ(s) > 0

for all s, Ṽ = 0 if and only if V = 0), and radially unbounded.

To show that the redesigned control law

ũ(x) =
1

2
(LgṼ (x))T = −1

2
γ(V (x))(LgV (x))T (3.4.17)

achieves GAS, we use (3.4.15) to obtain

˙̃V = γ(V )LfV −
1

2
γ2(V )LgV (LgV )T

≤ γ(V )(−l − 1

4
LgV R−1(LgV )T ) ≤ 0

Boundedness of solutions follows because V is radially unbounded. To prove

GAS, we examine the set E where ˙̃V = 0. In E we have LgV (x) = 0 so

that ũ(x) = 0 and hence, u(x) = 0. Because u(x) is optimal stabilizing,

the solutions of ẋ = f(x) + g(x)u(x) contained in E converge to the origin.

But, since in E the two closed-loop systems corresponding to u(x) and ũ(x)

coincide, we conclude that the redesigned feedback ũ(x) achieves GAS.

To prove optimality, we define the state cost as

l̃(x) := −Lf Ṽ +
1

4
(LgṼ )(LgṼ )T
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By construction Ṽ is a radially unbounded, positive semidefinite solution of the

Hamilton-Jacobi-Bellman equation and l̃(x) is positive semidefinite because

−l̃ = Lf Ṽ −
1

4
(LgṼ )(LgṼ )T

= γ(V )(LfV −
1

4
γ(V )(LgV )(LgV )T )

≤ γ(V )(LfV −
1

4
(LgV )R−1(LgV )T ) = −γ(V )l ≤ 0

Thus the control law (3.4.17) minimizes the modified cost functional

J̃ =
∫ ∞

0
(l̃(x) + uTu) dt (3.4.18)

with l̃(x) ≥ 0. We arrive at the following conclusion.

Proposition 3.35 (Dominating optimal control)

Assume that u = − 1
2
R−1(LgV )T is optimal globally stabilizing with respect to

the cost (3.3.2). Then, for any dominating function γ satisfying (3.4.15) and

(3.4.16), the redesigned control law ũ = − 1
2
γ(V )(LgV )T is optimal globally

stabilizing for the modified cost functional (3.4.18) and hence, achieves a disk

margin D(1
2
). 2

The redesign in Proposition 3.35 improves the stability margins of the

closed-loop system, but it often does so at the expense of an increased control

effort, as we now illustrate.

Example 3.36 (Domination increases control effort )

For the system
ẋ1 = x2 + x21x

2
2

ẋ2 = −x1 + u

the time-derivative of V = 1
2
xTx is V̇ = x2(u+ x31x2). The control law

u = −2(1 + max(0, x31))x2 (3.4.19)

renders V̇ negative semidefinite

V̇ = −(2 + |x31|)x22 ≤ −2x22

and, because x2 ≡ 0 ⇒ x1 = 0, the equilibrium (x1, x2) = (0, 0) is GAS.

Defining

R−1(x) := 2(1 + max(0, x31))
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it is easy to verify that the control law (3.4.19) minimizes the cost

J =
∫ ∞

0
[(1 + max(0, x31))x

2
2 +R(x)u2] dt

A sector margin ( 1
2
,∞) is therefore guaranteed by Proposition 3.34. In order

to achieve a disk margin, we use the dominating function γ(s) = 2(1 + s3/2).

The redesigned control law

u = −2(1 + (x21 + x22)
3
2 )x2 (3.4.20)

results in

V̇ = −(2 + 2(x21 + x22)
3
2 − x31)x22 ≤ −2x22

and achieves GAS.

Comparing the two control laws, (3.4.19) and (3.4.20), we observe that

with the redesign the control effort has increased at every point, even in the

directions where u = 0 would suffice for stabilization.

2

The increased control effort is not necessarily wasted, nor is the domination

tantamount to high-gain feedback. In the above example the extra effort is

used to enhance the negativity of V̇ at each point. However, this effort is

never used to cancel a beneficial nonlinearity. Furthermore, while the control

law (3.4.19) makes use of a detailed knowledge of the nonlinearity x21x
2
2, the

redesigned control law (3.4.20) is optimal globally stabilizing even when the

nonlinearity x21x
2
2 is replaced by any nonlinearity φ(x1, x2)x

2
2 such that

|x1φ(x1, x2)| ≤ (x21 + x22)
3
2

This means that the system with dominating feedback can tolerate more un-

certainty.

An indirect consequence of Proposition 3.35 is that the structural condi-

tions for feedback passivity are necessary for optimal stabilization, not only

when R(x) = I, but also with a general cost functional (3.3.2).

Proposition 3.37 (Structural conditions for optimality when R(x) 6= I)

If the control law u(x) = −k(x) is optimal stabilizing for J =
∫∞
0 (l(x) +

uTR(x)u) dt and if ∂k
∂x
(0) has full rank, then the system

ẋ = f(x) + g(x)u,
y = k(x)

(3.4.21)

has relative degree one at x = 0 and is weakly minimum phase.
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Proof: If u(x) = −k(x) is optimal stabilizing, it is of the form

u(x) = −1

2
R−1(x)(LgV )T (x)

and, using a domination redesign, there exists a control of the form

ũ(x) = −k̃(x) = −1

2
γ(V (x))(LgV )T (x)

which is optimal stabilizing for a modified cost functional where R(x) = I. By

Proposition 3.25, the system

ẋ = f(x) + g(x)u

y = k̃(x)
(3.4.22)

has relative degree one and is locally weakly minimum phase. Noting that

k̃(x) = 0⇔ LgV (x) = 0⇔ k(x) = 0,

we conclude that the systems (3.4.21) and (3.4.22) have the same zero dynam-

ics. Therefore the system (3.4.21) is weakly minimum phase. To prove the

relative degree condition, we observe that

Lgk(0) =
1

2
R−1(0)γ−1(V (0))Lgk̃(0)

Because the system (3.4.22) is OFP(− 1
2
), the matrix Lgk̃(0) is symmetric

positive definite. So Lgk(0) is nonsingular, that is, the system (3.4.21) has

relative degree one.

2

3.5 Inverse Optimal Design

3.5.1 Inverse optimality

Optimal stabilization guarantees several desirable properties for the closed-

loop system, including stability margins. In a direct approach we would have

to solve the HJB equation which in general is not a feasible task. On the

other hand, the robustness achieved as a result of the optimality is largely

independent of the particular choice of functions l(x) ≥ 0 and R(x) > 0. This

motivated Freeman and Kokotović [25, 26] to pursue the development of de-

sign methods which solve the inverse problem of optimal stabilization. In the

inverse approach, a stabilizing feedback is designed first and then shown to be
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optimal for a cost functional of the form J =
∫∞
0 (l(x) + uTR(x)u) dt. The

problem is inverse because the functions l(x) and R(x) are a posteriori deter-

mined by the stabilizing feedback, rather than a priori chosen by the designer.

A stabilizing control law u(x) solves an inverse optimal problem for the

system

ẋ = f(x) + g(x)u (3.5.1)

if it can be expressed as

u = −k(x) = −1

2
R−1(x)(LgV (x))T , R(x) > 0, (3.5.2)

where V (x) is a positive semidefinite function, such that the negative semidef-

initeness of V̇ is achieved with the control u = − 1
2
k(x), that is

V̇ = LfV (x)− 1

2
LgV (x)k(x) ≤ 0 (3.5.3)

When the function −l(x) is set to be the right-hand side of (3.5.3):

l(x) := −LfV (x) +
1

2
LgV (x)k(x) ≥ 0 (3.5.4)

then V (x) is a solution of the HJB equation

l(x) + LfV (x)− 1

4
(LgV (x))R−1(x)(LgV (x))T = 0 (3.5.5)

Hence, consistent with Definition 3.29 we will say that the control law u∗(x)

is an inverse optimal (globally) stabilizing control law for the system (3.5.1) if

(i) it achieves (global) asymptotic stability of x = 0 for the system (3.5.1).

(ii) it is of the form

u∗(x) = −1

2
R−1(x)LgV (x)

where V (x) is (radially unbounded) positive semidefinite function such

that

V̇ |u= 1
2
u∗(x)

∆
= LfV +

1

2
LgV u

∗ ≤ 0

The design methods presented in subsequent chapters solve in a systematic

way global inverse optimal stabilization problems for important classes of non-

linear systems. The main task of these design methods is the construction of
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positive (semi)definite functions whose time-derivatives can be rendered nega-

tive semidefinite by feedback control. In the inverse approach, such functions

become optimal value functions.

Some designs of stabilizing control laws employ cancellation and do not

have satisfactory stability margins, let alone optimality properties. The inverse

optimal approach is a constructive alternative to such designs, which achieves

desired stability margins. Let us clarify this important issue.

Example 3.38 (Nonrobustness of cancellation designs)

For the scalar system

ẋ = x2 + u, (3.5.6)

one possible design is to let u cancel x2 in (3.5.6) and add a stabilizing term.

This is accomplished with the the feedback linearizing control law

ul(x) = −x2 − x (3.5.7)

which results in what appears to be a desirable closed-loop system ẋ = −x.
However, because of the cancellation, this feedback linearizing control law does

not have any stability margin: with a slightly perturbed feedback (1+ ε)ul(x),

the closed-loop system

ẋ = −(1 + ε)x− εx2 (3.5.8)

has solutions which escape to infinity in finite time for any ε 6= 0.

Let us instead use the optimal feedback u∗(x) = −x2− x
√
x2 + 1 designed

in Example 3.20. This control law has two desirable properties.

• For x < 0, it recognizes the beneficial effect of the nonlinearity x2 to en-

hance the negativity of V̇ . For large negative x, the control is negligible:

as x→ −∞, it converges to 1
2
.

• Instead of cancelling the destabilizing term x2 for x > 0, the optimal

control u∗(x) dominates it and, by doing so, achieves a disk margin

(1
2
,∞).

The benefit of optimal stabilization is graphically illustrated in Figure 3.9.

The graph of any stabilizing control law u(x) must lie outside the shaded

region; because at a given point x, the negativity of V̇ (x) and hence, the

pointwise gain margin, increase with the distance of u(x) from the parabola

−x2. The feedback linearizing control law ul(x) has two major drawbacks:

first, for x < −1, its graph is in the third quadrant, which shows that the

control effort is wasted to cancel a beneficial nonlinearity; second, for |x| large,
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u∗(x)

ul(x)

u

x

Figure 3.9: Control laws ul(x) and u
∗(x) in Example 3.38.

its graph approaches the parabola −x2, that is the control law loses its stability

margin. The optimal control law u∗(x) never wastes the effort because its

graph is entirely in the second and fourth quadrants. The stabilizing effect

of u∗(x) and its stability margin are superior to those of ul(x) because the

distance of its graph from the parabola −x2 is larger at every point x. Finally,

the optimality property guarantees that even the graph of 1
2
u∗(x) stays away

from the parabola −x2 for all x 6= 0. 2

After a Lyapunov function has been constructed, instead of cancelling non-

linearities, a stabilizing feedback can be constructed to be in the inverse op-

timal form (3.5.2). We will now examine situations in which this design task

can be solved in a systematic way.

3.5.2 Damping control for stable systems

In many applications the equilibrium x = 0 of the uncontrolled part

ẋ = f(x), f(0) = 0 (3.5.9)

of the system

ẋ = f(x) + g(x)u (3.5.10)
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is stable and the task of the control is to provide additional damping which

will render x = 0 asymptotically stable. If a radially unbounded Lyapunov

function V (x) is known such that LfV ≤ 0 for all x ∈ IRn, then it is tempting

to employ V (x) as a Lyapunov function for the whole system (3.5.10). In view

of LfV ≤ 0, the time-derivative of V (x) for (3.5.10) satisfies

V̇ ≤ LgV u

This shows that V̇ can be made more negative with the control law

u = −κ(LgV )T , κ > 0 (3.5.11)

We use the terminology “damping control” because (3.5.11) can be viewed

as additional damping which dissipates the “system energy” V (x). This type

of control law, known as Jurdjevic-Quinn control [49], has also been used in

[60] and [44]. We deduce from Theorem 3.19 that, if the control law (3.5.11)

achieves GAS of x = 0, then it also solves the global optimal stabilization

problem for the cost functional

J =
∫ ∞

0
(l(x) +

2

κ
uTu) dt

with the state cost given by

l(x) = −LfV +
κ

2
LgV (LgV )T ≥ 0 (3.5.12)

The optimal value function is V (x). We have thus made use of the inverse

optimality idea to make the Lyapunov function for (3.5.9) an optimal value

function for (3.5.10).

The connection with passivity is clear: the system

ẋ = f(x) + g(x)u
y = (LgV )T (x)

(3.5.13)

is passive when LfV ≤ 0 because V̇ = LfV + LgV u ≤ yTu. Furthermore,

for the output y = (LgV )T (x), the control law (3.5.11) is the simplest output

feedback u = −κy which guarantees GAS if the system is ZSD. Hence, the

control law (3.5.11) achieves a disk margin D(0).

However, the damping control (3.5.11) has a limitation. It stems from

the fact that V (x) is chosen for the uncontrolled system (3.5.9) in complete

disregard of the flexibilities that may be offered by the control term g(x)u

in (3.5.10). A simple example will show how this may lead to unnecessary

degradation of performance.
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Example 3.39 (Performance limitation of damping control)

The uncontrolled part of the system

ẋ1 = x2
ẋ2 = −εx2 + u, ε > 0,

(3.5.14)

is stable. For this part, a Lyapunov function V = xTPx is obtained from the

condition LfV ≤ 0, that is

PA+ ATP ≤ 0 (3.5.15)

This condition imposes the constraint p12 ≤ εp22. The damping control law

(3.5.11) is

u = −2kLgV = −2kBTPx = −2k̃(p12
p22

x1 + x2), 0 <
p12
p22
≤ ε

where the gain k̃ = kp22 > 0 can be freely chosen. Because of the constraint

p12 ≤ εp22, the closed-loop system

ẋ1 = x2
ẋ2 = −2k̃ p12

p22
x1 − (ε+ 2k̃)x2

has one real eigenvalue in the interval (−ε, 0) regardless of the choice of k̃. For
ε small this results in an unacceptably slow response of the system. In this

case, the damping control, although optimal, “overlooked” the possibility to

achieve a faster response. 2

3.5.3 CLF for inverse optimal control

Performance limitation in Example 3.39 is not due to the inverse optimality

approach, but rather to our choice of the optimal value function V (x) which

imposed the constraint p12 ≤ εp22. This constraint is due to the choice of V as

a Lyapunov function for ẋ = f(x) and dictated by the requirement LfV ≤ 0.

It is clear, therefore, that even when the uncontrolled part is stable, our choice

of a Lyapunov function should not be based only on the properties of ẋ = f(x),

but it should also include the flexibility provided by the control term g(x)u.

Example 3.40 (Removing LfV ≤ 0)

We now investigate when V = xTPx can be an optimal value function for

(3.5.14) without imposing the condition LfV ≤ 0, that is (3.5.15). With

R(x) = 1
k
, k > 0, an optimal stabilizing control corresponding to V = xTPx is

u∗(x) = −k
2
LgV (x) = −kBTPx = −k(p22x2 + p12x1)
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The constraints on p12 and p22 are now imposed by the condition for optimal

stabilization

V̇
∣
∣
∣
u= 1

2
u∗(x)

= LfV +
1

2
LgV u

∗ ≤ 0 (3.5.16)

Evaluating V̇ along the solutions of (3.5.14) shows that for any choice of p22 > 0

and p12 > 0, the inequality (3.5.16) is satisfied with k sufficiently large. The

constraint p12 ≤ εp22 has disappeared and the choice of the optimal value

function V = xTPx can be made to achieve an arbitrarily fast response for

the closed-loop system. 2

The flexibility in the choice of an optimal value function V (x) comes from

the fact that, by substituting the control law u = k
2
u∗(x) into the inequality

(3.5.16), we have relaxed the constraint (3.5.15): the inequality xT (PA +

ATP )x < 0 must hold only when xTPB = 0, that is in the directions of the

state space where the column vectors of the matrix B are tangent to the level

sets of V . To characterize the analogous property for nonlinear systems

ẋ = f(x) + g(x)u, (3.5.17)

we employ the concept of a “control Lyapunov function” (CLF) of Artstein [4]

and Sontag [98].

Definition 3.41 (Control Lyapunov function)

A smooth, positive definite, and radially unbounded function V (x) is called a

control Lyapunov function (CLF) for the system ẋ = f(x) + g(x)u if for all

x 6= 0,

LgV (x) = 0⇒ LfV (x) < 0 (3.5.18)

2

By definition, any Lyapunov function whose time-derivative can be ren-

dered negative definite is a CLF. In Chapters 4, 5, and 6, we develop sys-

tematic methods for construction of Lyapunov functions which can be used

as CLF’s. The importance of the CLF concept in the framework of inverse

optimality is that, when a CLF is known, an inverse optimal stabilizing control

law can be selected from a choice of explicit expressions such as those in [26].

Then the CLF becomes an optimal value function.

A particular optimal stabilizing control law, derived from a CLF, is given

by Sontag’s formula [100],

uS(x) =







−
(

c0 +
a(x)+
√
a2(x)+(bT (x)b(x))2

bT (x)b(x)

)

b(x) , b(x) 6= 0

0 , b(x) = 0
(3.5.19)



114 CHAPTER 3. STABILITY MARGINS AND OPTIMALITY

where LfV (x) = a(x) and (LgV (x))T = b(x). The control law (3.5.19) achieves

negative definiteness of V̇ for the closed-loop system since for x 6= 0

V̇ = a(x)− p(x)bT (x)b(x) = −
√

a2(x) + (bT (x)b(x))2 − c0bT (x)b(x) < 0

(3.5.20)

where

p(x) =







c0 +
a(x)+
√
a2(x)+(bT (x)b(x))2

bT (x)b(x)
, b(x) 6= 0

c0 , b(x) = 0
(3.5.21)

It is easy to see that c0 > 0 is not required for the negative definiteness of

V̇ since, away from x = 0, a(x) and b(x) never vanish together because of

(3.5.18).

To analyze the continuity properties of the control law (3.5.19), we consider

separately the open set

Ω = {x | b(x) 6= 0 or a(x) < 0}

and its complement Ωc = IRn\Ω. Inside Ω, the control law (3.5.19) is a smooth

function of x if a and b are smooth, because

a+
√

a2 + (bT b)2

bT b
b

as a function of a ∈ IR and b ∈ IRm is analytic when b 6= 0 or a < 0.

When V is a CLF, the set Ω is the whole state space except for the origin,

because of the strict inequality in (3.5.18). Then the set Ωc is just the origin

x = 0. The control law (3.5.19) is continuous at x = 0 if and only if the CLF

satisfies the small control property: for each ε > 0, we can find δ(ε) > 0 such

that, if 0 <‖ x ‖< δ, there exists u which satisfies LfV (x) + (LgV )T (x)u < 0

and ‖ u ‖< ε.

The small control property is a mild assumption on V . If Ωc were to include

points other than the origin, which happens when the inequality in (3.5.18) is

not strict, the continuity of the control law (3.5.19) would require the small

control property at every point of Ωc. This is a restrictive assumption, as

illustrated in the following example, which also explains why the CLF concept

is defined only with a strict inequality.

Example 3.42 (Strict inequality in the CLF condition)

For the system
ẋ1 = x2
ẋ2 = u

(3.5.22)
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and the Lyapunov function V = 1
2
x21+

1
2
x22, the inequality (3.5.18) is not strict

because LgV = x2 = 0 implies LfV = x1x2 = 0. The set Ωc is the axis x2 = 0

and the formula (3.5.19) yields

uS(x) = −c0x2 − x1 − sgn(x2)
√

x21 + x22

which is discontinuous in Ωc. 2

It is often desirable to guarantee at least Lipschitz continuity of the control

law at x = 0 in addition to its smoothness elsewhere. If there exists a stabi-

lizing feedback ū(x), which is Lipschitz continuous at the origin and achieves

negative definiteness of V̇ , we say that the CLF V (x) satisfies a Lipschitz con-

trol property. Under this additional assumption, the same Lipschitz property

holds for the control law uS(x).

Proposition 3.43 (Lipschitz continuity of Sontag’s formula)

Assume that V (x) is a CLF with the Lipschitz control property for the nonlin-

ear system (3.5.17). Then the control law given by Sontag’s formula (3.5.19)

is Lipschitz continuous at x = 0.

Proof: Let ū(x) be a stabilizing control for (3.5.17) and Ku be a constant

such that, for ‖ x ‖< δ, with δ > 0, we have

‖ ū(x) ‖≤ Ku ‖ x ‖ (3.5.23)

and

a(x) + bT (x)ū(x) < 0 for x 6= 0. (3.5.24)

We restrict our attention to the open ball Bδ of radius δ centered at x = 0

and prove that the control law us(x) given by (3.5.19) is Lipschitz in Bδ.

Because V is smooth and ∂V
∂x

(0) = 0, there exists a constant Kb > 0 such that

‖b(x)‖ < Kb‖x‖ in Bδ.

We now distinguish the cases a(x) > 0 and a(x) ≤ 0. If a(x) > 0, the

inequality (3.5.24) implies

a(x) < −b(x)ū(x), ∀x 6= 0

and we have |a(x)| < |b(x)ū(x)| ≤ ‖b(x)‖Ku‖x‖. From (3.5.19), we conclude

|bTuS| = a+
√

a2 + (bT b)2 + c0b
T b ≤ 2a+ (1 + c0)b

T b

which implies that

0 <
a+

√

a2 + (bT b)2

bT b
+ c0 ≤

2Ku‖x‖
‖b‖ + 1 + c0 (3.5.25)
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Thus, when a(x) > 0

‖uS(x)‖ ≤ (c0 +
a+

√

a2 + (bT b)2

bT b
)‖b‖ ≤ (2Ku +Kb(c0 + 1))‖x‖

In the case a(x) ≤ 0, we have 0 ≤ a+
√

a2 + (bT b)2 ≤ bT b which implies

c0 ≤ c0 +
a+

√

a2 + (bT b)2

bT b
≤ 1 + c0 (3.5.26)

Thus

‖uS(x)‖ ≤ (c0 +
a+

√

a2 + (bT b)2

bT b
)‖b‖ ≤ (1 + c0)Kb‖x‖

which proves that uS(x) is Lipschitz continuous at the origin. 2

In view of this proposition, the control law uS(x) in (3.5.19) with any c0 ≥ 0

is globally stabilizing, smooth away from the origin and Lipschitz continuous

at the origin. Moreover, uS(x) is in the form − 1
2
R−1(x)(LgV (x))T where by

construction

R(x) =
1

2
p−1(x)I > 0 (3.5.27)

which means that uS(x) is an optimal globally stabilizing control law. The

parameter c0 ≥ 0 is not present in the original Sontag’s formula, but a choice

c0 > 0 may be needed to ensure the strict positivity of p(x). This in turn

guarantees that R(x) is bounded on compact sets. From the bounds (3.5.25)

and (3.5.26) we obtain a further characterization of R(x):

0 < ‖R(x)‖ ≤ 1

c0 + 1
if a(x) > 0

1

2c0
≤ ‖R(x)‖ ≤ 1

c0 + 1
if a(x) ≤ 0

The above inequalities show that R(x) may be small when a(x) is positive,

which reflects the fact that the cost on the control is small at those points

where a large effort is necessary to achieve the negativity of V̇ .

To prove that (3.5.19) is optimal stabilizing, it remains to show that

V̇ ≤ 0 is satisfied with the control law 1
2
uS(x). This is verified by adding

1
2
(LgV )TuS(x) to the right-hand side of (3.5.20) which yields

V̇ |us(x)
2

= −
√

a2(x) + (bT (x)b(x))2 − c0bT (x)b(x) +
1

2
p(x)bT (x)b(x)

= −1

2
p(x)bT (x)b(x) ≤ 0



3.5. INVERSE OPTIMAL DESIGN 117

Proposition 3.44 (Optimal stabilizing control from a CLF)

The control law (3.5.19) is optimal stabilizing for the cost functional

J =
∫ ∞

0
(
1

2
p(x)bT (x)b(x) +

1

2p(x)
uTu) dt (3.5.28)

where p(x) is defined by (3.5.21). 2

A consequence of the optimality is that the control law (3.5.19) has a sector

margin (1
2
,∞). In general, a disk margin D( 1

2
) is not guaranteed because

R(x) in (3.5.28) is diagonal but not constant. However, as an application of

Proposition 3.35, the control law (3.5.19) may serve as the starting point of

a domination redesign which, at the expense of an increased control effort,

achieves a disk margin D( 1
2
). Because the domination redesign of Proposition

3.35 results in a smooth feedback, this redesign can also be used to smoothen

the control law (3.5.19) at the origin.

Example 3.45 (Design with CLF)

In Example 3.20, we have explicitly solved the HJB equation to achieve optimal

stabilization of the system

ẋ = x2 + u,

for the cost functional

J =
∫ ∞

0
(x2 + u2) dt, (3.5.29)

We have found the optimal stabilizing control

u∗(x) = −x2 − x
√
x2 + 1 (3.5.30)

and the optimal value function

V (x) =
2

3
(x3 + (x2 + 1)

3
2 − 1) (3.5.31)

We now reconsider the same system with the CLF approach. For scalar

stabilizable systems, V (x) = 1
2
x2 is always a CLF, from which we immediately

get LfV (x) = x3 and LgV (x) = x. The formula (3.5.19) with c0 = 0 yields

uS(x) = −
x3 +

√
x6 + x4

x
= −x2 − x

√
x2 + 1 (3.5.32)

which is the same as the optimal control law u∗(x) in (3.5.30). By Proposition

3.44, the control law uS(x) is optimal for the cost (3.5.28) with p(x) = x +√
x2 + 1. It can be observed that p(x)x is the gradient of the optimal value

function (3.5.31). This fact is particular to the scalar case and explains why

uS(x) is also optimal with respect to the simpler cost (3.5.29) where R(x) = I.

2
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In the subsequent chapters, we will delineate several classes of systems for

which the construction of a CLF is systematic. The construction of a CLF is

usually performed together with the construction of a stabilizing feedback, but

it can be of interest to separate the two tasks. In particular, Propositions 3.44

and 3.35 can be applied to the constructed CLF in order to obtain an optimal

stabilizing feedback which achieves desirable stability margins. An illustration

is the class of feedback linearizable systems [24]. For simplicity, we limit our

attention to the single input nonlinear system

ẋ = f(x) + g(x)u

which is feedback linearizable if there exists a global change of coordinates

z = T (x) such that, in the new coordinates, the system has the normal form

ż1 = z2
...

żn−1 = zn
żn = α(z) + β(z)u

(3.5.33)

with β(z) globally invertible. Feedback linearization can be used for stabiliza-

tion since the feedback

ul(z) = β−1(z)(−α(z)− cT z) (3.5.34)

renders the closed-loop system linear and GAS provided that the polynomial

c1s+ . . .+ cns
n is Hurwitz. However, because of the cancellations, the control

law (3.5.34) in general does not have stability margins, as already illustrated

in Example 3.38.

Instead of pursuing feedback linearization (3.5.34), we use the normal form

(3.5.33) only to construct a CLF with which we then design an optimal sta-

bilizing control. Because the nonlinear system (3.5.33) can be transformed

by feedback into a chain of integrators, a CLF is obtained for the nonlinear

system (3.5.33) by constructing a CLF for a chain of integrators. This can be

performed in many different ways. For instance, a quadratic CLF zTPz can

be chosen to satisfy the Ricatti inequality

ATP + PA− PBBTP < 0 (3.5.35)

For a linear system, a quadratic CLF has always the Lipschitz control property

since a linear feedback can be used to achieve the negative definiteness of V̇ .

The quadratic CLF V = zTPz for a chain of integrators is also a CLF for the

system (3.5.33) and has the Lipschitz control property. An optimal stabilizing

control is then obtained with the formula (3.5.19). This control law is smooth

away from the origin, and Lipschitz continuous at the origin.
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Example 3.46 (Inverse optimal design for a feedback linearizable system)

The system
ẋ1 = x2 + x21
ẋ2 = u

(3.5.36)

is feedback linearizable and, in the linearizing coordinates (z1, z2) = (x1, x2 +

x21), it takes the normal form

ż1 = z2
ż2 = 2z1z2 + u

(3.5.37)

A stabilizing nonlinear control law based on feedback linearization is

ul(z) = −2z1z2 − k1z1 − k2z2, k1 > 0, k2 > 0.

It cancels the term 2z1z2. To avoid the cancellation and achieve a sector margin

for the feedback system, we use the linearizing coordinates only to construct

a CLF. With this CLF we then design an optimal stabilizing control. With

A =

(

0 1
0 0

)

, B =

(

0
1

)

, P =

(

1 c
c 1

)

,

the Ricatti inequality (3.5.35) is satisfied for any c ∈ (0, 1). Then V = zTPz

is a CLF for ż1 = z2, ż2 = u and hence, it is also a CLF for the nonlinear

system (3.5.37). Proposition 3.44 yields the optimal stabilizing control law

u = −2z1z2 −
(z1 + cz2)z1 +

√

(2z1z2(z2 + cz1) + z2(z1 + cz2))2 + (cz1 + z2)4

cz1 + z2

As in Example 3.38, this optimal control law has two desirable properties not

present in the feedback linearizing design: it recognizes the beneficial effect

of LfV , when LfV < 0, and dominates LfV instead of cancelling it, when

LfV > 0. 2

3.6 Summary

While stability margins do not guarantee robustness with respect to all types

of uncertainties, they are sine-qua-non properties of well designed control sys-

tems. When input uncertainties are static nonlinearities, the Nyquist curve is

required to stay outside a disk in the complex plane. In our terminology, the

system is required to possess a disk margin, a notion which we have extended

to nonlinear systems with the help of passivity properties.
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In both linear and nonlinear systems a disk margin guards against two

types of input uncertainties: static nonlinearities and dynamic uncertainties

which do not change the relative degree of the system. This relative degree

restriction may not appear significant, but, unfortunately, it does eliminate

many realistic unmodeled dynamics. If the unmodeled dynamics evolve in a

time scale significantly faster than the system, they can be treated as singular

perturbations. The stability properties are then preserved in a region whose

size increases with the increase of the separation of the time scales. Even

though we do not characterize this semiglobal property as a margin, it is a

robustness property.

We have next examined the stability margins of optimal feedback systems

using the connection between optimality and passivity (Theorem 3.23). We

have first shown that with a purely quadratic control penalty (R(x) = I)

in the cost functional, a nonlinear optimal stabilizing control guarantees a

disk margin, which, in the special case of the LQR design implies the famil-

iar gain and phase margins of ( 1
2
,∞) and 60◦, respectively. With R(x) =

diag{r1(x), . . . , rm(x)} a sector margin is achieved. Our redesign strengthens

this property and achieves a disk margin by dominating the original optimal

value function by a larger one, which, in general, requires larger control effort.

Optimal control methods requiring the solution of the Hamilton-Jacobi-

Bellman equation are impractical. We have instead, taken an inverse path.

As the remaining chapters in this book will show, our design methods first

construct Lyapunov functions for various classes of nonlinear systems. We then

follow the inverse path by interpreting the constructed Lyapunov functions as

optimal value functions for some meaningful cost functionals.

For systems which are open-loop stable, a well known inverse optimal con-

trol is the damping control, also called “LgV -control.” In Chapters 5 and 6,

our forwarding procedure will recursively extend this inverse optimal design

to feedforward systems, which, in general, are open loop unstable.

For more general situations, we derive an inverse optimal control from

Control Lyapunov functions which are constructed by methods in remaining

chapters.

3.7 Notes and References

Our disk margin is motivated by the property that the systems whose Nyquist

curve does not intersect a disk remain stable in feedback interconnections with

either static or dynamic “conic uncertainties.” Following the work of Lurie

[70] and Popov [88], this was shown by Zames [123] in the operator theoretic
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framework, and by Hill and Moylan [37, 38] in the state space framework.

In the 1971 edition of [1], Anderson and Moore have shown that the linear

optimal regulator design results in a feedback system with the Nyquist curve

outside the diskD( 1
2
), that is with a disk stability margin. Multivariable gener-

alization of the gain and phase margins were given by Safonov [91], Lehtomaki,

Sandell, and Athans [64] and Grimble and Owens [31], among others.

We have defined nonlinear gain, sector, and disk stability margins by spec-

ifying the class of uncertainties, in series with the plant, that the feedback

systems must tolerate. A gain margin introduced by Sontag [102] deals with

nonlinear additive uncertainty. The small gain stability margins, which are

implicit in the recent global stability results by Krstić, Sun, and Kokotović

[62] and Praly and Wang [89], can be an alternative to our passivity based

margins.

The connection between optimality and passivity established by Kalman

[52] for linear systems, and by Moylan [80] for nonlinear systems, has been

exploited by Glad [29, 28] and Tsitsiklis and Athans [114] to prove certain

robustness properties of nonlinear optimal systems. Recent developement of

the inverse optimality approach is due to Freeman and Kokotović [25, 26].

The two specific “inverse optimal” control laws considered in this chapter

are the damping control, due to Jurdjevic and Quinn [49], Jacobson [44], and

Krasovsky [60], and the control law given by Sontag’s formula [100] which uses

Artstein-Sontag’s control Lyapunov function [4, 101]. Other explicit formulae

can be found in [25, 26].
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Chapter 4

Cascade Designs

With this chapter we begin the presentation of feedback stabilization designs

which exploit structural properties of nonlinear systems. In Section 4.1 we

introduce a class of cascade structures formed of two subsystems, with the

subsystem states z and ξ, as illustrated in Figure 4.1.

ξ̇ = a(ξ, u) ż = f(z, ξ)- - -ξu

Figure 4.1: A cascade system.

The first characteristic of the cascade is that the control u enters only

the ξ-subsystem. A further characterization specifies the properties of the z-

subsystem and how they can be changed by the interconnection, which may

act either as a control input or as an external disturbance.

In partial-state feedback designs presented in Section 4.2, only the ξ-subsystem

state is used for feedback. The problem is to stabilize the ξ-subsystem without

destroying the GAS property of the z-subsystem. In this case the interconnec-

tion with the ξ-subsystem acts as a disturbance on the z-subsystem.

In full-state feedback passivation designs presented in Section 4.3, the in-

terconnection term plays an active role and the GAS assumption for the z-

subsystem is relaxed to a stabilizability assumption. In this case ξ is treated

as the input of the z-subsystem. A detailed case study of a translational plat-

form stabilized by a rotating actuator (TORA) is presented in Section 4.4, as

an illustration of several cascade and passivation designs.

123
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Our design goal is either global or semiglobal stabilization. For semiglobal

stabilization a control law is designed to guarantee that a prescribed compact

set belongs to the region of attraction of the equilibrium (z, ξ) = (0, 0).

A hidden danger in the deceptively simple cascade structure of Figure 4.1 is

the intricate peaking phenomenon. An attempt to force ξ to rapidly converge to

zero in order to preserve the stability properties of the z-subsystem may instead

cause explosive forms of instability. Unexpectedly, the peaking phenomenon

emerges as a fundamental structural obstacle not only to the solution of global,

but also semiglobal stabilization problem. In Section 4.5 we characterize the

class of nonpeaking cascades in which the peaking obstacle can be avoided.

4.1 Cascade Systems

4.1.1 TORA system

Cascade structures often reflect configurations of major system components,

especially when each of these components constitutes a dynamical subsystem.

A typical example, which will be our case study in Section 4.4, is the TORA

system1 in Figure 4.2, where a translational platform of mass M is stabilized

by an eccentric rotating mass m.

.

..........................

m

M

N

e
θ

k

Figure 4.2: TORA system configuration.

Even without a detailed model, the TORA subsystems are physically rec-

ognizable. The controlling subsystem is the rotating mass which acts upon the

second subsystem – the translational platform. The rotating mass qualifies as

the ξ-subsystem because it is acted upon by the control torque directly. The

1TORA = Translational Oscillator with Rotating Actuator. This case study was sug-
gested to the authors by Professor Dennis Bernstein who has built such a system in his
laboratory at the University of Michigan, Ann Arbor.
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platform qualifies as the z-subsystem, which, disregarding the rotating mass

and friction, is a conservative mass-spring system.

4.1.2 Types of cascades

For a complete description of a cascade system, it is not sufficient to identify its

subsystems and their stability properties. It is also necessary to characterize

the nature of the interconnection of the subsystems. In the TORA system,

the important interconnection term is the force of the rotating mass which

acts upon the platform. This force can add damping to the oscillations of

the platform, but it can also act as a destabilizing disturbance. When an

interconnection term acts as a disturbance, its growth as a function of z is

a critical factor which determines what is achievable with feedback design.

We will return to this issue in Section 4.2. At this point we only stress the

importance of the nonlinear growth properties of the interconnection terms.

In the simplest cascade we consider, the controlling subsystem is linear

ż = f̃(z, ξ), z ∈ IRnz

ξ̇ = Aξ +Bu, ξ ∈ IRnξ

where f̃(z, ξ) is C1 and f̃(0, 0) = 0, so that the equilibrium is at (z, ξ) = (0, 0).

The stability assumption for the z-subsystem will be that the equilibrium z = 0

of ż = f̃(z, 0) is either globally stable (GS) or globally asymptotically stable

(GAS). The ξ-subsystem is assumed to be stabilizable.

For a further characterization of the cascade, we need to specify the prop-

erties of the interconnection term

ψ(z, ξ) := f̃(z, ξ)− f̃(z, 0) (4.1.1)

so that the cascade can be rewritten as

ż = f(z) + ψ(z, ξ), f(z) := f̃(z, 0)

ξ̇ = Aξ +Bu
(4.1.2)

When ż = f(z) is GAS and the growth of ‖ψ(z, ξ)‖ is linear in ‖z‖, we will

show that, for stabilization of the cascade, it is not important how ξ enters

the interconnection term. However, if ‖ψ‖ grows with ‖z‖ faster than linear,

then the nature of its dependence on ξ becomes critical. To analyze this more

complex case, we will factor out of ψ(z, ξ) a linear function,

ψ(z, ξ) = ψ̃(z, ξ)Cξ (4.1.3)
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and treat y = Cξ as an “output” of the ξ-subsystem. For a given ψ(z, ξ),

many such factorizations are possible, a flexibility useful in some of the cascade

designs. The cascade form

ż = f(z) + ψ̃(z, ξ)y,

ξ̇ = Aξ +Bu,
y = Cξ

(4.1.4)

is useful because it also exhibits the input-output properties of the ξ-subsystem,

which are important for our designs.

The partially linear cascade is sometimes the result of an “input-output”

linearization of a nonlinear system, achieved by a preliminary nonlinear change

of coordinates, and a feedback transformation, as shown in Appendix A.

The most general nonlinear cascades to be considered in this chapter are

of the form
ż = f(z, ξ) + ψ(z, ξ),

ξ̇ = a(z, ξ, u)
(4.1.5)

This configuration is informative if the structural properties of the cascade

are retained. For the z-subsystem, this means that the stability properties of

ż = f(z, ξ) must be uniform in ξ. For the ξ-subsystem, it is required that

a feedback control exists which achieves global asymptotic stability of ξ = 0,

uniformly in z. Under these conditions, the behavior of the cascade (4.1.5) is

qualitatively the same as if f were independent of ξ, and a were independent

of z. We will therefore concentrate on the cascades with f(z) and a(ξ, u), and

illustrate more general situations (4.1.5) by examples.

4.2 Partial-State Feedback Designs

4.2.1 Local stabilization

In some cases the stabilization of the ξ-subsystem ensures the stabilization of

the entire cascade. Such partial-state feedback designs are of interest because

of their simplicity.

During the stabilization of the ξ-subsystem in the cascade

ż = f(z) + ψ(z, ξ),

ξ̇ = a(ξ, u)
(4.2.1)

the interconnection term ψ acts as a disturbance which must be driven to zero

without destabilizing the z-subsystem. A potentially destabilizing effect of ψ

is not an obstacle to achieving local asymptotic stability [100].
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Proposition 4.1 (Asymptotic stability)

If z = 0 is an asymptotically stable equilibrium of ż = f(z), then any partial-

state feedback control u = k(ξ) which renders the ξ-subsystem equilibrium

ξ = 0 asymptotically stable, also achieves asymptotic stability of (z, ξ) = (0, 0).

Furthermore, if ż = f(z) and ξ̇ = a(ξ, k(ξ)) are both GAS, then, as t → ∞,

every solution (z(t), ξ(t)) either converges to (z, ξ) = (0, 0) or is unbounded.

Proof: Let U(ξ) be a Lyapunov function for the subsystem ξ̇ = a(ξ, k(ξ)).

Then V (z, ξ) = U(ξ) is a positive semidefinite Lyapunov function for the

whole cascade. Stability of (z, ξ) = (0, 0) follows from Theorem 2.24, because

(z, ξ) = (0, 0) is asymptotically stable conditionally to the set {(z, ξ)|V (z, ξ) =

0} = {(z, ξ)|ξ = 0}. Let Ωz be the region of attraction of z = 0 for ż = f(z)

and Ωξ be the region of attraction of ξ = 0 for ξ̇ = a(ξ, k(ξ)). Because the equi-

librium (z, ξ) = (0, 0) is stable, it has a neighborhood Ω such that every solu-

tion (z(t), ξ(t)) starting in Ω is bounded and remains inside Ωz×Ωξ for all t ≥ 0.

As t→∞, ξ(t)→ 0, and, by Theorem 2.21, (z(t), ξ(t)) converges to the largest

invariant set of ż = f(z) in Ωz × {0}, which is the equilibrium (z, ξ) = (0, 0).

This proves asymptotic stability. Finally, if Ωz × Ωξ = IRnz × IRnξ , the at-

tractivity argument applies to every bounded solution. This means that the

solutions which do not converge to (z, ξ) = (0, 0) are unbounded. 2

The usefulness of a local stability property depends on the size of the region

of attraction, which, in turn, is determined by the choice of k(ξ).

Example 4.2 (Semiglobal region of attraction)

For the system

ż = −z + ξz2

ξ̇ = u
(4.2.2)

a linear feedback u = −kξ, k > 0, achieves asymptotic stability of (z, ξ) =

(0, 0). The region of attraction can be estimated with the Lyapunov function

V = z2 + ξ2. Its time-derivative

V̇ = −2(z2 + kξ2 − ξz3) = −
[

z ξ
]
[

2 −z2
−z2 2k

] [

z
ξ

]

(4.2.3)

is negative for z2 < 2
√
k. An estimate of the region of attraction is the largest

set V = c in which V̇ < 0. This shows that with feedback gain k > c2

4

we can guarantee any prescribed c, which means that asymptotic stability is

semiglobal. The price paid is that feedback gain k grows as c2. 2
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Semiglobal stabilizability allows the designer to achieve any desired region

of attraction, but it also involves trade-offs with robustness, because the ex-

panded system bandwidth reduces its robustness to noise and unmodeled dy-

namics. It is important to stress that semiglobal stabilizability does not imply

global stabilizability. The system (4.2.2) will again serve as an illustration.

Example 4.3 (Obstacle to global stabilization with partial-state feedback)

We now show that global stabilization of the system (4.2.2) cannot be achieved

with partial-state feedback u = k(ξ). Worse yet: the solutions from some

initial conditions escape to infinity in finite time. To see this we let z = 1
σ
,

which transforms the nonlinear equation ż = −z + ξz2 into σ̇ = σ − ξ. Using
its explicit solution σ(t) and returning to z(t) we obtain

z(t) =
e−t

1
z(0)
− ∫ t0 e−τξ(τ)dτ

It is clear that starting with

z(0) >
(∫ ∞

0
e−τξ(τ)dτ

)−1
(4.2.4)

the denominator will be zero at some finite time te > 0 and, hence, z(t) escapes

to infinity as t→ te. If we restrict u to be a function of ξ only, the right hand

side of the inequality (4.2.4) will be bounded and independent of z(0). Thus,

for any ξ(0) we can find z(0) such that z(t) escapes to infinity in finite time.

2

In the system 4.2.2, even an arbitrarily fast exponential decay of ξ is unable

to prevent the destabilization of the z-subsystem. This is due to the quadratic

growth in z of the interconnection term ξz2. We will show later that global

stabilization of the same system is possible with full-state feedback.

4.2.2 Growth restrictions for global stabilization

The task of global stabilization of the cascade (4.2.1) by partial-state feed-

back u = k(ξ) not only requires that we make stability and stabilizability

assumptions about the subsystems, but it also imposes a severe linear growth

restriction on the interconnection term ψ(z, ξ). In the last section of this

chapter, we will see that, if the growth of ψ(z, ξ) in z is faster than linear, a

structural obstacle to both global and semiglobal stabilization is a “peaking

phenomenon”. Of the three assumptions we now make, Assumptions 4.4 and

4.6 are the stability and stabilizability requirements, and Assumption 4.5 is

the interconnection growth restriction.
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Assumption 4.4 (Subsystem stability/stabilizability)

In the cascade (4.2.1) the equilibrium z = 0 of ż = f(z) is GAS and there

exists a C1 partial-state feedback control u = k(ξ) such that the equilibrium

ξ = 0 of ξ̇ = a(ξ, k(ξ)) is GAS.

2

Assumption 4.5 (Interconnection growth restriction)

The function ψ(z, ξ) has linear growth in z, that is, there exist two class-K
functions γ1(·) and γ2(·), differentiable at ξ = 0, such that

‖ ψ(z, ξ) ‖≤ γ1(‖ ξ ‖) ‖ z ‖ +γ2(‖ ξ ‖) (4.2.5)

2

Assumption 4.6 (Local exponential stabilizability of the ξ-subsystem)

The Jacobian linearization (A,B) of ξ̇ = a(ξ, u) at ξ = 0 is stabilizable. 2

Theorem 4.7 (Global stabilization with partial-state feedback)

Suppose that Assumptions 4.5 and 4.6 hold and let u = k(ξ) be any C1 partial-

state feedback such that the equilibrium ξ = 0 of ξ̇ = a(ξ, k(ξ)) is GAS and

LES. If there exists a positive semidefinite radially unbounded function W (z)

and positive constants c and M such that for ‖z‖ > M

(i) LfW (z) ≤ 0;

(ii) ‖ ∂W
∂z
‖‖ z ‖≤ c W (z)

then the feedback u = k(ξ) guarantees boundedness of all the solutions of

(4.2.1). If, in addition, ż = f(z) is GAS, then the feedback u = k(ξ) achieves

GAS of the equilibrium (z, ξ) = (0, 0).

Proof: Let (z(0), ξ(0)) be an arbitrary initial condition. For ‖z‖ > M , the

sequence of inequalities below follows from (i), (ii) and Assumption 4.5:

Ẇ = LfW + LψW ≤ LψW ≤‖
∂W

∂z
‖ ‖ ψ ‖

≤ ‖ ∂W
∂z
‖ (γ1(‖ ξ ‖) + γ2(‖ ξ ‖) ‖ z ‖)

Because the equilibrium ξ = 0 of ξ̇ = a(ξ, k(ξ)) is LES, we know that ‖ ξ(t) ‖
converges to zero exponentially fast. This implies that there exist a positive

constant α and a function γ(·) ∈ K, such that

Ẇ (z(t)) ≤ ‖ ∂W
∂z
‖ (γ(‖ξ(0)‖)e−αt + γ(‖ξ(0)‖)e−αt ‖ z(t) ‖)

≤ ‖ ∂W
∂z
‖‖ z(t) ‖ γ(‖ξ(0)‖)e−αt, for ‖ z(t) ‖≥ 1
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Using (ii), we obtain the estimate

Ẇ ≤ K1(‖ξ(0)‖)e−αtW (4.2.6)

for some K1 ∈ K and for ‖z(t)‖ > max{1,M}. This estimate proves the

boundedness of W (z(t)) because

W (z(t)) ≤ W (z(0))e
∫ τ

0
K1(‖ξ(0)‖) e−αsds ≤ K(‖ξ(0)‖)W (z(0)) (4.2.7)

for some K ∈ K.
Because W (z) is radially unbounded, the boundedness of W (z(t)) implies

the boundedness of ‖z(t)‖. If ż = f(z) is GAS, global asymptotic stability of

the equilibrium (z, ξ) = (0, 0) follows from Proposition 4.1. 2

Condition (ii) of Theorem 4.7 is a growth restriction imposed on W (z) as

a Lyapunov function for ż = f(z), which can be interpreted as a polynomial

growth condition.

Proposition 4.8 (Polynomial W (z))

If W (z) is a polynomial function which is positive semidefinite and radially

unbounded, then it satisfies the growth condition (ii) of Theorem 4.7.

Proof: Choose c = 4N ∗ where N ∗ is the degree of the polynomial W (z). Pick

any zc ∈ S(0, 1) where S(0, 1) := {z ∈ IRnz | ‖z‖ = 1}. First we show that

for every zc there exists µ(zc) such that

λ‖∂W
∂z

(λzc)‖ < cW (λzc) for λ ≥ µ(zc) > 0 (4.2.8)

Assume that zc = e1 = (1, 0, . . . , 0)T . Then W (λzc) = P (λ) with P a poly-

nomial in λ. Let aNλ
N be the highest-order term of P (clearly N ≤ N ∗).

Because aN must be positive, for λ sufficiently large, we have

W (λzc) = P (λ) >
aNλ

N

2
(4.2.9)

‖∂W
∂z

(λzc)‖ = | P ′(λ) | < 2NaNλ
N−1 (4.2.10)

From (4.2.9) and (4.2.10) it follows that

λ‖∂W
∂z

(λzc)‖ ≤ 2NaNλ
N < 4N W (λzc) (4.2.11)

which proves (4.2.8) for zc = e1 since 4N ≤ c.
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For any zc ∈ S(0, 1), there exists an orthonormal matrix T such that

zc = Te1. Defining z̃ = T−1z, we obtain a new polynomial W̃ in z̃:

W̃ (z̃) = W (z) = W (T z̃)

Due to linearity of the transformation, W̃ (z̃) is a positive semidefinite, radially

unbounded, polynomial function of degree N ∗. Moreover,

‖∂W
∂z

(z)‖ ≤ ‖∂W̃
∂z̃

(T−1z)‖‖T−1‖ = ‖∂W̃
∂z̃

(z̃)‖

In particular, for z = λzc we obtain

W (λz) =W (λTe1) = W̃ (λe1)

‖∂W
∂z

(λzc)‖ ≤ ‖
∂W̃

∂z̃
(λe1)‖

Since the inequality (4.2.11) applies to W̃ (λe1), we conclude that

λ‖∂W
∂z

(λzc)‖ ≤ λ‖∂W̃
∂z̃

(λe1)‖ < cW̃ (λe1) = cW (λzc)

for λ > µ(zc), which establishes (4.2.8) for any zc.

Because W and ∂W
∂z

are continuous and the inequality (4.2.8) is strict, then

each zc ∈ S(0, 1) has an open neighborhood O(zc) in S(0, 1) such that

z ∈ O(zc)⇒ λ‖∂W
∂z

(λz)‖ < cW (λz) for λ ≥ µ(z)

The union of the neighborhoods (O(zc))zc∈S(0,1) provides an open covering

of S(0, 1). By compactness of the unit sphere, there exists a finite number

of points (zci)i∈I ⊂ S(0, 1) such that ∪i∈IO(zci) is still an open covering of

S(0, 1). As a consequence, we can choose a constant µ as the maximum of

µ(zci), i ∈ I and the condition (b) of Theorem 4.7 is satisfied for ‖z‖ > µ.

2

The growth restriction (4.2.5) on the interconnection ψ(z, ξ) and expo-

nential convergence of ξ are not sufficient to prevent destabilization of the z-

subsystem. The stability properties of the z-subsystem have been strengthened

by the W (z)-growth condition (ii) of Theorem 4.7 which cannot be dropped.

Example 4.9 (Linear growth of ψ is insufficient for global stabilization)

The system
ż1 = −z1 + z2ξ
ż2 = −z2 + z21z2
ξ̇ = u

(4.2.12)
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satisfies Assumptions 4.4, 4.5, and 4.6 because the interconnection term ψ =

[z2ξ, 0]
T is linear in z and ξ̇ = u is controllable. Global asymptotic stability of

the z-subsystem
ż1 = −z1
ż2 = (−1 + z21)z2

(4.2.13)

is established with W (z) = z21 + z22e
z21 which yields Ẇ (z) = −2W (z).

W (z) is radially unbounded and satisfies condition (i) of Theorem 4.7.

However, it does not satisfy condition (ii). We now prove that the system

(4.2.12) cannot be globally stabilized by any C1 partial-state feedback u =

k(ξ).

Let ξ(0) > 0, so that ξ(t) ≥ 0 for all t ≥ 0. Because k(ξ) is C1, there exists

a constant K > 0 such that ξ̇(t) ≥ −Kξ(t). Let z2(0) > 0, so that, as long as

z21(t) ≥ K + 2, we have ż2(t) ≥ (K + 1)z2(t). Combining both estimates we

obtain that, if z21(t) ≥ K + 2, then

d

dt
(z2ξ) ≥ (K + 1)z2ξ −Kz2ξ = z2ξ (4.2.14)

Choosing z2(0)ξ(0) > z1(0) >
√
K + 2, we have ż1(0) > 0. But ż1(t) is itself

increasing because

z̈1(t) =
d

dt
(z2ξ − z1) ≥ z1(t) ≥ 0

We conclude that (4.2.14) holds for all t ≥ 0. Because ξ(t) converges to zero,

this proves that z2(t) grows unbounded. 2

The unboundedness in (4.2.12) is due to the nonlinear growth of the term

z21z2 in ż = f(z). Because of this, W (z) = z21 + z22e
z21 did not satisfy the

polynomial growth condition (ii) of Theorem 4.7. In the absence of such a

Lyapunov function for ż = f(z), further restrictions need to be imposed on

both f and ψ, as in the following result proved by Sussmann and Kokotović

[105].

Proposition 4.10 (Global stabilization with linear growth)

Suppose that Assumptions 4.4 and 4.6 hold. Let u = k(ξ) be any C1 control

law which achieves GAS and LES of the equilibrium ξ = 0 of ξ̇ = a(ξ, u) and

denote by Ã the Jacobian of a(ξ, k(ξ)) at ξ = 0. If there exist constants α and

β such that

Re{λ(Ã)} < −α, ‖ f(z) ‖≤ α ‖ z ‖, ‖ ψ(z, ξ) ‖≤ β ‖ ξ ‖, (4.2.15)

for all (z, ξ), then u = k(ξ) achieves GAS of the equilibrium (z, ξ) = (0, 0) of

(4.2.1). 2
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4.2.3 ISS condition for global stabilization

Instead of relying on the exponential decay of ξ, we can strengthen the input-

to-state properties of the z-subsystem

ż = f(z) + ψ(z, ξ) (4.2.16)

by requiring that for any input ξ(t) which converges to zero, the corresponding

solution z(t) of (4.2.16) be bounded. By Proposition 4.1, this “converging

input - bounded state” property is sufficient for global asymptotic stability of

(z, ξ) = (0, 0) if ż = f(z) is GAS. For a more specific result, we assume that

ż = f(z) is globally exponentially stable (GES).

Proposition 4.11 (GES of ż = f(z) and linear growth of ψ )

If Assumption 4.5 holds and if the system ż = f(z) is GES, with a Lyapunov

function W (z) which satisfies

α1‖z‖2 ≤ W (z) ≤ α2‖z‖2, ‖∂W
∂z
‖ ≤ α3‖z‖

LfW (z) ≤ −α4W (z), αi > 0, i = 1, . . . , 4

then the solutions z(t) of (4.2.16) are bounded and converge to zero for any ξ(t)

which converges to zero. Furthermore, any u = k(ξ) which satisfies Assump-

tion 4.4 for the cascade (4.2.1) achieves GAS of its equilibrium (z, ξ) = (0, 0)

.

Proof: Along the solutions of (4.2.16) we have

Ẇ (z) ≤ −α4W (z) + α3‖z‖‖ψ(z, ξ)‖

For ‖z‖ ≥ 1, Assumption 4.5 implies ‖ψ‖ ≤ γ(‖ξ‖)‖z‖ for some γ ∈ K, so
that

Ẇ (z) ≤ (−α4 +
α3

α1

γ(‖ξ‖)) W (z)

This proves that W (z(t)) exists for all t ≥ 0. Moreover, because ξ(t) con-

verges to zero, there exists a finite period after which Ẇ (z) ≤ −1
2
α4W (z).

This proves that z(t) is bounded and converges exponentially to zero. 2

The “converging input - bounded state” property is often difficult to verify

and it is more practical to employ the stronger input-to-state stability (ISS)

condition introduced by Sontag [99].
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Definition 4.12 (Input-to-state stability)

The system ż = f̃(z, ξ) is input-to-state stable (ISS) if there exist functions

β ∈ KL and γ ∈ K such that for each bounded input ξ(.) and each initial

condition z(0), the solution z(t) exists for all t ≥ 0 and is bounded by

‖z(t)‖ ≤ β(‖z(0)‖, t) + γ( sup
0≤τ≤t

‖ξ(τ)‖) (4.2.17)

2

In a recent result by Sontag and Wang [102], the ISS property is characterized

by the existence of an ISS-Lyapunov function introduced in [99].

Theorem 4.13 (Characterization of ISS)

The system ż = f̃(z, ξ) is ISS if and only if there exists a C1 positive definite

radially unbounded function W (z) such that

‖z‖ ≥ χ1(‖ξ‖)⇒
∂W

∂z
f̃(z, ξ) ≤ −χ2(‖ z ‖) (4.2.18)

where χ1 and χ2 are two class K functions. Such a W (z) is called an ISS-

Lyapunov function. 2

An application to the cascade (4.2.1) is immediate.

Corollary 4.14 (Global stabilization with ISS property)

If the system ż = f(z) + ψ(z, ξ) is ISS, then, under Assumption 4.4, the

feedback u = k(ξ) achieves GAS of the equilibrium (z, ξ) = (0, 0) of the

cascade (4.2.1). 2

In the presence of the ISS property no growth assumption on the inter-

connection or exponential stability of the ξ-subsystem are needed to establish

boundedness.

Example 4.15 (ISS property – global stabilization)

With the ISS-Lyapunov function W (z) = z2

2
, it is readily verified that the

z-subsystem in the nonlinear cascade

ż = −z3 + z2ξ

ξ̇ = ξ2u
(4.2.19)

has the desired ISS property. This is because

Ẇ = −z4 + ξz3 ≤ −1

4
z4 +

1

4
ξ4 (4.2.20)

satisfies (4.2.18). Thus, if ξ(t) is a bounded input, the solution z(t) is bounded

for all t ≥ 0. For large z, the stabilizing term −z3 in (4.2.19) dominates the

destabilizing perturbation z2ξ and the linear feedback u = −ξ achieves GAS

of the cascade, even though the convergence of ξ to zero is not exponential. 2
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4.2.4 Stability margins: partial-state feedback

When a partial-state feedback u = k(ξ) achieves GAS of the equilibrium

(z, ξ) = (0, 0) of the cascade

ż = f(z) + ψ(z, ξ)

ξ̇ = a(ξ, k(ξ)),
(4.2.21)

the underlying geometry is that all the solutions converge to the manifold

ξ = 0 which is invariant because ξ = 0⇒ ξ̇ = 0. The system (4.2.21) reduced

to this manifold is the GAS z-subsystem ż = f(z).

We have seen, however, that the convergence to the manifold ξ = 0 does not

guarantee boundedness because z(t) may grow unbounded while ξ(t)→ 0. To

guarantee the boundedness of z(t) we have introduced additional assumptions,

such as LES of ξ in Section 4.2.2, or the ISS assumption in Section 4.2.3. An

important consequence is that, if a control law u = k(ξ) achieves GAS/LES

of the subsystem ξ̇ = a(ξ, u) with a certain stability margin, then the same

stability margin is guaranteed for the entire system. This speaks in favor

of partial-state feedback designs with which it is easier to achieve stability

margins at the subsystem level.

Stability margins for the ξ-subsystem can be guaranteed by a stabilizing

control law u = k(ξ) which minimizes a cost functional of the form

J(ξ, u) =
∫ ∞

0
(l(ξ) + uTR(ξ)u)dt, l(ξ) ≥ 0 (4.2.22)

where R(ξ) > 0 is diagonal. We know from Chapter 3 that such an optimal

control law achieves a sector margin ( 1
2
,∞) and, if R(ξ) = I, a disk margin

D(1
2
), that is, u = k(ξ) preserves GAS of ξ = 0 in the presence of any IFP( 1

2
)

input uncertainty.

To deduce the stability margins for the whole cascade from the stability

margins of the ξ-subsystem, we must distinguish between Proposition 4.11

and Corollary 4.14, which require only GAS of ξ̇ = a(ξ, k(ξ)), and Theorem

4.7 and Proposition 4.10, which require both GAS and LES of ξ̇ = a(ξ, k(ξ)).

In the first case, any stability margin for the ξ-subsystem is also a stability

margin for the entire cascade. In the second case, we have to exclude the

input uncertainties for which LES of ξ = 0 is lost. For a sector margin (ε,∞),

ε > 0, this is not restrictive, because any static uncertainty in this sector

which preserves GAS of ξ = 0 also preserves its LES property. The situation

is different for a disk margin because non-LES dynamic IFP uncertainties may

destroy LES of ξ = 0 and cause instability, despite the fact that ξ converges

to 0.
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Example 4.16 (Stability margin with respect to IFP uncertainties)

Let us consider a cascade without and with a scalar IFP dynamic uncertainty:

(C0)
ż = − z

1+z2
+ zξ

ξ̇ = ξ + u
(Cη)

ż = − z
1+z2

+ zξ

ξ̇ = ξ + η3 + u
η̇ = −η4k+1 + η2u

(4.2.23)

The design is performed for the cascade (C0) which satisfies Assumptions 4.4,

4.5, and 4.6. By Theorem 4.7, u = −2ξ achieves GAS of (C0). For the

subsystem ξ̇ = ξ + u, u = −2ξ also achieves a disk margin D( 1
2
) because the

system ξ̇ = ξ + u1, y1 = 2ξ, is OFP(− 1
2
). We now examine the stability of

the system (Cη) which consists of the cascade (C0) perturbed by an IFP(1)

uncertainty represented by the η-subsystem. We now distinguish two cases:

with k = 0 the perturbation is GAS, IFP, and LES, while with k = 1 it is

GAS, IFP, but not LES. By Theorem 2.34, the feedback interconnection

ξ̇ = −ξ + η3

η̇ = −η4k+1 − 2η2ξ
(4.2.24)

is GAS for both k = 0 and k = 1. For k = 0, the subsystem (4.2.24) is LES

and, hence, the nominal control law u = −2ξ achieves GAS of the cascade

(Cη), with uncertainty.

The situation is different for k = 1, because (4.2.24) is not LES. It can be

shown by applying Center Manifold Theorem [16, 56] that ξ(t) converges to

0 as t−
3
4 , which is not fast enough to prevent instability. We show this with

a calculation in which, for large z, the function z
z2+1

is approximated by 1
z
.

Then, setting w = 1
2
z2, we have ẇ = −1 + ξw which can be explicitly solved:

z2(t) = e
∫ t

0
ξ(τ)dτ (z2(0)− 2

∫ t

0
e−
∫ s

0
ξ(τ)dτds)

Now
∫ t
0 ξ(τ)dτ , with ξ(τ) = O(τ−

3
4 ), diverges as t→∞, while

∫ t
0 e
−
∫ s

0
ξ(τ)dτds

remains bounded with a bound which is independent of z. Hence, z(t) grows

unbounded if

z2(0) >
∫ ∞

0
e−
∫ s

0
ξ(τ)dτds

This illustrates a situation in which the loss of local exponential stability results

in the loss of stability. 2

When the cascade is partially linear, ξ̇ = Aξ + Bu, then any LQR-design

achieves a disk margin D( 1
2
). When ξ̇ = a(ξ)+ b(ξ)u, stability margins can be
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guaranteed if a CLF U(ξ) is known for the ξ-subsystem. Then, by Proposition

3.44, the control law given by the Sontag’s formula

us(ξ) =







−
(

c0 +
LaU+
√

(LaU)2+‖LbU‖4
‖LbU‖2

)

LbU , LbU(ξ) 6= 0

0 , LbU(ξ) = 0
(4.2.25)

minimizes a cost of the form (4.2.22) and guarantees a sector margin ( 1
2
,∞)

for the ξ subsystem and for the entire cascade. The same control law may

serve as a starting point for a domination redesign (Proposition 3.35) which,

with an increased control effort, achieves a disk margin D( 1
2
). When LES

of ξ̇ = a(ξ) + b(ξ)k(ξ) is also needed for stabilization of the cascade, then a

further restriction is that the CLF U satisfies ∂2U
∂ξ2

(0) > 0.

In the above stability margin analysis, a tacit assumption has been made

that the cascade form was achieved without cancellations. However, this is not

so if ξ̇ = Aξ +Bu was obtained from the original ξ-subsystem

ξ̇ = Aξ +B(α(z, ξ) + β(z, ξ)v)

via the feedback transformation

u = α(z, ξ) + β(z, ξ)v

which involves cancellation of the nonlinear terms.

Example 4.17 (Loss of stability margins because of cancellations)

Consider the system
ż = −z3 + z2ξ

ξ̇ = α(z, ξ) + v
(4.2.26)

in which the subsystem ż = −z3 + z2ξ is ISS (see Example 4.15). Using

v = u−α(z, ξ) to cancel α(z, ξ), the ξ-subsystem becomes an integrator ξ̇ = u

which is passive, so that the control law u = −kξ has a disk margin D(0).

However, because of the cancellation, no stability margin is guaranteed for the

complete control law

v = −α(z, ξ)− kξ (4.2.27)

When |α(z, ξ)| is bounded by a class K function of ξ, |α(z, ξ)| ≤ γ(|ξ|)ξ, the
stability margin can be recovered by domination. The control law

u = −(1 + γ2(ξ))ξ

guarantees a disk margin D( 1
2
) for the whole cascade. But if α(z, ξ) does not

vanish when ξ = 0, domination is not possible with partial-state feedback u(ξ).

2
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4.3 Feedback Passivation of Cascades

In passivation designs we identify two passive subsystems of a cascade, and use

the control to form their feedback interconnection. One path of the feedback

interconnection will be created by the control law, while the other path is

the interconnection term ψ(z, ξ) which now actively contributes to the task

of feedback stabilization. The main tools for passivation designs are Theorem

2.10 on passivity of feedback interconnections, and Theorem 2.28 on stability

of passive systems.

The passivation approach, which employs full-state feedback, removes the

growth restrictions introduced in Section 4.2.2. It also replaces the GAS as-

sumption for the subsystem ż = f(z) by a weaker GS assumption.

Assumption 4.18 (Global stability of the z-subsystem)

The equilibrium z = 0 of ż = f(z) is globally stable and a C2 radially un-

bounded positive definite function W (z) is known such that LfW ≤ 0. 2

We begin with a passivation design for the partially linear cascade

ż = f(z) + ψ(z, ξ)

ξ̇ = Aξ +Bu
(4.3.1)

To identify two passive systems H1 and H2, we factor the interconnection as

ψ(z, ξ) = ψ̃(z, ξ)Cξ (4.3.2)

We have thus created the linear block H1 with the transfer function

H1(s) = C(sI − A)−1B

For this block to be passive, the choice of the output must render H1(s) a

positive real transfer function. The block H2 is the nonlinear system

ż = f(z) + ψ̃(z, ξ)u2

with the input u2 = y1 and the output y2 yet to be defined. We are free to

select the output y2 = h2(z, ξ) and guarantee passivity via Theorem 2.10 and

Proposition 2.11. Using W (z) as a positive definite storage function for H2,

we require that

Ẇ =
∂W

∂z
(f(z) + ψ̃(z, ξ)y1) ≤ yT2 u2 (4.3.3)

Knowing that LfW (z) ≤ 0, we satisfy (4.3.3) by selecting

y2 = h2(z, ξ) := (Lψ̃W )T (z, ξ) = ψ̃T (
∂W

∂z
)T (4.3.4)
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-

ψ̃¾(Lψ̃W )T ¾
∫

f(.)-

¾
6

z

H1
- -

¾

6

? ?

u1 y1 = h1(ξ) = Cξv

u2

ξξ

y2

H2

−

Figure 4.3: Rendering the cascade (4.3.1) passive from v to y1.

The so defined block H2 is passive. Next, with the feedback transformation

u = −h2(z, ξ) + v we create the feedback interconnection in Figure 4.3 which,

by Theorem 2.10, is passive from v to y1. By Theorem 2.28, global stability is

achieved with the control v = −y1.
Applying an analogous construction to the cascade with a nonlinear ξ-

subsystem, we obtain the following result.

Theorem 4.19 (Feedback passivation design)

Suppose that for the cascade

ż = f(z) + ψ(z, ξ)

ξ̇ = a(ξ) + b(ξ)u
(4.3.5)

Assumption 4.18 is satisfied and there exists an output y = h(ξ) such that

(i) the interconnection ψ(z, ξ) can be factored as ψ(z, ξ) = ψ̃(z, ξ)y;

(ii) the subsystem

ξ̇ = a(ξ) + b(ξ)u
y = h(ξ)

(4.3.6)

is passive with a C1 positive definite, radially unbounded, storage function

U(ξ).

Then the entire cascade (4.3.5) is rendered passive with the feedback trans-

formation

u = −(Lψ̃W )T (z, ξ) + v (4.3.7)
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and V (z, ξ) = W (z) + U(ξ) is its storage function. If, with the new input v

and the output y, the cascade is ZSD, then v = −ky, k > 0, achieves GAS

of the equilibrium (z, ξ) = (0, 0). The full control law u = −(Lψ̃W )T − ky

possesses a (0,∞) gain margin. 2

We have thus overcome the two major limitations of the partial-state feed-

back designs. First, we have replaced the GAS assumption for the z-subsystem

by GS and the detectability condition ZSD. Second, we have achieved global

stabilization without a linear growth assumption on ψ(z, ξ).

Example 4.20 (Global stabilization without growth condition)

We have shown in Example 4.2 that the system

ż = −z + z2ξ

ξ̇ = u
(4.3.8)

is not globally stabilizable by partial-state feedback because of the nonlinear

growth of the interconnection term ξz2. With a passivation design employing

full-state feedback we now achieve global stabilization. Using y1 = ξ we first

create a linear passive system H1. Then, selecting W (z) = 1
2
z2 as a storage

function, we establish that the first equation in (4.3.8) defines a passive system

H2 with u2 = ξ as the input and y2 = z3 as the output. Hence, with the

feedback transformation

u = −y2 + v = −z3 + v

the cascade (4.3.8) becomes a feedback interconnection of two passive systems.

The ZSD property is also satisfied because in the set y1 = ξ = 0 the system

reduces to ż = −z. Therefore, a linear feedback control v = −ky1, k > 0,

makes the whole cascade GAS. 2

When the subsystem (4.3.6) is feedback passive rather than passive, The-

orem 4.19 applies after a passivating feedback transformation. In particular,

when the ξ-subsystem is linear as in (4.3.1), we can use Proposition 2.42 which

states that the system (A,B,C) is feedback passive if and only if it is weakly

minimum phase and has relative degree one. After a linear change of coordi-

nates, the system (A,B,C) can be represented as

ξ̇0 = Q11ξ0 +Q12y
ẏ = Q21ξ0 +Q22y + CBu

(4.3.9)

Then the feedback transformation

u = (CB)−1(−2QT
12P11ξ0 −Q21ξ0 −Q22y + v) =: Fξ +Gv (4.3.10)

renders the system passive with the storage function U = ξT0 P11ξ0 +
1
2
yTy.
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Proposition 4.21 (Passivation of partially linear cascades)

Suppose that for the cascade

ż = f(z) + ψ(z, ξ)

ξ̇ = Aξ +Bu
(4.3.11)

Assumption 4.18 is satisfied and there exists an output y = Cξ such that

(i) the interconnection ψ(z, ξ) can be factored as ψ(z, ξ) = ψ̃(z, ξ)y;

(ii) the system (A,B,C) has relative degree one and is weakly minimum phase.

Then the entire cascade (4.3.11) with y = Cξ as the output is feedback

passive. Its passivity from v to y is achieved with the feedback transformation

u = Fξ −G(Lψ̃W )T (z, ξ) +Gv (4.3.12)

where F and G are defined in (4.3.10). The feedback control v = −ky, k > 0,

guarantees GAS of (z, ξ) = (0, 0) if either one of the following two conditions

is satisfied:

(iii) ż = f(z) is GAS and (A,B) is stabilizable, or

(iv) the cascade with output y and input v is ZSD.

The control law u = Fξ − G(Lψ̃W )T (z, ξ) − kGy, with k ≥ 1 + ‖Q22‖2,
possesses a (1

2
,∞) gain margin provided that

(v) matrix Q21 in (4.3.9) is equal to 0. 2

Example 4.22 (Feedback passivation of a partially linear cascade)

In the cascade
ż = −qz3 + (cξ1 + ξ2)z

3

ξ̇1 = ξ2
ξ̇2 = u

(4.3.13)

the z-subsystem ż = −qz3 is GAS when q > 0 and only GS when q = 0. With

y1 = cξ1 + ξ2, the interconnection term ψ(z, ξ) is factored as ψ(z, ξ) = y1z
3.

The resulting ξ-subsystem is

ξ̇1 = −cξ1 + y1
ẏ1 = −c2ξ1 + cy + u

(4.3.14)

It has relative degree one, and its zero-dynamics subsystem is ξ̇1 = −cξ1.
Hence, the ξ-subsystem is minimum phase if c > 0, and nonminimum phase

if c < 0. For c ≥ 0, this linear block H1 is rendered passive by feedback

transformation

u = −(1− c2)ξ1 − (1 + c)y1 + v (4.3.15)
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which achieves U̇ ≤ vy1 with the storage function U(ξ) = 1
2
(ξ21+y

2
1). To render

the nonlinear block H2 passive we select W (z) = 1
2
z2 and let the output y2 be

y2 = Lψ̃W (z) = z4. Then, closing the loop with

v = −y2 + w = −z4 + w (4.3.16)

we render the entire system passive from w to y1. The remaining step is to

verify whether the feedback law for w = −y1 achieves GAS. When q > 0, GAS

is achieved because the property (iii) of Proposition 4.21 holds. However,

when q = 0, the ZSD property requires c > 0, that is, the linear subsystem

must be strictly minimum phase: in the set where y1 ≡ w ≡ 0, which implies

ẏ1 = c2ξ1 − z4 ≡ 0, it is clear that (z, ξ1) = (0, 0) is the only invariant set of

ż = 0, ξ̇1 = −cξ1, only if c > 0. 2

Example 4.23 (Feedback passivation: nonlinear cascade)

Theorem 4.19 and Proposition 4.21 do not exhaust all the cases when the

passivity of a cascade can be achieved. If the nonlinear cascade

ż = f(z) + ψ(z, ξ)

ξ̇ = a(z, ξ) + b(z, ξ)u
(4.3.17)

satisfies Assumption 4.18 and b−1(z, ξ) exists for all (z, ξ), then (4.3.17) can

be made passive. We choose y = ξ and let ψ = ψ̃(z, ξ)ξ. The feedback

transformation

u = b−1(z, y)
(

v − a(z, y)− Lψ̃W (z, y)
)

(4.3.18)

renders the entire cascade (4.3.17) passive with the storage function

S(z, y) = W (z) +
1

2
yTy (4.3.19)

Additional flexibility exists when b is a positive definite matrix which depends

only on z. Then

S̃(z, y) = W (z) +
1

2
yT b−1(z)y (4.3.20)

becomes a storage function with the help of the feedback transformation

u = v − b−1(z)a(z, y)− (Lψ̃W )T (z, y) +
1

2
b−1(z)ḃb−1(z)y (4.3.21)

which is well defined because the entries of the matrix ḃ are independent of u:

ḃij =
∂bij
∂z

(f(z) + ψ̃(z, y)y)

This flexibility of passivation methods will be exploited in Section 4.4 for

one of our TORA designs. 2
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In the feedback passivation designs thus far, global asymptotic stability

of the cascade is achieved even when the z-subsystem is only GS, rather than

GAS. This means that the stabilization of the z-subsystem is achieved through

the action of the state of the ξ-subsystem. We now go one step further in

relaxing the stability assumption on the z-subsystem.

Assumption 4.24 (Global stabilizability of the z-subsystem)

There exists a C1 control law k(z) such that the equilibrium z = 0 of the

system ż = f(z) + ψ̃(z)k(z) is globally stable. This is established with a C2,

positive definite, radially unbounded, function W (z) such that

∂W

∂z
(f(z) + ψ̃(z)k(z)) ≤ 0, ∀z ∈ IRnz

2

In the cascade, the control law k(z) is not implementable and its effect

must be achieved through the ξ-subsystem. For this task the ξ-subsystem

is required to be minimum phase, rather than only weakly minimum phase

(compare with Proposition 4.21). The restrictions on the ξ-subsystem and the

interconnection are therefore more severe.

Proposition 4.25 (Stabilization through feedback passivation)

Suppose that for the cascade

ż = f(z) + ψ(z, ξ)

ξ̇ = Aξ +Bu
(4.3.22)

there exists an output y1 = Cξ such that

(i) the interconnection ψ(z, ξ) can be factored as ψ(z, ξ) = ψ̃(z)y1;

(ii) the system (A,B,C) has relative degree one and is minimum phase.

If Assumption 4.24 is satisfied with the control law k(z), then the entire

cascade is feedback passive with respect to the new output

y = y1 − k(z),

and its passivity is achieved with the feedback transformation

u = Fξ +G

(

∂k

∂z
(f(z) + ψ̃(z)(y + k(z))− Lψ̃W (z) + v

)

(4.3.23)

where F and G are defined in (4.3.10). The feedback control v = −ky, k >
0, guarantees GAS of the equilibrium (z, ξ) = (0, 0) when either one of the

following two conditions is satisfied

(iii) the equilibrium z = 0 of ż = f(z) + ψ̃(z)k(z) is GAS;

(iv) the cascade with output y and input v is ZSD.



144 CHAPTER 4. CASCADE DESIGNS

Proof: By the minimum phase assumption, Q11 in the representation (4.3.9)

is Hurwitz. Using y = y1 − k(z) as a new coordinate, we rewrite (4.3.22) as

ż = f(z) + ψ̃(z)k(z) + ψ̃(z)y

ξ̇0 = Q11ξ0 +Q12k(z) +Q12y

ẏ = Q21ξ0 +Q22(y + k(z)) + CBu− ∂k
∂x
(f(z) + ψ̃(z)(y + k(z)))

(4.3.24)

To show that the feedback transformation (4.3.23) achieves passivity, we use

the positive semidefinite storage function

V (z, y) = W (z) +
1

2
yTy

Its time-derivative is V̇ = Lf+ψ̃kW + yTv, which, by Assumption 4.24, proves

passivity.

With the additional feedback v = −ky, k > 0 we have V̇ ≤ −kyTy.
Because the closed-loop (z, y)-subsystem is decoupled from the ξ0-subsystem,

this proves global stability of its equilibrium (z, y) = (0, 0) and the convergence

of y to zero. With the bounded input y1(t) = y(t) + k(z(t)), the state ξ0(t)

remains bounded because Q11 is Hurwitz. Thus, all the states are bounded,

the equilibrium (z, ξ0, y) = (0, 0, 0) is globally stable, and all the solutions

converge to the largest invariant set where y = 0. If the cascade with the

input v and the output y is ZSD, the equilibrium (z, ξ0, y) = (0, 0, 0) is GAS.

ZSD is guaranteed when ż = f(z) + ψ̃(z)k(z) is GAS, because then, if y ≡ 0,

z and y1 converge to zero and so does ξ0.

2

In Theorem 4.19 and Proposition 4.21 we were able to avoid cancellations

of system nonlinearities and achieve gain margin. This is not the case with

the control law in Proposition 4.25 which, in general, does not possess any

stability margin. We can recover the margins if our design provides a CLF.

Example 4.26 (Global stabilization when the z-subsystem is unstable)

Continuing the theme of Example 4.22, we now let the z-subsystem of the

cascade
ż = z4 + (cξ1 + ξ2)z

3

ξ̇1 = ξ2
ξ̇2 = u

(4.3.25)

be ż = z4 which is unstable. We require that for the output y1 = cξ1 + ξ2 the

linear subsystem be minimum phase, that is, c > 0. Treating y1 as “virtual”

control of the z-subsystem, we stabilize it with y1 = −2z. By Proposition

4.25, the entire cascade with the new output y = y1 + 2z is made passive by

u = −cξ2 − 3z4 − 2(cξ1 + ξ2)z
3 + v (4.3.26)
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which achieves V̇ ≤ yv for the storage function V = 1
2
(z2 + y2). Finally, the

feedback v = −y achieves GAS of the cascade. 2

4.4 Designs for the TORA System

4.4.1 TORA models

In this section we take a respite from the theoretical developments in the

preceding two sections and apply them to the TORA system in Figure 4.2.

The TORA system consists of a platform of mass M connected to a fixed

frame of reference by a linear spring with spring constant k. The platform

can oscillate without friction in the horizontal plane. On the platform, a

rotating mass m is actuated by a DC motor. The mass is eccentric with a

radius of eccentricity e and can be imagined to be a point mass mounted on a

massless rotor. The rotating motion of the mass m creates a force which can

be controlled to dampen the translational oscillations of the platform. The

motor torque is the control variable.

The design goal is to find a control law to achieve asymptotic stabilization

at a desired equilibrium. Our first step toward this goal is to develop TORA

models convenient for various designs developed in Sections 4.2 and 4.3. Our

initial choice of the state and control is made by physical considerations

x1 and x2 = ẋ1 – displacement and velocity of the platform

x3 = θ and x4 = ẋ3 – angle and angular velocity of the rotor carrying

the mass m

u – control torque applied to the rotor.

In these coordinates the state equation of the TORA system is

ẋ1 = x2

ẋ2 =
−x1 + εx24 sinx3
1− ε2 cos2 x3

+ −ε cos x3
1− ε2 cos2 x3

u

ẋ3 = x4

ẋ4 =
1

1− ε2 cos2 x3
[ε cos x3(x1 − εx24 sinx3) + u]

(4.4.1)

All the state variables are in dimensionless units so that the only remaining

parameter ε depends on the eccentricity e and the massesM and m. A typical

value for ε is 0.1.
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In Section 4.1 we have introduced the TORA system as a physical cascade.

However, the above state equation (4.4.1) does not exhibit the cascade struc-

ture. To exhibit the cascade structure we introduce two new state variables:

z1 = x1 + ε sinx3
z2 = x2 + εx4 cos x3

With z1 and z2 instead of x1 and x2, the TORA state equation becomes

ż1 = z2
ż2 = −z1 + ε sin x3
ẋ3 = x4

ẋ4 = 1
1− ε2 cos2 x3

[ε cos x3(z1 − ε sinx3(1 + x24)) + u]

(4.4.2)

This system will be treated as a cascade in two different ways. A physical

separation of the translational and rotational dynamics suggests that the sub-

systems be (z1, z2) and (x3, x4). This cascade structure will be employed for a

partial-state feedback design. We first consider an alternative cascade struc-

ture suitable for a passivation design in which the subsystems are (z1, z2, x3)

and x4.

4.4.2 Two preliminary designs

For a better understanding of the TORA system, we start with two designs

employing feedback transformations which cancel the nonlinearities in the x4
equation. We later develop a design which avoids cancellation and guarantees

a stability margin. We first force the rotational subsystem into the double

integrator form by the feedback transformation

v =
1

1− ε2 cos2 x3
[ε cos x3(z1 − ε sin x3(1 + x24)) + u] (4.4.3)

which is well defined because 0 < ε < 1.

Example 4.27 (Preliminary passivation design)

Using the notation x3 = z3 and x4 = ξ and (4.4.3), we rewrite (4.4.2) as

ż1 = z2
ż2 = −z1 + ε sin z3
ż3 = ξ

ξ̇ = v

(4.4.4)

In this cascade, the z-subsystem is of order three while the ξ-subsystem is a

single integrator. The interconnection term is ψ = [0 0 ξ]T . With the output
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y = h(ξ) = ξ and the input v, the ξ-subsystem is passive. To apply Theorem

4.19, we need to construct a Lyapunov function W (z) for the z-subsystem

ż1 = z2
ż2 = −z1 + ε sin z3
ż3 = 0

(4.4.5)

Because z3 is constant, we can treat (4.4.5) as a linear system and select

W (z) =
1

2
(z1 − ε sin z3)2 +

1

2
z22 +

k1
2
z23 (4.4.6)

where k1 is a design parameter. The time-derivative of W along the solutions

of (4.4.5) is Ẇ = 0. Clearly, (4.4.5) is globally stable, but not asymptotically

stable.

Following Theorem 4.19, the feedback transformation

v = −Lψ̃W + w = (z1 − ε sin z3)ε cos z3 − k1z3 + w (4.4.7)

renders the system passive from the new input w to the output y = ξ with

respect to the storage function

V (z, ξ) =
1

2
(z1 − ε sin z3)2 +

1

2
z22 +

k1
2
z23 +

1

2
ξ2 (4.4.8)

Indeed, one easily verifies that V̇ = ξv.

Next we examine whether the system (4.4.4) with the output y = ξ and

the new input w is ZSD. From y = ξ ≡ 0 we get ξ̇ ≡ 0, which, with w ≡ 0

gives

0 ≡ ε cos z3(z1 − ε sin z3)− k1z3 (4.4.9)

From (4.4.4), ξ ≡ 0 implies that z3 is constant, and from (4.4.9) z1 is also a

constant so that ż1 = z2 ≡ 0. Then ż2 = z1− ε sin z3 ≡ 0 which, together with

(4.4.9), shows that z3 ≡ 0. This proves that y ≡ 0, w ≡ 0 can hold only if

z1 = z2 = z3 = ξ = 0, that is, the system is ZSD.

Because the system is passive and ZSD, with the positive definite, radially

unbounded storage function (4.4.8), we can achieve GAS with w = −k2y =

−k2ξ. In the coordinates of the model (4.4.2), the so designed passivating

control law is

u = β−1(−α− ∂W
∂x3
− k2x4)

= ε2x24 sinx3 cos x3 − ε3 cos2 x3 (z1 − ε sinx3)
−(1− ε2 cos2 x3)(k1x3 + k2x4)

(4.4.10)

We remind the reader that this control law includes the terms which cancel

some physical nonlinearities. 2
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Example 4.28 (Partial-state feedback design)

Model (4.4.4) cannot be used for a partial feedback design of Section 5.2,

because the (z1, z2) subsystem is only stable, rather than asymptotically stable.

To stabilize it, we imagine that z3 is a control variable and assign to it a

“control law” z3 = − arctan(c0z2), c0 > 0, which achieves asymptotic stability.

While this “control law” is not implementable, it serves to define a new variable

ξ1 = z3 + arctan(c0z2) (4.4.11)

which along with ξ2 = ξ̇1 and one more feedback transformation

w = v − 2c30z2
(1 + c20z

2
2)

2
(−z1 + ε sin z3)

2 +
c0

1 + c20z
2
2

(−z2 + εξ cos z3) (4.4.12)

transforms (4.4.4) into

ż1 = z2
ż2 = −z1 − ε sin(arctan(c0z2)) + εψ(z2, ξ1)

ξ̇1 = ξ2
ξ̇2 = w

(4.4.13)

The GAS property of the z-subsystem follows from W (z) = z21 + z22 and

Ẇ = −2z2 sin(arctan(c0z2)) ≤ 0

via the Invariance Principle (Theorem 2.21). The interconnection ψ(z2, ξ1) =

sin(ξ1 − arctan(c0z2)) + sin(arctan(c0z2)) is globally Lipschitz and bounded.

Hence, a feedback control which renders the ξ-subsystem GAS can be designed

disregarding the state z. Such a control is w = −k1ξ1− k2ξ2. To implement it

in the coordinates of the system (4.4.2), we substitute w back into (4.4.12), v

back into (4.4.3), ξ1 into (4.4.11) with z3 = x3 and ξ2 evaluated from ξ2 = ξ̇1 in

terms of z1, z2, x3, x4. Because of these transformations, the final control law

employs full-state feedback with undesirable cancellations. We will not give

its lengthy expression here. 2

4.4.3 Controllers with gain margin

Our goal now is to develop a passivating design which avoids the cancellations

performed with the feedback transformation (4.4.3). To this end, we return to

the TORA model (4.4.2), and examine the possibility of achieving passivity

from the input u to the output y = x4, while avoiding cancellation of nonlin-

earities. For this we need to modify the storage function (4.4.8). Motivated
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by Example 4.23, we try the storage function of the form W (z) + 1
2
yT b−1y. In

the notation of the model (4.4.2) this storage function is

V (z1, z2, x3, x4) =
1

2
(z1−ε sinx3)2+

1

2
z22+

k1
2
x23+

1

2
x24(1−ε2 cos2 x3) (4.4.14)

It is successful because the derivative of V (z1, z2, x3, x4) along the solutions of

(4.4.2) is

V̇ = −k1x3x4 + x4u (4.4.15)

Hence, u = −k1x3 + v achieves passivity from v to x4 since V̇ (z, y) = x4v.

The ZSD property with respect to the output x4 is established as before:

x4 ≡ 0 ⇒ z1 = const. ⇒ z2 ≡ 0 ⇒ x3 ≡ 0 ⇒ z1 ≡ 0. It follows from

Theorem 2.28 that GAS can be achieved with v = −k2x4, k2 > 0, that is with

u = −k1x3 − k2x4 (4.4.16)

The linear controller (4.4.16) is much simpler than either of the two cancel-

lation controllers. It possesses a (0,∞) gain margin because we can use any

positive k1 in the storage function (4.4.14). Hence, GAS is guaranteed for any

positive gains k1 and k2.

It is of practical interest to examine if the above linear controller can be

modifiedto prevent the control magnitude |u| from exceeding a specific value

δ. One possibility is the saturated control law

u = −k1
x3

√

1 + x23
− (δ − k1), k1 < δ arctan x4

which also achieves GAS as can be verified with the Lyapunov function

Vδ =
1

2
(z1 − ε sinx3)2 +

1

2
z22 + k1(

√

1 + x23 − 1) +
1

2
x24(1− ε2 cos2 x3)

This Lyapunov function is positive definite and radially unbounded. Its deriva-

tive is V̇δ = −(δ − k1)x4 arctan x4 ≤ 0 which proves GAS via the Invariance

Principle.

4.4.4 A redesign to improve performance

Typical transient response with the linear passivating controller (4.4.16), hence-

forth referred to as the P -controller, is shown in Figure 4.4 with the gains

k1 = 1, k2 = 0.14 selected for the fastest convergence. For comparison, the

analogous transient response with the cascade controller designed in Example

4.28, referred to as the C-controller, is shown in Figure 4.5.
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Figure 4.4: Transient response with the P -controller.

0

-0.5

0.5

0

-2

2

0 25 50

0 25 50

u

x1

time

Figure 4.5: Transient response with the C-controller.
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The response of the P -controller is considerably slower than that of the

C-controller, which is more aggressive, with control magnitudes about seven

times larger than with the P -controller.

A drawback of the P -controller is that its response cannot be made faster

by adjusting the gains k1 and k2. This is explained with the help of a simple

linear system
[

ẋ1
ẋ2

]

=

[

0 1
−a 0

] [

x1
x2

]

+

[

0
1

]

u (4.4.17)

which is passive from the input u to the output y = x2 with the storage function

V = a
2
x21 +

1
2
x22. A control law which achieves global asymptotic stability is

u = −ky. With this control law and a = 1, the root locus, as k varies from 0

to ∞, given in Figure 4.6, shows why the exponential decay cannot be made

faster than e−t by increasing k.

-1

-0.5

0

0.5

1

-2 -1.5 -1 -0.5 0

Im

Re

x

x

o

Figure 4.6: Root locus for s2 + ks+ a as k varies from 0 to ∞.

The only way to achieve faster response is to include x1 in the feedback

law. In a passivation design this can be accomplished by modifying the storage

function to increase the penalty on x1. Thus, with the storage function V =
a+c
2
x21 +

1
2
x22, the resulting control law is u = −cx1 − kx2 and the response is

made as fast as desired by increasing c and k.

Motivated by this linear example we introduce a design parameter k0 to

increase the penalty on the z-variables in the storage function (4.4.14):

VR =
k0 + 1

2
[(z1 − ε sinx3)2 + z22 ] +

k1
2
x23

+
1

2
x24(1− ε2 cos2 x3)
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Figure 4.7: Response with PR-controller (solid) and C-controller (dashed).

The function VR is made a storage function by the passivating feedback trans-

formation u = −k0ε cos x3(−z1+ε sinx3)−k1x3+v. Therefore, our redesigned
controller, called PR-controller, is

u = −k0ε cos x3(−z1 + ε sinx3)− k1x3 − k2x4

It yields V̇R = −k2x24 ≤ 0 and, via the Invariance Principle, guarantees GAS.

With k0 = 0, the PR-controller reduces to the P -controller.

By selecting k0, the PR-controller matches the performance of the C-

controller as shown in Figure 4.7 where the solid curves represent the PR-

controller and the dashed curves represent the C-controller. With the PR-

controller, the control magnitudes are about half of those with the C-controller.

The PR-controller also has a (0,∞) gain margin. Using z1 + ε sinx3 = x1, we

can rewrite the PR controller as

u = k0εx1 cos x3 − k1x3 − k2x4

Recall that x1 is scaled displacement of the platform, with the scaling factor

depending on the mass of the platform, and x3 and x4 are the angle and angular

velocity of the rotor. T We see that, thanks to its infinite gain margin, the

PR-controller is stabilizing regardless of the values of physical parameters like

masses of the platform and the rotor, eccentricity, etc.
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4.5 Output Peaking: an Obstacle to Global

Stabilization

4.5.1 The peaking phenomenon

We now critically examine the assumptions made in Section 4.2 and 4.3. The

two main assumptions impose two structurally different types of restrictions:

Assumption 4.4 on the subsystem stability/stabilizability, and Assumption

4.5 on the growth of the interconnection term ψ(z, ξ). The stability properties

of the z-subsystem are further characterized by requiring that its Lyapunov

functionW (z) be bounded by a polynomial (Theorem 4.7 and Proposition 4.8)

or that it satisfies an ISS condition (Corollary 4.14). The feedback passivity

property, required for passivation designs in Section 4.3, imposes the relative

degree one and weak minimum phase constraints. These structural constraints

involve the factorization of the interconnection term ψ(z, ξ) = ψ̃(z, ξ)h1(ξ) by

characterizing the output y1 = h1(ξ) of the ξ-subsystem and the function

ψ̃(z, ξ).

We have already suggested, and illustrated by examples, that such restric-

tions are not introduced deliberately to obtain simpler results. We will now

show that most of these restrictions cannot be removed because of the peaking

phenomenon which is an obstacle to both global and semiglobal stabilizability

of nonlinear feedback systems.

In Section 4.3, we have already seen that, using partial-state feedback,

global stabilization may be impossible without a linear growth restriction on ψ.

It was illustrated on the system (4.2.2) that, with an increase in the feedback

gain, the region of attraction can be made as large as desired (semiglobal).

However, using high-gain feedback to force the state ξ to converge faster

will not always make the z-subsystem less perturbed. The reason for this is

the peaking phenomenon in which the fast stabilization causes large transient

“peaks” which increase with faster decay rates.

The controllability of the pair (A,B) in ξ̇ = Aξ + Bu is sufficient for a

state feedback u = Kξ to place the eigenvalues of the closed-loop system as

far to the left of the imaginary axis as desired. This means that any prescribed

exponential decay rate a > 0 can be achieved with linear feedback u = Kaξ so

that the solutions of ξ̇ = (A+BKa)ξ satisfy

‖ξ(t)‖ ≤ γ(a)‖ξ(0)‖e−at (4.5.1)

The peaking phenomenon occurs if the growth of γ as a function of a is poly-

nomial. To appreciate this fact consider the simplest case when γ(a) = a and
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let ‖ξ(0)‖ = 1. Then the bound (4.5.1) is maximum at t = 1
a
and this maxi-

mum is ae−1. This is the mildest form of peaking: the peak of ξ grows linearly

with a. In general, the transient peak estimated by γ(a) grows as aπ where

π = 0, 1, 2, . . .. This growth is the price paid for achieving the fast decay rate

a. The absence of peaking is characterized by π = 0.

Because a large peak in ξ may force z(t) to escape to infinity in finite time,

the peaking phenomenon limits the achievable domain of attraction.

Example 4.29 (Peaking)

For the cascade with a cubic nonlinearity

ż = −z3 + ξ2z
3

ξ̇1 = ξ2
ξ̇2 = u

(4.5.2)

the linear partial-state feedback

u(ξ) = −a2ξ1 − 2aξ2 (4.5.3)

places both eigenvalues of the ξ-subsystem at s = −a. The state ξ2 of the ξ-

subsystem is a multiplicative disturbance in the z-subsystem. It may seem that

if ξ2(t) converges to zero faster, the interconnection ξ2z
3 is less destabilizing

and that the domain of attraction for the whole system (4.5.2) with (4.5.3)

grows as a→∞.

However, this is false because the explicit solution of the z-subsystem is

2z2(t) =

(

1

2z2(0)
+ t−

∫ t

0
ξ2(τ)dτ

)−1
(4.5.4)

The quantity in the parenthesis must remain nonnegative for all t > 0 or else

z(t) escapes to infinity. But, with the initial condition ξ1(0) = 1, ξ2(0) = 0,

the solution ξ2(t) is

ξ2(t) = −a2te−at (4.5.5)

and its peak is ae−1 at time tp =
1
a
. The expression for z2(t) at t = tp is

z2(tp) =
1

1
2z2(0)

+ 2(a+ 1)(a−1 − e−1)

For any a > e and z(0) large enough, this implies z2(tp) < 0 which means that

z(tp) does not exist, that is, z(t) escapes to infinity before t = tp. It is also

clear that, along the z-axis, the region of attraction shrinks with an increase

in a. 2
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To proceed with our analysis of peaking, we now characterize the class of

linear systems (A,B,C) with the state ξ in which an arbitrarily fast conver-

gence of the output y = Cξ to zero can be achieved without peaking. In our

definition of nonpeaking systems, the nonpeaking requirement is imposed on

the output only, and some of the states are allowed to peak.

Definition 4.30 (Nonpeaking systems)

The system ξ̇ = Aξ+Bu, y = Cξ, u ∈ IRm, y ∈ IRp is said to be nonpeaking if

for each a > 0 and ξ(0) there exists a bounded input u(t) such that the state

ξ(t) converges to zero and the output y(t) satisfies

‖y(t)‖ ≤ γ‖ξ(0)‖(e−σat + 1

a
) (4.5.6)

where the constants γ and σ do not depend on a. In all other cases, (A,B,C)

is a peaking system. 2

For nonpeaking systems we design stabilizing feedback control laws which

satisfy the condition (4.5.6). We say that these control laws achieve non-

peaking stabilization of the system (A,B,C) with the understanding that the

nonpeaking property applies to the output only.

Example 4.31 (Nonpeaking design)

The feedback law (4.5.3) for the system (4.5.2) in Example 4.29 forced both

states ξ1(t) and ξ2(t) to converge to zero with the same rapid rate a. Because

of this, the state ξ2 reached its peak ae−1 which destabilized the z-subsystem.

We will now avoid peaking in ξ2 by considering it as the output of the

nonpeaking system ξ̇1 = ξ2, ξ̇2 = u. This system is nonpeaking because the

fast convergence of y = ξ2 is achieved with the control law

u(ξ) = −ξ1 − aξ2 (4.5.7)

and the nonpeaking condition (4.5.6) is satisfied. Indeed, for a large, we have

ξ2(t) ≈ ξ2(0)e
−at +O( | ξ1(0) |

a
) (4.5.8)

After a transient, which can be made as short as desired by increasing a, ξ2(t)

is reduced to O( |ξ1(0)|
a

). During the transient, ξ2(t) does not peak.

Because the output y = ξ2 is nonpeaking, the state z remains bounded for

arbitrary large a. The substitution of (4.5.8) into (4.5.4) yields

2z2(t) ≤
(

1

2z2(0)
+ (1−O( | ξ1(0) |

a
))t− |ξ2(0)|

a

)−1
(4.5.9)
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Given z(0), ξ1(0) and ξ2(0), we can always select a > 0 large enough to make

1 − O( |ξ1(0)|
a

) > 0 and |ξ2(0)|
a

< 1
2z2(0)

. Then it follows from (4.5.9) that z(t)

remains bounded and converges to zero. Hence, the region of attraction grows

indefinitely as a→∞, that is, the stabilization is semiglobal. The price paid

for the semiglobal stability is that the convergence of ξ1(t) to zero is very

slow, its rate is approximately 1
a
. This is so, because for a large, one of the

eigenvalues of the ξ-subsystem with feedback (4.5.7) is approximately − 1
a
. The

other eigenvalue, which determines the decay of ξ2, is approximately −a. 2

The clearest insight into the peaking phenomenon is provided by the chain

of integrators in which the output of the last integrator is forced to converge

to zero with the rapid rate a without peaking. The state of the preceding

integrator, being the derivative of the output, must converge with the rate a2

and peaks as a, that is, with the peaking exponent π = 1. The states of other

intergrators peak with larger exponents.

Proposition 4.32 (Peaking of output derivatives)

Assume that for the chain of integrators

ξ̇1 = ξ2, ξ̇2 = ξ3, . . . , ξ̇n = u
y = ξ1

(4.5.10)

a control ua(t) achieves nonpeaking stabilization of (4.5.10), that is, it forces

the output y = ξ1 to satisfy the nonpeaking condition (4.5.6). Then this

control also forces each other states ξk to peak with the exponent π = k − 1,

that is,

max
‖ξ(0)‖=1

max
t≥0
|ξk(t)| ≥ aπγ = ak−1γ

where γ is independent of a.

Given any Hurwitz polynomial q(s) = sn+qn−1s
n−1+. . .+q0, a nonpeaking

feedback control stabilizing the chain of integrators (4.5.10) is

ua = −
n∑

k=1

an−k+1qk−1 ξk (4.5.11)

Proof: Introducing the magnitude scaling ξ̄k = an−k+1ξk and the fast time

scale τ = a t, we rewrite the closed-loop system as

dξ̄1
dτ

= ξ̄2,
dξ̄2
dτ

= ξ̄3, . . . ,

dξ̄n
dτ

= −∑n
k=1 qk−1ξ̄k

(4.5.12)
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This system is asymptotically stable because its characteristic polynomial is

Hurwitz. For each k ∈ {1, . . . , n}, we have

|ξ̄k(t)| ≤ γ‖ξ̄(0)‖e−στ

where the constants γ and σ are independent of a. Returning to the original

state ξ and time t, we have

|ξk(t)| ≤ cγak−1‖ξ̄(0)‖e−σat

where c is a constant independent of a. This shows that the output y = ξ1
satisfies the nonpeaking condition (4.5.6).

We now show that peaking in ξk cannot be avoided for k > 1 if y is to satisfy

the nonpeaking condition (4.5.6). We give the proof only for ξ2 because the

proof for the other states follows by induction. Let ξ1(0) = 1 and ξ2(0) = 0,

so that ξ1(t) ≤ 1
2
at time t = 1

σa
ln 2γa

a−2γ =: T
a
. Then

ξ1(
T

a
)− ξ1(0) =

∫ T
a

0
ξ2(t)dt− 1 ≤ −1

2

implies
∫ T

a

0
|ξ2(t)|dt ≥

1

2

This shows that, as a→∞, the the maximum value of |ξ2(t)| on the interval

[0, T
a
] grows linearly with a, that is the peaking exponent of ξ2 is π = k−1 = 1.

2

4.5.2 Nonpeaking linear systems

We will now characterize the structural properties of nonpeaking linear systems

(A,B,C) and design control laws which achieve nonpeaking stabilization. As

always, we assume that (A,B) is stabilizable. For what follows we recall that

when the output y = Cξ is required to track a prescribed function of time,

the solution involves the right inverse of the system (A,B,C), see Appendix

A. Therefore, it is not surprising that every nonpeaking system (A,B,C) is

right-invertible. We will first consider the case when m = p, and the relative

degree is {r1, . . . , rm}, r := r1 + . . . + rm ≤ n. The non-square case will be

discussed at the end of this subsection.

As described in Appendix A, a change of coordinates and a preliminary

feedback will put the system (A,B,C) in the normal form

ξ̇0 = A0ξ0 +B0y, ξ0 ∈ IRn−mr

y
(ri)
i = ui, i = 1, . . . ,m

(4.5.13)
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which consists of the zero-dynamics subsystem (A0, B0) and m = p separate

chains of integrators. The eigenvalues of A0 are the zeros of the transfer

functionH(s) = C(sI−A)−1B. Because the original pair (A,B) is stabilizable,

the pair (A0, B0) inherits this property.

When the system (A,B,C) is minimum phase, that is, when A0 is Hurwitz,

the convergence to zero of the output y implies the convergence to zero of ξ0.

From this fact and Proposition 4.32, we deduce that minimum phase systems

are nonpeaking.

Proposition 4.33 (Minimum phase systems are nonpeaking)

Every square, right-invertible minimum phase system (A,B,C) is nonpeaking.

Consider such a system and let q(s) = sn+ qn−1s
n−1+ . . .+ q0 be any Hurwitz

polynomial. Then the linear feedback

ui = −
n∑

k=1

an−k+1qk−1y
(k−1)
i , i = 1, . . . ,m (4.5.14)

with a as large as desired, achieves nonpeaking stabilization of (A,B,C). 2

The strict nonminimum phase property and peaking are directly related.

If the system (A,B,C) is strictly nonminimum phase, that is if at least one of

its zeros have positive real part, then it cannot be stabilized without peaking.

This is shown by the following result of Braslavsky and Middleton [78].

Proposition 4.34 (Peaking in nonminimum phase systems)

Let (A,B,C) be a SISO system with a zero ν in the open right half-plane.

If y(t) is the bounded response to a bounded input u(t) and initial condition

ξ(0), then
∫ ∞

0
e−ντy(τ)dτ = C(νI − A)−1ξ(0) (4.5.15)

which implies that y(t) is peaking. 2

To see that this equality prevents nonpeaking stabilization, we show that

in y(t) ≤ γ‖ξ(0)‖(e−σat+ 1
a
), γ increases with a. The substitution into (4.5.15)

and integration yield

(
γ

σa+ ν
+

γ

aν
)‖ξ(0)‖ ≥ ‖C(νI − A)−1ξ(0)‖ (4.5.16)

The right hand side of this inequality is independent of a. Clearly, the only

possibility for the inequality (4.5.16) to hold for an arbitrary ξ(0) and all a is

that γ increases with a. This means that y(t) is peaking.
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When A0 is not Hurwitz, the output y must be employed as an input u0 to

stabilize the zero dynamics. This explains the close relationship between peak-

ing in the output and the location of the zeros of (A,B,C). For a nonpeaking

stabilization of (A,B,C), we must be able to stabilize the zero-dynamics sub-

system

ξ̇0 = A0ξ0 +B0u0 (4.5.17)

with an input which satisfies

‖u0(t)‖ ≤ γ‖ξ(0)‖(e−σat + 1

a
) (4.5.18)

This imposes a constraint on the feedback gains admissible for the stabilization

of the zero dynamics which then becomes a constraint on the eigenvalues

of A0, that is, on the zeros of (A,B,C). The unstable eigenvalues of A0

are constrained to be on the imaginary axis, giving rise to the Jordan block

canonical form:

A0 =

[

Au AJ
0 As

]

where As is Lyapunov stable.

Theorem 4.35 (Low-gain stabilization of the zero dynamics)

If (A0, B0) is stabilizable and the eigenvalues of A0 are in the closed left half

plane, then the pair (A0, B0) is stabilizable by a low-gain feedback control

u0 = K0(a)ξ0 which does not peak and, for a large, satisfies

‖u0(t)‖ = ‖K0(a)e
(A0+B0K0(a))tξ0(0)‖ ≤

γ1
a
e−σat‖ξ0(0)‖ (4.5.19)

where γ1 and σ are positive constants independent of a. Moreover, for A0 in

the Jordan block form, the low-gain matrix K(a) can be chosen such that the

state ξs corresponding to As does not peak:

‖ξs(t)‖ ≤ γ2‖ξ0(0)‖ (4.5.20)

where γ2 is a positive constant independent of a. 2

The proof of the theorem is given in Appendix B.

Starting with u0 = K0(a)ξ0, which achieves a low-gain stabilization of the

zero-dynamics subsystem (4.5.17), we proceed to the nonpeaking stabilization

of the whole system

ξ̇0 = (A0 +B0K0(a))ξ0 +B0(y −K0(a)ξ0), ξ0 ∈ IRn−r

y
(ri)
i = ui, i = 1, . . . ,m

(4.5.21)
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Defining e = y −K0(a)ξ0, this system is rewritten as

ξ̇0 = (A0 +B0K0(a))ξ0 +B0e,

e
(ri)
i = ui + φTi ξ

(4.5.22)

where φi’s are known vectors. With e treated as the new output, the system

(4.5.22) is minimum phase because Ã0 = A0 + B0K0(a) is Hurwitz for all

a. Thus, by Proposition 4.33, a high-gain feedback of [ei, ėi, . . . , e
(ri−1)], i =

1, . . . ,m, achieves a fast stabilization of e without peaking. Returning to the

original system, the next proposition shows that the same feedback achieves

nonpeaking stabilization of the system (A,B,C).

Proposition 4.36 (Nonpeaking design)

Let q(s) = sr+ qr−1s
r−1+ . . .+ q0 be an arbitrary Hurwitz polynomial. Under

the assumptions of Theorem 4.35, the feedback

ui = −φTi ξ −
ri∑

k=1

ar−k+1qk−1e
(k−1)
i (4.5.23)

achieves nonpeaking stabilization of the system (A,B,C).

Proof: By Proposition 4.33, the feedback (4.5.23) is stabilizing. When a is

large, the convergence to zero of e and its derivatives is fast. In particular, we

have

‖e(t)‖ ≤ γ2‖ξ(0)‖e−at (4.5.24)

for some constant γ2 independent of a. Using the explicit solution of (4.5.21),

we have

u0(t) = K0(a)ξ0(t) = K0(a)e
Ã0tξ0(0) +

∫ t

0
K0(a)e

Ã0(t−τ)B0e(τ)dτ

With (4.5.24) and (4.5.19), this yields the estimate

‖u0(t)‖ ≤
γ1
a
‖ξ0(0)‖+

∫ t

0

γ1
a
γ2‖ξ(0)‖e−atdτ (4.5.25)

and, hence, the bound

‖u0(t)‖ ≤
γ3
a
‖ξ0(0)‖

where γ3 is a constant independent of a. The output y(t) = e(t) +K0(a)ξ0(t)

satisfies

‖y(t)‖ ≤ ‖e(t)‖+ ‖K0(a)ξ0(t)‖ ≤ γ2‖ξ(0)‖e−at +
γ3
a
‖ξ(0)‖ (4.5.26)
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and the nonpeaking constraint (4.5.6) is satisfied with γ = max(γ2, γ3). 2

In the construction of the feedback u = K(a)ξ, a high-gain feedback sta-

bilization of the output is combined with a low-gain feedback stabilization of

the zero dynamics. The fast decay of the output y implies that the derivatives

of y peak. The small magnitude of y, which remains after its fast decay, is

used for low-gain stabilization of the zero dynamics. This results in a slow

convergence of ξ0 = (ξs ξu)
T , during which ξu peaks. A chain of integrators

shows that these limitations are structural, and cannot be altered by design.

Proposition 4.37 (Peaking states)

Let the system (A,B,C) be a single chain of integrators in which the output

is the i-th state:
ξ̇1 = ξ2, ξ̇2 = ξ3, . . . , ξ̇n = u
y = ξi, i ∈ {1, . . . , n} (4.5.27)

Then every input u(t) which forces the output to satisfy the nonpeaking con-

dition (4.5.6) causes the peaking of the following states:

(i) for k ∈ {1, . . . , n− i} the state ξi+k peaks with an exponent π = k

(ii) for k ∈ {1, . . . , i− 1} the state ξi−k peaks with an exponent π = k − 1

Proof: The peaking in the derivatives of y, as stated in (i), has been shown

in Proposition 4.32. We only prove that ξi−2 peaks with exponent π = 1. The

rest of the proof follows by induction. Let ξi−1(0) = 1 and ξi−2(0) = 0. Using

the fact that |ξi(τ)| ≤ γ(e−aτ + 1
a
), we have for all t ≥ 0

ξi−1(t) = 1−
∫ t

0
ξi(τ)dτ ≥ 1− γ

a
(1 + t)

In particular, this shows that ξi−1(t) ≥ 1
2
on a time interval [0, T (a)], where

T (a) grows linearly in a. This implies that

ξi−2(T (a)) ≥
1

2
T (a)

Hence, ξi−2 peaks with exponent π = 1. 2

Example 4.38 (Peaking states)

Consider a chain of four integrators in which the output is y = ξ3, that is

n = 4 and i = 3. Then by Proposition 4.37 the nonpeaking states are ξ3 and

ξ2, while both ξ1 and ξ4 peak with the exponent π = 1. The peaking of ξ4 is

fast and of ξ1 is slow. The state ξ2 is nonpeaking because it represents the ξs
part of the zero-dynamics subsystem ξ̇1 = ξ2, ξ̇2 = 0. 2
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Proposition 4.36 provides us with a design methodology for nonpeaking sta-

bilization of the square right-invertible systems. As shown by Saberi, Koko-

tović, and Sussmann [92], this methodology can be extended to non-square

right-invertible systems as follows: if the system (A,B,C) is stabilizable and

right-invertible, then there exists a linear dynamic feedback transformation

such that the new system is stabilizable and square-invertible. In addition,

the zeros introduced by the dynamic transformation are freely assignable [93].

Thus, the problem of nonpeaking stabilization of non-square right-invertible

systems is reduced to the same problem for the square right-invertible systems.

The right-invertibility condition is necessary to prevent peaking. If a sys-

tem is not right-invertible, then there exist at least two components of the

output which cannot be controlled by two independent components of the in-

put. This is the case when, in the chain of integrators (4.5.27), two different

states ξi and ξj are the components of a two-dimensional output. If i < j,

then ξj(t) necessarily peaks during a fast stabilization of ξi. Hence, a system

(A,B,C) which is not right-invertible is necessarily peaking.

Example 4.39 (Lack of right-invertibility implies peaking)

For the two-input system
ξ̇1 = u1
ξ̇2 = −ξ2 + ξ3
ξ̇3 = u2

consider the three choices of the output pair (y1, y2):

(ξ1, ξ2), (ξ1, ξ3), (ξ2, ξ3)

The systems with the first two choices are right-invertible. The first system

is without zeros and the second system has a zero at −1. Hence these two

systems are nonpeaking. The third system with the output (ξ2, ξ3) is not right-

invertible because ξ2(t) and ξ3(t) cannot be specified independently from each

other. The output y1 = ξ2 is controlled by the output y2 = ξ3 and for y1
to be fast, y2 must peak. Hence, the output yT = [y1, y2] cannot satisfy the

nonpeaking condition (4.5.6). 2

We summarize our characterization of nonpeaking systems in the following

theorem.

Theorem 4.40 (Nonpeaking systems)

The system (A,B,C) is nonpeaking if and only if it is stabilizable, right-

invertible, and has no zeros in the open right-half plane. Every such system

can be stabilized without peaking using linear state feedback. 2
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4.5.3 Peaking and semiglobal stabilization of cascades

We now analyze the peaking phenomenon as an obstacle to semiglobal stabi-

lization of the partially linear cascade

ż = f(z) + ψ̃(z, ξ)y

ξ̇ = Aξ +Bu
y = Cξ

(4.5.28)

For semiglobal stabilization with partial-state feedback u = Kξ the assump-

tion that (A,B,C) is a nonpeaking system is not sufficient. From the decom-

position ξ0 = (ξu, ξs) of Theorem 4.35 and Proposition 4.37, we know that a

fast decay of the output y induces peaking in the derivatives of y and in ξu.

For semiglobal stabilization these states are not allowed to enter the intercon-

nection ψ̃(z, ξ).

Theorem 4.41 (Nonpeaking cascade)

Suppose that Assumption 4.4 holds. If (A,B,C) is a nonpeaking system, and

the state ξ enters the interconnection ψ̃ only with its nonpeaking components

y and ξs, that is ψ̃ = ψ̃(z, y, ξs), then semiglobal asymptotic stability of the

cascade (4.5.28) can be achieved with partial-state feedback, that is, (4.5.28)

is a nonpeaking cascade.

Proof: Let Ω be the desired compact region of attraction of (z, ξ) = (0, 0)

and let constants Rz and Rξ be such that

∀(z, ξ) ∈ Ω : ‖z‖ ≤ Rz, ‖ξ‖ ≤ Rξ

If (A,B,C) is nonpeaking, we know from Theorem 4.40 that a partial-state

feedback stabilizes the ξ-subsystem with the additional property that the out-

put y decays fast without peaking,

‖y(t)‖ ≤ γ‖ξ(0)‖(e−at + 1

a
)

and that the state ξs defined in Theorem 4.35 does not peak,

ξs(t) ≤ γ̃‖ξ(0)‖

where the constants γ and γ̃ are independent of a. We will show that a can be

chosen such that, for any initial condition in Ω, the solution z(t) is bounded.

By Proposition 4.1, this will imply that the set Ω is included in the region of

attraction of (z, ξ) = (0, 0).
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To establish the boundedness of z(t), we first augment the system (4.5.28)

with

χ̇ = −aχ+ γRξ, χ(0) = γRξ(1 +
1

a
), χ ∈ IR, (4.5.29)

noting that 0 < χ(t) ≤ χ(0) =: χmax for all t ≥ 0. Then, for all initial

conditions (z(0), ξ(0)) ∈ Ω, we have

‖y(t)‖ ≤ |χ(t)| ≤ χmax (4.5.30)

Because the system ż = f(z) is GAS, there exists a smooth, radially un-

bounded, positive definite function W (z) such that for all z 6= 0,

∂W

∂z
(z)f(z) < 0 (4.5.31)

We pick a level set Wc such that ‖z‖ ≤ Rz ⇒ W (z) ≤ Wc and, for the positive

definite function

V (z, χ) = W (z) + χ2

we pick the level set Vc = Wc + (χmax)
2. By definition of χmax,

W (z(t)) ≤ Wc ⇒ V (z(t), χ(t)) ≤ Vc

so for each initial condition (z(0), ξ(0)) ∈ Ω, we have V (z(0), χ(0)) ≤ Vc.

If the solution z(t) grows unbounded, so does V (z(t), χ(t)) and the solution

(z(t), χ(t)) eventually leaves the compact region V (z, χ) ≤ Vc. Then, because

V (z(0), χ(0)) ≤ Vc, there exists a finite time T ≥ 0 such that

V (z(T ), χ(T )) = Vc and V̇ (z(T ), χ(T )) > 0 (4.5.32)

By definition, we have 0 < χ(T ) ≤ χmax. This implies Wc ≤ W (z(T )) <

Vc. Hence, there exist two positive constants zm and zM such that ‖z(T )‖ ∈
[zm, zM ].

The time-derivative of V is

V̇ =
∂W

∂z
(z)f(z) +

∂W

∂z
ψ̃(z, y, ξs)y − 2aχ2 + 2γRξχ

Using (4.5.31), we can define constants α1 > 0, α2 > 0, such that

‖ z ‖∈ [zm, zM ] ⇒ ∂W

∂z
(z)f(z) ≤ −α1‖z‖2

‖ z ‖∈ [zm, zM ]⇒ ‖∂W
∂z

(z)ψ̃(z, y, ξs)‖ ≤ α2‖z‖
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Because ξs are the nonpeaking components of ξ0 and 0 ≤ ‖y‖ ≤ χmax, α1 and

α2 can be chosen independent of a. Using these two inequalities and (4.5.30)

we obtain

V̇ (z(T ), χ(T )) ≤ −α1‖z(T )‖2 + α2‖z(T )‖ |χ(T )| − 2aχ2(T ) + 2γRξ|χ(T )|
(4.5.33)

In view of −aχ2(T ) + 2γRξ|χ(T )| ≤ γRξ

a
for all χ(T ), we obtain

V̇ (z(T ), χ(T )) ≤ −α1

2
‖z(T )‖2 + γRξ

a
≤ −α1

2
z2m +

γRξ

a

for all a > α2

2α1
. Because α1, zm, γ, and Rξ are independent of a, the right-

hand side can be made strictly negative if a is chosen sufficiently large. This

shows that (4.5.32) cannot be satisfied if a is large enough. Therefore z(t) is

bounded, and Ω is included in the region of attraction of (z, ξ) = (0, 0). 2

Example 4.42 (Semiglobal stabilization of a nonpeaking cascade)

The partially linear cascade

ż = −δz + ξ3z
2, δ > 0

ξ̇1 = ξ2
ξ̇2 = ξ3
ξ̇3 = u

(4.5.34)

is nonpeaking because the output y = ξ3 can be factored out of the intercon-

nection ψ = ξ3z
2 = z2y and the chain of integrators

ξ̇1 = ξ2, ξ̇2 = ξ3, ξ̇3 = u, y = ξ3 (4.5.35)

is a nonpeaking system. Its nonpeaking stabilization is achieved with the linear

high-low gain feedback

u = −aξ3 − ξ2 −
1

a
ξ1 (4.5.36)

By Theorem 4.41, this control law ensures asymptotic stability of (z, ξ) = (0, 0)

with a prescribed compact region of attraction if the constant a is large enough.

This constant must increase to enlarge the domain of attraction. From the

explicit solution

z(t) = e−δt(
1

z(0)
−
∫ t

0
e−δτξ3(τ)dτ)

−1

we obtain that, to avoid a finite time escape of z(t), it is necessary that

aδ2ξ3(0)− (aδξ2(0) + δξ1(0) + ξ2(0))

(aδ3 + a2δ2 + aδ + 1)
<

1

z(0)
(4.5.37)
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Figure 4.8: Linear high-low gain design (4.5.36): fast peaking of u and slow
peaking of ξ1.

Thus, for the initial condition (2,−2,−2, 2) to be in the region of attraction,

when δ = 0.1, we must use a > 42. The large value of a in the control law

(4.5.36) results in a high-gain for ξ3 and a low-gain for ξ1.

As shown in Proposition 4.37, the fast stabilization without peaking of the

output ξ3 causes the fast peaking of its derivative u in the fast time scale O( 1
a
),

and the slow peaking of the state ξ1 in the slow time scale O(a). The O(a)
large transients of u and ξ1 in different time scales are illustrated in Figure

4.8. The figure also shows that the convergence of z is governed by the z-

subsystem ż = −δz. The slow convergence for δ = 0.1 is not improved by

the partial-state feedback design (4.5.36) because the state z is not used for

feedback.

In Chapter 6, we will return to the cascade (4.5.34) and obtain a con-

siderable improvement of the design (4.5.36) by using a full-state feedback

forwarding design.

2

The nonpeaking property is necessary for semiglobal stabilization (and, a

fortiori, for global stabilization) if no further assumptions are made on the z-

subsystem. This was shown by Saberi, Kokotović, and Sussmann [92] for global
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stabilization, and more recently by Braslavsky and Middelton [8] for semiglobal

stabilization. This result, which shows that peaking is a structural obstacle to

achieving an arbitrarily large region of attraction, applies to full-state feedback

as well.

Theorem 4.43 (Lack of semiglobal stabilizability)

If (A,B,C) is a peaking system, then there exists f(z) and ψ̃(z, ξ)y such that

Assumption 4.4 holds, but the cascade (4.5.28) is not semiglobally stabilizable.

Proof: By Theorem 4.40, the peaking system (A,B,C) is either not sta-

bilizable, or not right-invertible, or has at least one unstable zero. For the

case when (A,B,C) is not stabilizable the statement is obvious. We prove the

remaining two cases by counter examples.

(A,B,C) is not right-invertible. For the cascade

ż = (−1 + |ξ1|+ |ξ2|)z3
ξ̇1 = ξ2
ξ̇2 = u

(4.5.38)

we select two outputs y1 = ξ1, y2 = ξ2 so that the ξ-subsystem is a peaking

system because it is not right-invertible.

That (4.5.38) cannot be semiglobally stabilized is clear from its solution:

z(t) =
z(0)

√

1 + 2z(0)(t− ∫ t0(|y1|+ |y2|) ds)
(4.5.39)

If z(0) = 1
2
the denominator does not vanish for t ≤ 1 only if

∫ 1
0 (|y1|+|y2|) dt <

2 which implies that
∫ 1
0 |y1| dt < 2 and

∫ 1
0 |y2| dt < 2. The latter inequality

provides

|y1(t)| ≥ |y1(0)| −
∫ t

0
|y2| ds > |y1(0)| − 2

for all t ∈ [0, 1]. Hence, if
∫ 1
0 |y2| dt < 2 and |y1(0)| > 4, we have

∫ 1

0
|y1| dt > |y1(0)| − 2 > 2

so that , with z(0) = 1
2
and y1(0) > 4, the denominator of (4.5.39) vanishes at

some tf < 1 and z(t) escapes to infinity in finite time.

(A,B,C) is strictly nonminimum phase. For any (A,B,C) with a zero in

the open right half plane, say at s = ν, it has been shown in [8] that in the

cascade (4.5.28) with the scalar z-subsystem

ż = −αz + βzq+1y2s (4.5.40)
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Figure 4.9: A system exhibiting several peaking situations.

one can find positive integers q, s, and positive real numbers α, β such that,

there exists an initial condition (z(0), ξ(0)) for which z(t) escapes to infinity in

finite time, regardless of the control input u(t). Because of the unstable zero,

the output must act as a stabilizing control for the zero dynamics and therefore,

its “energy” cannot be arbitrarily reduced. At the same time, this “energy” of

the output perturbs the z-subsystem and causes a finite escape time of z(t). 2

In view of Theorem 4.41 and 4.43, the restriction of the interconnection

term to the form ψ = ψ̃(z, y, ξs)y is a key condition for semiglobal stabilization

of a cascade system. Our final example will illustrate how the choice of a

particular factorization of ψ is dictated by the input-output properties of the

system (A,B,C).

Example 4.44 (Factorization of ψ and the I/O structure of (A,B,C) )

In the cascade in Figure 4.9, a scalar nonlinear system is connected with a

chain of three integrators through the product ξiξj of any two (i, j = 1, 2, 3)

integrator states

ż = (−1 + ξiξj)z
3

ξ̇1 = ξ2
ξ̇2 = ξ3
ξ̇3 = u

(4.5.41)
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We now present an analysis of several peaking situations in this cascade. This

analysis remains unchanged if instead of ξj we have ξ2k+1
j , k = 1, 2, 3, etc.

Only in the case ξ2kj and |i − j| = 2, a more intricate analysis is needed to

establish whether the effect of slow peaking is destabilizing. It can be shown

that, using partial-state feedback, semiglobal stabilization is achievable when

ψ = ξ1ξ
2k
3 z

3 and it is not achievable when ψ = ξ3ξ
2k
1 z

3.

Depending on the integrator states which enter the interconnection ψ =

ξiξjz
3, the two cases which lead to different peaking situations are: first, when

ξi and ξj are the same (i = j) or separated by one integrator (j = i + 1);

second, when ξi and ξj are separated by two integrators (j = i+ 2).

Case one: |i − j| ≤ 1. By Proposition 4.36, there exist control laws

u = −k1ξ1− k2ξ2− k3ξ3, which stabilize the chain of integrators and force the

output y = ξj to rapidly decay to zero without peaking of ξj and ξi = j − 1.

Then Theorem 4.41 establishes that any such control law achieves semiglobal

stabilization of the cascade (4.5.41). The same result applies to the intercon-

nection ψ = ξiξ
k
j z

3, where the exponent k is any positive integer.

Case two: ψ = ξ1ξ3z
3. The assumptions of Theorem 4.41 are not satisfied

with either of the obvious choices y = ξ1 or y = ξ3, because, by Proposition

4.37, in each case the interconnection ψ contains a peaking state. With the

choice y = ξ1, the state ξ3 peaks in a fast time scale with the exponent two,

while with y = ξ3, the state ξ1 peaks in a slow time scale with the exponent

one.

This peaking situation motivates us to search for a less obvious choice of

output. Rewriting ξ1ξ3 as

ξ1ξ3z
3 = −ξ21z3 + ξ1(ξ1 + ξ3)z

3

we examine the possibility of using y = ξ1+ξ3 as the output. To treat ξ1z
3y as

the interconnection requires that the z-subsystem be augmented by the term

−ξ21z3 to ż = −(1 + ξ21)z
3, which is acceptable because the GAS property is

preserved uniformly in ξ1. Using y = ξ1 + ξ3 as a change of variables, we

rewrite the cascade (4.5.41) as

ż = −(1 + ξ21)z
3 + (ξ1z

3)y

ξ̇1 = ξ2
ξ̇2 = −ξ1 + y
ẏ = ξ2 + u

(4.5.42)

Now, the ξ-subsystem is weakly minimum phase because its zero-dynamics

subsystem is a harmonic oscillator. A partial-state feedback control law which

stabilizes the linear subsystem for any a > 0 is

u = −ay − 2ξ2
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With a large, y(t) rapidly decays to zero without peaking. Hence, for the

whole cascade the equilibrium at the origin is asymptotically stable with a

region of attraction which can be made as large as desired by increasing a.

Because the linear subsystem in (4.5.42) is weakly minimum phase and has

relative degree one, global stabilization is also achievable without using high

gain to make y fast. The feedback passivation design of Proposition 4.21 is

directly applicable. A particular control law of the form (4.3.12) is

u = −ξ1z4 − 2ξ2 − y

With this control law the cascade is GAS.

Backstepping and Forwarding: This example also serves as a good moti-

vation for the recursive designs to be developed in Chapter 6. In the case

ψ = ξ1ξ2, feedback passivation is not applicable because the relative degree of

the output y = ξ2 is two. This higher relative degree obstacle will be removed

by backstepping. In the case ψ = ξ2ξ3, feedback passivation is not applicable

because, with the output y = ξ3, the system is not weakly minimum phase.

This nonminimum phase obstacle will be removed by forwarding. 2

4.6 Summary

We have analyzed the key structural properties of cascade systems which mo-

tivate several feedback stabilization designs and determine limits to their ap-

plicability. The simplest cascades are those in which the linear ξ-subsystem is

controllable and the z-subsystem is GAS. Even in these cascades, the peaking

phenomenon in the ξ-subsystem can destabilize the z-subsystem.

Our new characterization of output peaking shows that in a chain of in-

tegrators, only two consecutive states can be nonpeaking. All other states

exhibit peaking which is fast for the “upstream” states and slow for the “down-

stream” ones. Every nonminimum phase system is peaking: its output cannot

be rapidly regulated to zero without first reaching a high peak which is deter-

mined by the unstable modes of the zero dynamics.

Peaking is a structural obstacle to global and semiglobal stabilization in

both partial- and full-state feedback designs. It may appear in both, fast and

slow time scales. Although it is not an obstacle to local stabilization, peaking

causes the region of attraction to shrink as the feedback gain increases.

To avoid the destabilizing effect of peaking, we have required that either the

peaking states be excluded from the interconnection term, or the growth with

respect to z be linear. We have shown that global stabilization can be achieved

with partial-state feedback if the stability properties of the z-subsystem are
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guaranteed by either polynomial or ISS-type Lyapunov functions. With the

help of such characterizations, we have determined when partial-state feedback

designs can achieve desired stability margins.

Our full-state feedback designs employ passivation and remove the linear

growth restriction which was imposed by partial-state feedback designs. The

GAS assumption on the z-subsystem is replaced, first, by a GS assumption,

and then, by a stabilizability assumption. In the latter case, the output of the

ξ-subsystem plays the part of the stabilizing control for the z-subsystem.

All our designs have the potential to guarantee desired gain or phase mar-

gins, provided they avoid cancellations. Alternatively, if a design constructs

a control Lyapunov function (CLF), desired margins can be guaranteed by

employing Sontag’s formula or with a domination redesign. Using the TORA

system, we have compared performance of several designs and illustrated their

abilities to improve transient performance and robustness.

4.7 Notes and References

Stabilization studies of the cascade nonlinear system have been stimulated by

both, physical configuration of system components, such as in the large scale

systems literature [77, 96, 116], and by system structural properties uncovered

by input-output linearization [14, 43]. In the latter case the ξ-subsystem is lin-

ear, while the z-subsystem represents the nonlinear part of the zero-dynamics

subsystem. Conditions for local stabilization via partial-state feedback were

formulated by Sontag [100]. Peaking phenomenon was analyzed by Sussmann

and Kokotović [105], who gave sufficient conditions for semiglobal stabilization,

termed potentially global stabilization by Bacciotti [5]. For the normal form

such conditions were given by Byrnes and Isidori [14]. Sussmann and Koko-

tović [105] and Saberi, Kokotović and Sussmann [92] prevent the destabilizing

effect of peaking by imposing the linear growth constraint on the interconnec-

tion and the GES property of the nonlinear subsystem. The latter condition

was relaxed by Lin [65] who replaced the GES requirement by a quadratic-like

property of the Lyapunov function. In an alternative approach initiated by

Sontag [103], the stability of the cascade is guaranteed by imposing the ISS

property on the z-subsystem.

Various passivation ideas appeared earlier in adaptive control. They were

introduced the nonlinear stabilization by Kokotović and Sussmann [59] and

Saberi, Kokotović, and Sussmann [92], as an extension of a result by Byrnes

and Isidori [13]. A nonlinear version of feedback passivation was given by

Ortega [85], while structural conditions for feedback passivity were derived
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by Byrnes, Isidori, and Willems [15]. Further extensions are due to Lozano,

Brogliato, and Landau [69], Kanellakopoulos [55], and Krstić, Kanellakopou-

los, and Kokotović [61].

Our treatment of output peaking extends the results of Mita [79], Francis

and Glover [20], and Kokotović and Sussmann [59], and, in addition, stresses

the importance of not only fast, but also slow peaking. A systematic high-

and low-gain design of linear systems which addresses these phenomena was

developed by Lin and Saberi [67]. The awareness of the destabilizing effects

of peaking has led to saturation designs by Teel [110] and to observer-based

feedback by Esfandiary and Khalil [19].



Chapter 5

Construction of Lyapunov
functions

Several designs in the preceding chapters require the knowledge of Lyapunov

functions which need to be constructed during the design. This construction

is a crucial part of the design and is the main topic of this chapter.

For a general nonlinear system ẋ = f(x), the construction of a Lyapunov

function is an intractable problem. There are globally stable time-invariant

systems for which no time-invariant Lyapunov function exists [33]. However,

structural properties of practically important classes of nonlinear systems can

make the construction of Lyapunov functions a feasible task. This is the case

with the basic cascade structures in this chapter.

For a stable (z, ξ)-cascade, the construction of a Lyapunov function as-

sumes that the subsystem Lyapunov functions W (z) and U(ξ) are known.

When one of the subsystems is only stable, then c1W + c2U usually fails, and

a composite Lyapunov function with the “nonlinear weights” l(W ) + ρ(U)

proposed by Mazenc and Praly [75] is a better choice. This construction, pre-

sented in Section 5.1, requires a preliminary change of coordinates restricted

by a “nonresonance condition”.

A more general construction with a cross-term, presented in Section 5.2,

is the main tool for the forwarding design of Chapter 6. This construction,

which in most situations requires numerical integration, is based on the recent

work by the authors [46]. Relaxed constructions in Section 5.3 avoid numerical

integrations.

Designs based on the Lyapunov constructions are presented in Section 5.4.

Adaptive controllers for systems with unknown parameters are designed in

Section 5.5.

173
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5.1 Composite Lyapunov functions for cascade

systems

5.1.1 Benchmark system

The construction of the two main types of Lyapunov functions, composite and

with cross-term, will be introduced with the help of the benchmark system

ẋ1 = x2 + x23
ẋ2 = x3
ẋ3 = u

(5.1.1)

As a simple representative of nonlinear systems which are not feedback lineariz-

able, this system will be used throughout this chapter in a series of illustrative

examples.

For a passivation design, the benchmark system can be treated as one of

the two cascade structures: first, the (x1, x2)-subsystem cascaded with the x3-

integrator, and, second, the x1-subsystem cascaded with the double integrator

(x2, x3).

Since the uncontrolled (u = 0) benchmark system is unstable, each of the

two cascades contains an unstable subsystem. Prior to a Lyapunov construc-

tion, they must be converted into cascades with one stable and one asymptot-

ically stable subsystem.

First cascade: (1, 2) + (3). The feedback passivation design of Section

5.4. directs us to select an output for which the relative degree is one and

the system is weakly minimum phase. In the benchmark system (5.1.1), the

relative degree requirement is met with the output y = x2+x3. Using y instead

of x3, we rewrite (5.1.1) as

ẋ1 = x2 + x22 + (2x2 + y)y
ẋ2 = −x2 + y
ẏ = −x2 + y + u

(5.1.2)

To show that this system satisfies the weak minimum phase requirement we

prove global stability of its zero-dynamics subsystem

ẋ1 = x2 + x22
ẋ2 = −x2 (5.1.3)

The proof is an explicit calculation in which x̃(s) denotes the solution at time

s ≥ 0, for the initial condition x̃(0) = x. From the solution of (5.1.3)

x̃2(s) = x2e
−s, x̃1(s) = x1 + x2(1− e−s) +

x22
2
(1− e−2s) (5.1.4)



5.1. COMPOSITE LYAPUNOV FUNCTIONS FOR CASCADE SYSTEMS175

we see that the equilibrium (x̃1, x̃2) = (0, 0) of (5.1.3) is globally stable because

x̃2(s) decays exponentially while |x̃1(s)| is bounded by |x1|+ |x2|+ x2
2

2
.

We have thus arrived at a cascade structure to which a feedback passivation

design could be applied if a Lyapunov function V (x1, x2) for the zero-dynamics

subsystem (5.1.3) were available. Using V , the control law

u = x2 − y −
∂V

∂x1
(2x2 + y)− ∂V

∂x2
+ v (5.1.5)

would achieve passivity from the new input v to the output y. Upon verifica-

tion that the ZSD condition is satisfied, the GAS would be guaranteed with

the feedback v = −y.
Therefore, the remaining major task in this design is the construction of a

Lyapunov function V (x1, x2) for the zero-dynamics (5.1.3). We treat (5.1.3)

as the cascade of the exponentially stable subsystem ẋ2 = −x2 with the stable

subsystem ẋ1 = 0. The attempt to use the simplest composite Lyapunov func-

tion c1x
2
1+c2x

2
2 fails because its derivative is sign-indefinite due to the intercon-

nection x2+x
2
2. We show in Example 5.5 that a composite Lyapunov function

with “nonlinear weights” l(x21) + ρ(x22) also fails because of the linear term x2
in the interconnection x2 + x22. However, in Example 5.7 we succeed with a

construction which employs the change of coordinates ζ = x1+x2 to eliminate

the linear interconnection term. As it will be explained later, this construc-

tion, which requires a preliminary change of coordinates, is restricted by a

nonresonance condition, which is satisfied in the benchmark system (5.1.3).

A more general construction, to which we devote most of this chapter, is

for Lyapunov functions with a cross-term Ψ. Using the expressions (5.1.4), in

Example 5.9 we explicitly evaluate

Ψ(x1, x2) =
∫ ∞

0
x̃1(s)(x̃2(s) + x̃22(s))ds =

1

2
(x1 + x2 +

x22
2
)2 − 1

2
x21 (5.1.6)

which is the cross-term in the Lyapunov function 1
2
x21 + Ψ(x1, x2) + x22 con-

structed for the zero-dynamics subsystem (5.1.3). Both Lyapunov construc-

tions, composite and with cross-term, have taken advantage of the “nested

cascade structure”, treating the zero-dynamics subsystem (5.1.3) as a cascade

within the larger cascade (5.1.2).

Second cascade: (1)+ (2, 3). In this cascade structure we first stabilize the

unstable linear subsystem ẋ2 = x3, ẋ3 = u using a linear feedback transforma-

tion such as

u = −x2 − 2x3 + v
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With the new input v set to zero, the system

ẋ1 = x2 + x23
ẋ2 = x3
ẋ3 = −x2 − 2x3 + v

(5.1.7)

is globally stable, as shown by its solution

x̃2(s) = x2e
−s + (x2 + x3)se

−s, x̃3(s) = x3e
−s − (x2 + x3)se

−s,

x̃1(s) = x1 +
∫ s

0
d(−2x̃2 − x̃3)−

∫ s

0
d(
x̃22 + x̃23

4
) (5.1.8)

Here x̃2(s) and x̃3(s) decay exponentially while |x̃1(s)| is bounded by |x1| +
|2x2|+ |x3|+ x2

2+x
2
3

4
. We have thus satisfied the requirements for a passivation

design. If a Lyapunov function V (x) were available for the whole system

(5.1.7), and if this system with output y = ∂V
∂x3

were ZSD, then the damping

control

v = − ∂V
∂x3

(5.1.9)

would achieve GAS, as shown in Section 3.5.2. Again, the remaining design

task is the construction of V (x).

The construction of a “nonlinearly weighted” composite Lyapunov function

in Example 5.7 employs a change of coordinates ζ = x1 + 2x2 + x3. The

construction with cross-term in Example 5.9 uses the subsystem Lyapunov

functionsW = 1
2
x21 and U = 1

2
x22+

1
2
x23 with the cross-term explicitly evaluated

from (5.1.8):

Ψ(x1, x2, x3) =
∫ ∞

0
x̃1(s)(x̃2(s)+ x̃

2
3(s))ds =

1

2
(x1+2x2+x3+

x21 + x22
4

)2− 1

2
x21

and the Lyapunov function for (5.1.7) is V =W +Ψ+ U .

With either of the two constructed Lyapunov functions, the final design

step achieves GAS with damping control (5.1.9).

5.1.2 Cascade structure

Our basic Lyapunov construction is for the cascade structure

(Σ0)

{

ż = f(z) + ψ(z, ξ)

ξ̇ = a(ξ)

where ż = f(z) is globally stable, and ξ̇ = a(ξ) is GAS and LES. This con-

struction will be generalized to various augmentations (Σ0).
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The cascade structure (Σ0) is easily recognized in the zero-dynamics sub-

system (5.1.3) where the ξ-subsystem is ẋ2 = −x2, the z-subsystem is ẋ1 = 0,

while the interconnection term is ψ = x2+x
2
2. Similarly, for the cascade (5.1.7),

the ξ-subsystem is ẋ2 = x3, ẋ3 = −x2 − x3, the z-subsystem is ẋ1 = 0, and

the interconnection is ψ = x2 + x23. In each case, the interconnection trivially

satisfies the linear growth condition of Assumption 4.5 because it is indepen-

dent of x1. The Lyapunov function W (z) = z2 for the z-subsystem satisfies

the polynomial growth assumption of Theorem 4.7. These two assumptions

are repeated here for convenience:

Assumption 5.1 (Linear growth)

The function ψ(z, ξ) satisfies a linear growth assumption, that is, there exist

two class-K functions γ1(.) and γ2(.), differentiable at ξ = 0, such that

‖ ψ(z, ξ) ‖≤ γ1(‖ ξ ‖) ‖ z ‖ +γ2(‖ ξ ‖)

2

Assumption 5.2 (Growth of the Lyapunov function W(z))

The positive definite function W (z) is C2, radially unbounded, and satisfies

LfW (z) ≤ 0 for all z. In addition, there exist constants c and M such that,

for ‖ z ‖> M ,

‖ ∂W
∂z
‖ ‖ z ‖ ≤ c W (z)

2

We have seen in Section 4.2 that, even when ż = f(z) is GAS, boundedness

of the solutions of (Σ0) cannot be guaranteed in the absence of either one of

these two assumptions, which, taken together, are sufficient for global stability.

Proposition 5.3 (Global stability)

If Assumptions 5.1 and 5.2 are satisfied, then the equilibrium (z, ξ) = (0, 0) of

(Σ0) is globally stable.

Proof: Global boundedness of the solutions has been established in Theorem

4.7 and all we need to prove is local stability of (z, ξ) = (0, 0). The Jacobian

linearization of (Σ0) is triangular and hence, its eigenvalues are the union of

the eigenvalues of A = ∂a
∂ξ
(0) and F = ∂f

∂z
(0). The LES of ξ̇ = a(ξ) implies that

A is Hurwitz and the system (Σ0) has a center manifold [16, 56] which is a

submanifold of the hyperplane ξ = 0. The system (Σ0) reduced to the invariant

hyperplane ξ = 0 is ż = f(z), which, by the Center Manifold Theorem [16, 56],

proves stability of the equilibrium (z, ξ) = (0, 0). 2
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5.1.3 Composite Lyapunov functions

In the literature dealing with stability of interconnected systems, it is usually

assumed that each isolated subsystem is GAS. Then a composite Lyapunov

function for the entire system is formed as a weighted sum of the subsystem

Lyapunov functions. For the cascade (Σ0) such a composite Lyapunov function

would be V (z, ξ) = c1W (z)+ c2U(ξ). Its time-derivative contains the negative

definite terms c1LfW (z) and c2LaU(ξ). However, it also contains an indefinite

cross-term c1LψW (z, ξ) due to the interconnection ψ. For this construction to

succeed, we must be able to choose the weights c1 and c2 so that the indefinite

cross-term c1LψW (z, ξ) is dominated by the negative definite terms. This is

not an easy task and severe restrictions must be imposed [56].

The construction of a composite Lyapunov function is even more challeng-

ing when one of the two subsystems, in our case the z-subsystem in the cascade

(Σ0), is only stable rather than asymptotically stable. In this case, the term

LfW is only semidefinite and, in general, will not dominate the indefinite

cross-term LψW . This has led Mazenc and Praly [75] to replace the constants

c1 and c2 by nonlinear “weights” l(.) and ρ(.) and construct

V (z, ξ) = l(W (z)) + ρ(U(ξ)) (5.1.10)

as a composite Lyapunov function for (Σ0). Henceforth, the term composite

Lyapunov function will refer to this type of function. For this construction,

one more assumption is needed which implies the LES property of ξ̇ = a(ξ).

Assumption 5.4 (Negativity of LaU(ξ))

A C2, positive definite, radially unbounded, function U(ξ) is known such that

LaU(ξ) is negative definite and locally quadratic, that is ∂2LaU
∂ξ2

(0) < 0.

2

We note that this assumption is not necessarily satisfied if ξ̇ = a(ξ) is LES.

To construct l(W ) and ρ(V ) we examine the inequality

V̇ = l′(W )[LfW + LψW ] + ρ′(U)LaU

≤ l′(W )LψW + ρ′(U)LaU (5.1.11)

where l′ and ρ′ are the derivatives of l and ρ with respect to W and U , re-

spectively. The term ρ′(U)LaU depends on ξ only, and is negative definite if

ρ′(U) > 0. The term l′(W )LψW depends on both z and ξ and is indefinite.

For the negative term to dominate, the indefinite term must be bounded for
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each fixed ξ, independently of z. Under Assumptions 5.1 and 5.2 we have

‖LψW‖ ≤ ‖∂W
∂z
‖(γ1(‖ξ‖)‖z‖+ γ2(‖ξ‖))

≤ cWγ1 + ‖
∂W

∂z
‖γ2

Returning to (5.1.11) this means that both l′(W )W and l′(W )‖∂W
∂z
‖ must be

bounded uniformly in z. In view of Assumption 5.2, both of these requirements

are satisfied by l(W ) = ln(W + 1) because

l′(W )W =
W

W + 1
< 1 and

1

W + 1
‖∂W
∂z
‖ ≤ α1W + α2

W + 1
≤ α̃

for some constant α̃. When ψ is uniformly bounded as a function of z, then

l(W ) =
√
W + 1− 1 is also a good choice.

A more difficult requirement is that near ξ = 0 both γ1(‖ξ‖) and γ2(‖ξ‖)
be quadratic or higher-order in ξ. If this is not the case, the negative definite

term will not be able to dominate the indefinite term because the C1 property

of ρ, a, and U implies that ‖ρ′(U)LaU‖ ≤ k‖ξ‖2 near ξ = 0 for some k > 0.

This is the case with the zero-dynamics subsystem of the benchmark example

(5.1.2).

Example 5.5 (Linear interconnection terms)

Let us reconsider the cascade (5.1.2) with its zero-dynamics subsystem (5.1.3)

rewritten in the (z, ξ)-notation as

ż = ξ + ξ2 = ψ(ξ)

ξ̇ = −ξ (5.1.12)

With the subsystem Lyapunov functions W (z) = z2 and U(ξ) = ξ2, we exam-

ine whether

V = ln(z2 + 1) + ρ(ξ2)

qualifies as a composite Lyapunov function. For this we need to find a C1

function ρ to make

V̇ = 2
z

z2 + 1
(ξ + ξ2)− 2ρ′(ξ2)ξ2 (5.1.13)

nonpositive for all (z, ξ). We pick any z, say z = 1, and check if the negative

term −2ρ′(ξ2)ξ2 dominates the indefinite term ξ + ξ2 = ψ(ξ) near ξ = 0. In

this attempt we fail because, whatever C1 function ρ we choose, the term

−2ρ′(ξ2)ξ2 is quadratic near ξ = 0 and cannot dominate a term which is
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linear in ξ. If this linear term were absent, then the choice ρ(ξ2) = ξ2 would

guarantee that V̇ ≤ 0 for all (z, ξ). We also see the role of Assumption 5.4.

If we had chosen U(ξ) = ξ4 as a Lyapunov function for the ξ-subsystem, the

domination would be impossible even if the linear term is removed from the

interconnection. 2

We have thus made a key observation: a composite Lyapunov function

(5.1.10) is successful if the interconnection ψ does not contain a term linear in

ξ. This observation holds in general.

Theorem 5.6 (Composite Lyapunov functions)

Suppose that (Σ0) satisfies Assumptions 5.1, 5.2, and 5.4. If the interconnec-

tion ψ(z, ξ) satisfies the condition

∂ψ

∂ξ
(z, 0) ≡ 0 (5.1.14)

then a continuous positive function γ(.) can be found such that the radially

unbounded positive definite function

V (z, ξ) = ln(W (z) + 1) +
∫ U(ξ)

0
γ(s)ds (5.1.15)

is nonincreasing along the solutions of (Σ0).

Proof: By inspection, V (z, ξ) in (5.1.15) is positive definite and radially un-

bounded. Its time-derivative along the solutions of (Σ0) is

V̇ =
1

W (z) + 1
(LfW (z) + LψW (z, ξ)) + γ(U(ξ))LaU(ξ)

≤ 1

W (z) + 1
LψW (z, ξ) + γ(U(ξ))LaU(ξ)

By Assumption 5.1, we have

| 1

W + 1
LψW | ≤

1

W + 1

∥
∥
∥
∥
∥

∂W

∂z

∥
∥
∥
∥
∥
(γ1(‖ ξ ‖) ‖ z ‖ +γ2(‖ ξ ‖))

and, by Assumption 5.2, this implies

V̇ ≤ γ3(‖ξ‖) + γ(U(ξ))LaU(ξ)

for some function γ3 ∈ K. From (5.1.14) we know that γ1 and γ2 can be

chosen such that γ ′1(0) = γ ′2(0) = 0 and, therefore, γ ′3(0) = 0. Thus γ3(‖ξ‖) =
γ4(‖ξ‖)‖ξ‖2 for some continuous function γ4.
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By Assumption 5.4 there is a constant α > 0 such that LaU(ξ) ≤ −α‖ξ‖2
in a neighborhood of ξ = 0. Therefore, there exists a function

γ(U(ξ)) ≥ γ4(‖ξ‖)‖ξ‖2
|LaU(ξ)|

which achieves V̇ ≤ 0.

2

An important issue to be resolved in this chapter is whether the require-

ment that the interconnection ψ does not contain a term linear in ξ is a severe

structural constraint. Can such a term be removed by a preliminary change of

coordinates? Let’s examine this issue on the zero-dynamics subsystem (5.1.3).

Example 5.7 (Change of coordinates for a composite Lyapunov function )

Returning to the zero-dynamics system (5.1.12) our goal now is to find a change

of coordinates which will remove the linear term ξ from the interconnection

ψ(ξ) = ξ + ξ2. After a quick examination we notice that, with the change of

coordinates ζ = z + ξ, the system (5.1.12) becomes

ζ̇ = ξ2

ξ̇ = −ξ (5.1.16)

so that the interconnection is now only ξ2. The composite Lyapunov function

V (ζ, ξ) = ln(ζ2+1)+ξ2 has the time-derivative which is negative semidefinite:

V̇ = 2(
ζ

ζ2 + 1
− 1)ξ2 ≤ 0

Using this Lyapunov function in the (x, y) coordinates of (5.1.2), the passivat-

ing transformation (5.1.5) is

u = −x2 − y − 2
x1 + x2

(x1 + x2)2 + 1
(2x2 + y + 1) + v (5.1.17)

It is easy to verify that the system (5.1.2) with input v and output y is ZSD.

The design is completed with feedback v = −y which achieves GAS.

Let us repeat the same construction for the second cascade (5.1.7). The

linear change of coordinates (ζ, ξ1, ξ2) = (x1 + 2x2 + x3, x2, x3) transforms it

into
ζ̇ = ξ22
ξ̇1 = ξ2
ξ̇2 = −2ξ2 − ξ1

(5.1.18)



182 CHAPTER 5. CONSTRUCTION OF LYAPUNOV FUNCTIONS

The composite Lyapunov function

V (ζ, ξ) =
1

2
ln(ζ2 + 1) +

ξ21 + ξ22
2

has a nonpositive time-derivative:

V̇ = (
ζ

ζ2 + 1
− 1)ξ22 ≤ 0

The damping control

v =
∂V

∂ξ2
= − ζ

ζ2 + 1
− ξ2 = −

x1 + x2 + x3
(x1 + x2 + x3)2 + 1

− x3 (5.1.19)

achieves GAS of (5.1.7). In this case ζ̇ = ξ22 is independent of ξ1 and we

were able to dominate the indefinite term in V̇ even though U̇ = −ξ22 is only

negative semidefinite. 2

For our future reference it is important to note that both control laws

(5.1.17) and (5.1.19) do not grow unbounded in |x1| with fixed x2 and y.

Instead, they saturate and even tend to 0 as |x1| → ∞, which is a consequence

of the nonlinear weighting ln(W + 1) in the composite Lyapunov function

(5.1.10).

Is it always possible to find a change of coordinates to remove from the

interconnection ψ(z, ξ) the terms which are linear in ξ? The answer to this

question is negative even for the linear cascade

ż = Fz +Mξ

ξ̇ = Aξ
(5.1.20)

where M is a constant matrix. For the existence of a decoupling change of

coordinates ζ = z+Nξ it is necessary and sufficient that N be the solution of

the Sylvester equation

FN −NA =M

It is well-known that N exists if and only if the “nonresonance” condition

λi(A) 6= λj(F ), i = 1, . . . , nξ, j = 1, . . . , nz is satisfied by the eigenvalues

of A and F . An example violating this condition is F = −1, A = −1, and
M 6= 0. Then the matrix of the whole system (5.1.20) is a single Jordan block

which cannot be diagonalized.

When the Jacobian linearization cannot be diagonalized, a composite func-

tion (5.1.10), in general, fails to be a Lyapunov function for the cascade. To

overcome this difficulty, and to reach a larger class of (z, ξ)-cascades, we now

proceed to the construction of a Lyapunov function with a cross-term.
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5.2 Lyapunov Construction with a Cross-Term

5.2.1 The construction of the cross-term

Instead of restricting ourselves to a combination of nonlinearly weighted W (z)

and U(ξ) or searching for a decoupling change of coordinates which may not

exist, we will now proceed to construct a Lyapunov function with a cross-term

Ψ(z, ξ):

V0(z, ξ) =W (z) + Ψ(z, ξ) + U(ξ) (5.2.1)

The cross-term must guarantee that V0 is nonincreasing along the solutions of

(Σ0). The time-derivative of V0 is

V̇0 = LfW + LψW + Ψ̇ + LaU (5.2.2)

The terms LfW and LaU are nonpositive. Therefore, to ensure the negativity

of V̇0, the cross-term Ψ(z, ξ) is chosen as

Ψ̇ = −LψW = −∂W
∂z

ψ

This means that Ψ is the line-integral of ∂W
∂z
ψ along the solution of (Σ0) which

starts at (z, ξ):

Ψ(z, ξ) =
∫ ∞

0
LψW (z̃(s, z, ξ), ξ̃(s, ξ)) ds (5.2.3)

The following theorem shows that the integral is well defined and that the

resulting V0 is a Lyapunov function for (Σ0).

Theorem 5.8 (Lyapunov function with a cross-term)

If Assumptions 5.1 and 5.2 are satisfied then the following holds:

(i) Ψ(z, ξ) exists and is continuous in IRnz × IRnξ ;

(ii) V0(z, ξ) is positive definite;

(iii) V0(z, ξ) is radially unbounded;

Proof: (i) We first prove the existence of the function Ψ(z, ξ). Arguing as in

the proof of Theorem 4.7, we have that for each τ ≥ 0

∣
∣
∣
∣
∣

∂W

∂z
(z̃(τ)) ψ(z̃(τ), ξ̃(τ))

∣
∣
∣
∣
∣
≤ ‖ ∂W

∂z
‖ (γ(‖ξ‖)e−ατ + γ(‖ξ‖)e−ατ ‖ z̃(τ) ‖)

(5.2.4)
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Because W (z) is radially unbounded, Theorem 4.7 implies that ‖ z̃(τ) ‖ and
‖ ∂W

∂z
(z̃(τ)) ‖ are bounded on [0,+∞). From (5.2.4) there exists γ1 ∈ K such

that ∣
∣
∣
∣
∣

∂W

∂z
(z̃(τ)) ψ(z̃(τ), ξ̃(τ))

∣
∣
∣
∣
∣
≤ γ1(‖ (z, ξ) ‖)e−ατ (5.2.5)

We conclude that, as a time function, ∂W
∂z

(z̃)ψ(z̃, ξ̃) is integrable on [0,∞),

and hence, the integral (5.2.3) exists and is bounded for all bounded (z, ξ).

Next we prove continuity of Ψ at any fixed (z̄, ξ̄). Denote by B(z̄, δ) the

ball around z̄ with radius δ. Let (z, ξ) ∈ Uδ := B(z̄, δ)×B(ξ̄, δ). We will show

that

| Ψ(z, ξ)−Ψ(z̄, ξ̄) |≤ ε

for δ sufficiently small.

Without loss of generality, we can choose δ < 1. Using (5.2.5) we can find

a finite time T > 0 such that for all (z, ξ) ∈ U1

∫ ∞

T

∣
∣
∣
∣
∣

∂W

∂z
(z̃(s)) ψ(z̃(s), ξ̃(s))

∣
∣
∣
∣
∣
ds <

ε

4

Denote by (z̄(τ), ξ̄(τ)) the solution (z̃(τ ; z̄, ξ̄), ξ̃(τ ; ξ̄)). It remains to show that

∣
∣
∣
∣
∣

∫ T

0

(

∂W

∂z
(z̃) ψ(z̃, ξ̃)− ∂W

∂z
(z̄) ψ(z̄, ξ̄)

)

ds

∣
∣
∣
∣
∣
<
ε

2
(5.2.6)

for ‖z − z̄‖+ ‖ξ − ξ̄‖ sufficiently small.

The solutions of (Σ0) are continuous with respect to initial conditions over

the finite time interval [0, T ] and belong to a compact set for all initial con-

ditions in U1. It follows that the integrand on the left-hand side of (5.2.6)

uniformly converges to zero when δ tends to zero. Inequality (5.2.6) is, there-

fore, satisfied for δ sufficiently small, which establishes continuity.

(ii) The function W (z̃(τ)), along the solution of (Σ0) for an initial condition

(z, ξ), satisfies

W (z̃(τ)) = W (z) +
∫ τ

0
Ẇ (z̃(s), ξ̃(s))ds

Evaluating Ẇ yields

W (z̃(τ))−
∫ τ

0

∂W

∂z
(z̃(s)) ψ(z̃(s), ξ̃(s))ds = W (z) +

∫ τ

0

∂W

∂z
(z̃(s)) f(z̃(s))ds

(5.2.7)

The proof of (i) shows that the second term on the left-hand side converges as

τ → ∞ and, because W (z̃(τ)) ≥ 0, the whole left hand side is bounded from
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below for all τ ≥ 0. Since the right-hand side of (5.2.7) is nonincreasing as a

function of τ , we conclude that as τ →∞ the limits on both sides exist:

lim
τ→∞W (z̃(τ))−

∫ ∞

0

∂W

∂z
(z̃(s)) ψ(z̃(s), ξ̃(s)) ds = W (z)+

∫ ∞

0

∂W

∂z
(z̃(s)) f(z̃(s))ds

The second term on the left hand side is Ψ(z, ξ), so, as τ → ∞, the function

W (z̃(τ)) converges to some finite nonnegative value

W∞(z, ξ) = W (z) + Ψ(z, ξ) +
∫ ∞

0

∂W

∂z
(z̃) f(z̃) ds (5.2.8)

Substituting (5.2.8) into (5.2.1) we obtain V0 as the sum of three nonnegative

terms:

V0(z, ξ) =W∞(z, ξ)−
∫ ∞

0

∂W

∂z
(z̃) f(z̃) ds+ U(ξ) ≥ 0 (5.2.9)

It follows that V0(z, ξ) = 0 implies ξ = 0. By construction, V0(z, 0) = W (z),

so we conclude that

V0(z, ξ) = 0⇒ (z, ξ) = (0, 0) (5.2.10)

Equalities (5.2.9) and (5.2.10) imply that V0 is positive definite.

(iii) It follows immediately from (5.2.9) that V0 tends to infinity when ‖ ξ ‖
tends to infinity. It is therefore sufficient to prove that for all ξ ∈ IRm

lim
‖z‖→∞

(

W∞(z, ξ)−
∫ +∞

0

∂W

∂z
(z̃(τ))f(z̃(τ))dτ

)

= +∞ (5.2.11)

Fix ξ ∈ IRm so that the class K function γ used in the inequality (5.2.4)

becomes a constant C. We then write for each τ ≥ 0

Ẇ − LfW = LψW ≥ − | LψW |

≥ − ‖ ∂W
∂z
‖ (Ce−ατ + Ce−ατ ‖ z̃ ‖)

≥ − ‖ ∂W
∂z
‖ ‖ z̃ ‖ Ce−ατ − (1− ‖ z̃ ‖) ‖ ∂W

∂z
‖ Ce−ατ

Now we examine the second term on the right hand side. If (1− ‖ z̃ ‖) ≤ 0 this

term can be dropped without affecting the inequality. When (1− ‖ z̃ ‖) > 0

we have to keep this term, but now ‖z̃‖ < 1 so the term is bounded by K2e
−ατ .

Therefore, we can write

Ẇ − LfW ≥ − ‖
∂W

∂z
‖‖ z̃ ‖ Ce−ατ −K2e

−ατ (5.2.12)
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Using Assumption 5.2 we obtain

Ẇ ≥ −Ke−ατW −K2e
−ατ + LfW when ‖z‖ > κ

Ẇ ≥ −K1e
−ατ −K2e

−ατ + LfW when ‖z‖ ≤ κ
(5.2.13)

for some positive κ, K and K1 which may depend only on ξ.

Inequalities (5.2.13) yield the following lower bounds on W (z̃(τ)):

‖z̃(t)‖ > κ for t ∈ [0, τ)⇒
⇒ W (z̃(τ)) ≥ φ(τ, 0)W (z) +

∫ τ

0
φ(τ, s)(−K2e

−α1s + LfW )ds

|z̃(t)‖ ≤ κ for t ∈ [0, τ)⇒
⇒ W (z̃(τ)) ≥ W (z) +

∫ τ

0
(−K1e

−αs −K2e
−αs + LfW ) ds

where φ(τ, s) := e−
K
α
(e−αs−e−ατ ). Noting that 1 ≥ φ(τ, s) ≥ e−

K
α for all τ ≥

s ≥ 0, we can combine the two bounds on W to obtain that ∀τ ≥ 0

W (z̃(τ)) ≥ φ(τ, 0)W (z) +
∫ τ

0
(−K1e

−αs −K2e
−αs + LfW ) ds (5.2.14)

Hence for all τ ≥ 0

W (z̃(τ)) ≥ e−
K
αW (z) +

∫ τ

0
LfW ds+ κ(τ) (5.2.15)

where κ(τ) := − ∫ τ0 (K1e
−αs +K2e

−αs)ds exists and is bounded over [0,+∞).

Subtracting from both sides of (5.2.15) the term
∫ τ
0 LfWds and taking the

limit when τ tends to infinity, we obtain

W∞(z, ξ)−
∫ ∞

0
LfWds ≥ K3W (z) + κ? (5.2.16)

with κ? finite. It is clear form the construction that κ? and K3 may depend on

‖ξ‖ but are independent of ‖z‖. When ‖ z ‖ tends to infinity, the right-hand

side of (5.2.16) tends to infinity which proves (5.2.11). 2

Let us illustrate the construction of V0 with the benchmark system of Sec-

tion 6.1.1.

Example 5.9 (Cross-term construction for the benchmark system)

We now construct a Lyapunov function V0(z, ξ) for the zero-dynamics subsys-

tem of (5.1.2) rewritten as

ż = ξ + ξ2

ξ̇ = −ξ (5.2.17)
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Let W (z) = 1
2
z2 and U(ξ) = 1

2
ξ2 be the Lyapunov functions for the isolated

subsystems of (5.2.17). Then the cross-term is

Ψ(z, ξ) =
∫ ∞

0
z̃(s)(ξ̃(s) + ξ̃2(s)) ds =

∫ ∞

0
d(
z̃2

2
)

Substituting the solution (5.1.4) and integrating, we obtain

Ψ(z, ξ) =
1

2
(z + ξ +

ξ2

2
)2 − 1

2
z2

Hence, in the original x-coordinates, the Lyapunov function is

V0(x1, x2) =
1

2
(x1 + x2 +

x22
2
)2 +

1

2
x22

With this Lyapunov function, the passivating transformation (5.1.5) for the

whole cascade (5.1.2) is

u = −y − (x1 + x2 +
x22
2
)(3x2 + y + 1) + v (5.2.18)

It is easy to verify that the system (5.1.2) with input v and output y is ZSD.

Hence the feedback v = −y achieves GAS.

Let us now apply the same construction with the cross-term to the alter-

native cascade (5.1.7) rewritten here as

ż = ξ1 + ξ22
ξ̇1 = ξ2
ξ̇2 = −2ξ2 − ξ1

(5.2.19)

Using the z-subsystem Lyapunov function W (z) = 1
2
z2, the cross-term Ψ(z, ξ)

is

Ψ(z, ξ) =
∫ ∞

0
z̃(s)(ξ̃1(s) + ξ̃22(s)) ds =

∫ ∞

0
d(
z̃2

2
)

and, from the solution (5.1.8), we obtain

Ψ(z, ξ) =
1

2
(z + 2ξ1 + ξ2 +

ξ21 + ξ22
4

)2 − 1

2
z2

Hence, in the original coordinates, the Lyapunov function is

V0(x1, x2, x3) =
1

2
(x1 + 2x2 + x3 +

x22 + x23
4

)2 +
1

2
(x22 + x23)

The damping control

v = − ∂V
∂x3

= −(x1 + 2x2 + x3 +
x22 + x23

4
)(1 +

1

2
x3)− x3 (5.2.20)

achieves GAS. 2
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5.2.2 Differentiability of the function Ψ

Because the control laws based on the Lyapunov function V0 will use its partial

derivatives, it is important to establish the differentiability properties of the

cross-term Ψ(z, ξ). If the system (Σ0) is C
∞ we prove that the function Ψ is

C∞ provided that the following assumption is satisfied.

Assumption 5.10 (Restriction on the z-subsystem – smoothness of Ψ)

The vector field f(z) in (Σ0) has the form

f(z) =

(

f1(z1)
F2z2 + f2(z1, z2)

)

, z =

(

z1
z2

)

(5.2.21)

Furthermore, f2(0, z2) = 0, the equilibrium z1 = 0 of ż1 = f1(z1) is GAS, and

the system ż2 = F2z2 is Lyapunov stable. 2

We first show that Ψ is C1.

Theorem 5.11 (Continuous differentiability of the cross-term)

Under Assumptions 5.1, 5.2, and 5.10, the function Ψ defined by (5.2.3) is C1

in IRnz × IRnξ .

Proof: By standard results for ordinary differential equations (see [56] or

Theorem 2, p.302 in [39]), the partial derivatives of z̃(τ ; z, ξ) and ξ̃(τ ; ξ) with

respect to z and ξ exist for each z, ξ, and τ ≥ 0. The time behavior of

these partial derivatives is governed by the variational equation of (Σ0). It is

well known that the variational equation of a stable nonlinear system is not

necessarily stable. Below we show that, under Assumption 5.10, its solutions

cannot grow exponentially.

For an arbitrary constant a ≥ 0, the time-varying matrix

χ(τ) :=
∂z̃(τ)

∂z
e−aτ

satisfies the linear time-varying differential equation

dχ

dτ
= −aχ+ (

∂f

∂z
+
∂ψ

∂z
)

∣
∣
∣
∣
∣
(z̃(τ),ξ̃(τ))

χ (5.2.22)

with the initial condition χ(0) = I. For a = 0, this is the variational equation

of ∂z̃(τ)
∂z

along the solution (z̃(s), ξ̃(s)). We will show that the solution of

(5.2.22) converges to zero for any a > 0.
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Assumption 5.10 provides the decomposition

∂f

∂z
=

(
∂f1
∂z1

0
∂f2
∂z1

F2 +
∂f2
∂z2

)

(5.2.23)

with the asymptotic property (due to asymptotic stability of z1 = 0 in ż1 =

f1(z1))

lim
τ→∞

∂f1
∂z1

(τ) =
∂f1
∂z1
|z1=0:= F1, lim

τ→∞
∂f2
∂z2

= 0

Therefore we rewrite (5.2.22) as

dχ

dτ
=

[

−aI + F1 0
∂f2
∂z1

(τ) −aI + F2

]

χ+ B(τ)χ (5.2.24)

where B(τ) converges to zero as τ →∞. Because the constant matrices F1 and

F2 cannot have eigenvalues with positive real parts and because ∂f2
∂z1

(τ) remains

bounded on (0,∞), we conclude that the system (5.2.24) is asymptotically

stable for any strictly positive constant a. Hence, χ(τ) is bounded on [0,+∞)

and, moreover, converges to zero as τ →∞.

With a similar argument we establish boundedness and convergence of the

time-varying matrices

ν(τ) :=
∂z̃(τ)

∂ξ
e−aτ

η(τ) :=
∂ξ̃(τ)

∂ξ

which satisfy

dν

dτ
= −aν + (

∂f

∂z
+
∂ψ

∂z
)

∣
∣
∣
∣
∣
(z̃(τ),ξ̃(τ))

ν +
∂ψ

∂ξ

∣
∣
∣
∣
∣
(z̃(τ),ξ̃(τ))

ηe−aτ

dη

dτ
=
∂a

∂ξ

∣
∣
∣
∣
∣
ξ̃(τ)

η
(5.2.25)

for the initial condition ν(0) = 0, η(0) = I.

Next we prove the differentiability of Ψ. Using the chain rule we obtain

∂Ψ

∂z
(z, ξ) =

∫ ∞

0
dz̃(τ)

∂z̃(τ)

∂z
dτ (5.2.26)

∂Ψ

∂ξ
(z, ξ) =

∫ ∞

0
(dz̃(τ)

∂z̃(τ)

∂ξ
+ dξ̃(τ)

∂ξ̃(τ)

∂ξ
)dτ (5.2.27)

where

dz̃(τ) :=

(

ψT
∂2W

∂z2
+
∂W

∂z

∂ψ

∂z

)∣
∣
∣
∣
∣
(z̃(τ),ξ̃(τ))

(5.2.28)

dξ̃(τ) :=
∂W

∂z

∂ψ

∂ξ

∣
∣
∣
∣
∣
(z̃(τ),ξ̃(τ))

(5.2.29)
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Since ξ̇ = a(ξ) is GAS and LES, there exists a constant α > 0 and a class

K function κ such that

‖ξ̃(s, ξ)‖ ≤ κ(‖ξ‖)e−αs (5.2.30)

Because ψ and ∂ψ
∂z

vanish when ξ = 0 we have

‖ψ(z̃(τ), ξ̃(τ))‖ ≤ γ5(‖(z, ξ)‖) e−ατ

‖∂ψ
∂z

(z̃(τ), ξ̃(τ))‖ ≤ γ6(‖(z, ξ)‖) e−ατ
(5.2.31)

with functions γ5, γ6 ∈ K∞. This yields the estimates

‖dz̃(τ)‖ ≤ γ7(‖(z, ξ)‖) e−ατ
‖dξ̃(τ)‖ ≤ γ8(‖(z, ξ)‖) (5.2.32)

for some γ7, γ8 ∈ K∞. Using the definition of χ, ν, and the fact that ‖η(τ)‖ ≤
γ9(‖ξ‖) e−ατ for some γ9 ∈ K∞ we finally obtain

∥
∥
∥
∥
∥

∂Ψ

∂z
(z, ξ)

∥
∥
∥
∥
∥
≤ γ7(‖(z, ξ)‖)

∫ ∞

0
‖χ(τ)‖ e−(α−a)τdτ

∥
∥
∥
∥
∥

∂Ψ

∂ξ
(z, ξ)

∥
∥
∥
∥
∥
≤ γ7(‖(z, ξ)‖)

∫ ∞

0
‖ν(τ)‖ e−(α−a) τ dτ + γ10(‖(z, ξ)‖)

for some γ10 ∈ K. Since we can choose a < α, the integrals exist, which proves

the existence of the partial derivatives of Ψ. The continuity of the partial

derivatives can be proven along the same lines as the continuity of Ψ. 2

We now verify that, under Assumption 5.10, the function Ψ can be differ-

entiated as many times as f and W .

Corollary 5.12 (Smoothness of the cross-term)

Under Assumptions 5.1, 5.2, and 5.10, the function Ψ defined by (5.2.3) is C∞

in IRn × IRm.

Proof: As in the proof of Theorem 5.11 we show the existence and continuity

of
∂2Ψ

∂zi∂zj
, 1 ≤ i ≤ n, 1 ≤ j ≤ n

Existence and continuity of partial derivatives of any order then follows by

induction.

First recall that, if f is smooth, the partial derivatives of any order of

z̃(τ ; z, ξ) and ξ̃(τ ; ξ) exist and are continuous for any τ ≥ 0 and any (z, ξ) ∈
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IRn × IRm. Similarly, smoothness of W implies that the partial derivatives of

any order of W exist and are bounded along the solutions of (Σ0).

Using the chain rule, from (5.2.26) we have

∂2Ψ

∂zi∂zj
=
∫ ∞

0

(

∂z̃

∂zi
(τ)

)T
∂dTz̃
∂z̃

(τ)
∂z̃

∂zj
(τ) dτ +

∫ ∞

0
dz̃(τ)

∂2z̃

∂zj∂zi
(τ) dτ (5.2.33)

Recall from the proof of Theorem 5.11 that

‖∂dz̃
∂z̃

(τ)‖ ≤ γ11(‖(z, ξ)‖)e−ατ (5.2.34)

for some function γ11 ∈ K∞. From Theorem 5.11 and (5.2.34) we conclude

that the first integral on the right hand side of (5.2.33) exists. It is therefore

sufficient to prove the existence of the integral
∫ ∞

0
dz̃(τ)

∂2z̃

∂zj∂zi
(τ) dτ (5.2.35)

or, using the estimate (5.2.32), to prove the boundedness on (0,∞) of the time

function

µ(τ) :=
∂2z̃

∂zj∂zi
(τ) e−aτ (5.2.36)

for 0 < a < α.

Proceeding as in the proof of Theorem 5.11, we note that µ(τ) satisfies the

time-varying differential equation

dµ

dτ
= −aµ+ (

∂f

∂z
+
∂ψ

∂z
)

∣
∣
∣
∣
∣
(z̃(τ),ξ̃(τ))

µ+R(τ) (5.2.37)

with initial condition µ(0) = 0; denoting by Fk the k-th column of the matrix

(∂f
∂z

+ ∂ψ
∂z
)
∣
∣
∣
(z̃(τ),ξ̃(τ))

, the k-th component of the vector R(τ) given by

Rk(τ) := (e−
1
2
aτ ∂z̃

∂zi
(τ))T

∂Fk
∂z

∣
∣
∣
∣
∣
(z̃(τ),ξ̃(τ))

(e−
1
2
aτ ∂z̃

∂zj
(τ)) (5.2.38)

By Theorem 5.11, (e−
1
2
aτ ∂z̃
∂zj

) converges to 0 and hence, R(τ) converges to

zero. As a consequence, the differential equation (5.2.37) for µ has the same

structure as the differential equation (5.2.22) for χ. The rest of the proof of

Theorem 5.11 can be used to conclude that µ(τ) converges to zero as s→ 0. 2

Examining the variational equations in the proof of Theorem 5.11, we ob-

serve that their asymptotic behavior occurs in the neighborhood of the limit

sets of ż = f(z). The differentiability properties of Ψ(z, ξ) are determined by

this asymptotic behavior. When the limit sets of ż = f(z) are equilibria we

give a condition under which Ψ(z, ξ) is a Cr function.
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Assumption 5.13 (Restriction on limit sets for the z-subsystem)

The limits sets of ż = f(z) consist of equilibria only, and at each equilibrium

ze the eigenvalues of the Jacobian linearization of f(z) have real parts strictly

smaller than 1
r
α, where r ∈ {1, 2, . . .} and α is defined in (5.2.30). 2

We note that Assumption 5.13 includes the possibility of unstable equi-

libria away from the origin, which does not contradict global stability of the

equilibrium at the origin.

Theorem 5.14 (Cr differentiability of the cross-term)

Under Assumptions 5.1, 5.2, and 5.13, the function Ψ defined by (5.2.3) is C r

in IRn × IRm.

Proof: We first prove the theorem for the case r = 1. For an arbitrary initial

condition (z, ξ), the Assumption 5.13 on the limit sets implies

∂f

∂z

∣
∣
∣
∣
∣
z̃(τ)

→ F, as τ →∞

with F a constant matrix with eigenvalues with real parts strictly smaller

than α. Now the constant a has to be chosen such that max{Re(λi(F )), i =
1, . . . , n} < a < α. Assumption 5.13 guarantees that such a constant exists.

Then the differential equations for χ and ν, defined in the proof of Theorem

5.11, are of the form
χ̇ = (F − aI)χ+ B1χ
ν̇ = (F − aI)ν + B2ν + β

Because the matrix F −aI is Hurwitz and Bi and β converge to 0 we conclude

that χ and ν converge to 0. The rest of the proof for the case r = 1 is identical

to the proof of Theorem 5.11.

To prove that Ψ is twice continuously differentiable when r = 2 we consider

again µ(τ) defined by (5.2.36) and rewrite its dynamics as

∂µ

∂τ
= (F − aI)µ+ B(τ) +R(τ)

where B converges to 0 as τ → ∞. The vector R(τ), given by (5.2.38),

converges to 0 provided that a can be chosen such that 0 < a < α and

e−
1
2
aτ ∂z̃
∂z

is bounded. The latter will be satisfied if a can be found such that
1
2
a > max{Re(λi(F ))}. That such an a exists is guaranteed by Assumption

5.13, since for r = 2, 1
2
α > max{Re(λi(F ))}. Thus, µ is bounded and con-

verges to 0; so, the existence of the second partial derivatives of Ψ can be
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concluded as in the proof of Corollary 5.12. The existence of partial deriva-

tives of order higher than 2 when r > 2 can be shown in the same way. 2

Assumption 5.13 restricts ż = f(z) to have special limit sets, that is,

equilibria. For more complex limit sets, such as limit cycles, analogous differ-

entiability property can be expected to hold as we later illustrate by Example

5.18. However, in the absence of Assumption 5.10 or 5.13, the cross-term Ψ

may fail to be continuously differentiable.

Example 5.15 (Lack of continuous differentiability)

Consider the system
ż = −z(z − 1)(z − 2) + ξ

ξ̇ = −1
2
ξ

(5.2.39)

The subsystem ż = −z(z − 1)(z − 2) := f(z) has three equilibria, 0, 1, and 2,

where the first and third are locally asymptotically stable and the second is un-

stable. Nevertheless, the equilibrium at 0 is globally stable. A C1 polynomial

Lyapunov function W (z) for ż = f(z) is given by

W (z) =







z2 z ≤ 1
2

1
2
− (z − 1)2 1

2
< z ≤ 5

4
1
4
+ 1

3
(z − 2)2 z > 5

4

(5.2.40)

and it can easily be smoothened in the neighborhood of z = 1
2
and z = 5

4
to

be Cr for any r > 1. Assumptions 5.1 and 5.2 are satisfied and, by Theorem

5.8, the cross-term Ψ(z, ξ) exists and is continuous. We will now show that it

is not differentiable.

The three equilibria of the z-subsystem yield three different equilibria for

the cascade (5.2.39): xe1 = (0, 0), xe2 = (1, 0), and xe3 = (2, 0) where we used

the notation x = (z, ξ). The Jacobian linearization of (5.2.39) at xe2 is

ẋ =

[

1 1
0 −1

2

]

x := Alx

Hence the equilibrium xe2 is hyperbolic and has a smooth stable invariant

manifold [32, 56]. This stable manifold is not tangent to the x1 axis. This

means that ξ 6= 0 in this manifold except at xe2. If the partial derivative ∂Ψ
∂z

exists, it must satisfy
∂Ψ

∂z
=
∫ ∞

0

∂2W

∂z2
∂z̃

∂z
ξ̃ dτ (5.2.41)

With χ := ∂z̃
∂z
, the variational equation of ż = f(z) is

dχ

dτ
=
∂f

∂z
χ, χ(0) = 1 (5.2.42)
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With the initial condition (z, ξ) chosen in the stable manifold of xe2 with

ξ 6= 0, the solution of (5.2.39) converges to xe2. Because W (z) has a lo-

cal maximum at z = 1, ∂2W
∂z2
→ c < 0, and because ∂f

∂z
→ 1 we can write

χ(τ) ≥ γ12(‖(z, ξ)‖)e(1−δ)τ for any fixed δ > 0, and for some continuous strictly

positive function γ12. With δ = 1
4
we obtain

‖∂Ψ
∂z
‖ ≥ γ13(‖(z, ξ)‖)

∫ ∞

0
e

1
4
τ dτ

and, because the integral diverges, we conclude that Ψ is not C1. 2

5.2.3 Computing the cross-term

In general, the function Ψ is a solution of the following partial differential

equation
∂Ψ

∂z
(f(z) + ψ(z, ξ)) +

∂Ψ

∂ξ
a(ξ) = −∂W

∂z
ψ(z, ξ) (5.2.43)

with the boundary condition Ψ(z, 0) = 0. This PDE is obtained by taking the

time-derivatives of both sides of (5.2.3). Various numerical methods can be

used to approximate the solution Ψ and its partial derivatives. Their values

at a point (x, ξ) can be obtained by integration of a set of ordinary differential

equation. Let us first present a number of cases in which analytical expressions

can be obtained.

To obtain a closed-form solution for the line integral which defines the

function Ψ

Ψ(z, ξ) =
∫ ∞

0

∂W

∂z
(z̃)ψ(z̃, ξ̃) ds

we need closed-form solutions (z̃(s), ξ̃(s)) of (Σ0). An expression for z̃(s) and

ξ̃(s) can be obtained for a number of particular cases when (Σ0) is in the form

ż = (F +H(ξ))z + ψ(ξ)

ξ̇ = Aξ
(5.2.44)

After the substitution of the solution ξ̃(s) = eAsξ, the z-subsystem becomes

a time-varying linear differential equation. Its solution can be substituted in

the line integral (5.2.3) as illustrated by the following examples.

Example 5.16 (Second-order systems)

For the second order system

ż = ψ1(ξ)z + ψ2(ξ)

ξ̇ = −aξ (5.2.45)
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we select W (z) = z2 which yields the cross-term

Ψ(z, ξ) =
∫ ∞

0
2z̃(s)(ψ1(ξ̃(s))z̃(s) + ψ2(ξ̃(s)) ds (5.2.46)

Substituting the solutions of (5.2.45)

z̃(s) = e
∫ s

0
ψ1(ξ̃(µ))dµz +

∫ s

0
e
∫ s

τ
ψ1(ξ̃(µ))dµψ2(ξ̃(τ))dτ

ξ̃(s) = e−asξ

in the integral (5.2.46), the expression for Ψ can be written as

Ψ(z, ξ) = z2
∫ ∞

0

d

ds

{

e2
∫ s

0
ψ1(ξ̃(µ))dµ

}

ds

+2z
∫ ∞

0

d

ds

{

e
∫ s

0
ψ1(ξ̃(µ))dµ

∫ s

0
e
∫ s

τ
ψ1(ξ̃(µ))dµψ2(ξ̃(τ))dτ

}

ds

+
∫ ∞

0

d

ds

{∫ s

0
e
∫ s

τ
ψ1(ξ̃(µ))dµψ2(ξ̃(τ))dτ

}2

ds

= −z2 +
(

ze
∫
∞

0
ψ1(ξ̃(µ))dµ +

∫ ∞

0
e
∫
∞

τ
ψ1(ξ̃(µ))dµψ2(ξ̃(τ))dτ

)2

Because the function ψ(z, ξ) := ψ1(ξ)z + ψ2(ξ) vanishes at ξ = 0 we can

write ψ1(ξ) = ψ̄1(ξ)ξ and ψ2(ξ) = ψ̄2(ξ)ξ. Using these expressions and the

change of variables σ = ξ̃(µ) = ξe−aµ and u = ξ̃(τ) = ξe−aτ we obtain

Ψ(z, ξ) = −z2 +
(

ze
1
a

∫ ξ

0
ψ̄1(σ)dσ +

1

a

∫ ξ

0
e

1
a

∫ u

0
ψ̄1(σ)dσψ̄2(u)du

)2

(5.2.47)

Finally a Lyapunov function for the system (5.2.45) is given by

V1(z, ξ) = W (z)+Ψ(z, ξ)+ξ2 =

(

ze
1
a

∫ ξ

0
ψ̄1(σ)dσ +

1

a

∫ ξ

0
e

1
a

∫ u

0
ψ̄1(σ)dσψ̄2(u)du

)2

+ξ2

(5.2.48)

The above integrals can be explicitly solved for certain functions ψ1 and ψ2 or

else they can be approximated. 2

Example 5.17 (Polynomial interconnection)

When in the system
ż = Fz + p(ξ)

ξ̇ = Aξ
(5.2.49)

the interconnection term p(ξ) is a polynomial, Ψ is also a polynomial. In

particular, if p is a linear vector function of ξ, then Ψ is a quadratic form.
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For the sake of illustration, when z and ξ are scalars and p is a second

order polynomial, the cross-term is

Ψ(z, ξ) = a1zξ + a2zξ
2 + a3ξ

2 + a4ξ
3 + a5ξ

4

where the coefficients are independent of z and ξ. 2

If (Σ0) is not in the form (5.2.44) then it is usually not possible to obtain a

closed-form solution for z̃(s) and in turn for Ψ. Nevertheless, the next example

illustrates a situation where a closed-form solution for Ψ does not require the

solution of the differential equation ż = f(z) + ψ(z, ξ).

Example 5.18 (Skew-symmetric z-subsystem)

Consider the system
ż = F (z)z + ψ(ξ)z

ξ̇ = Aξ
(5.2.50)

where ψ is a scalar function and the matrix F (z) satisfies F T (z)P+P TF (z) ≡ 0

for some positive definite matrix P . The quadratic Lyapunov functionW (z) =

zTPz satisfies Ẇ (z) = ψ(ξ)W (z) and, therefore,

W (z̃(τ)) =W (z)e
∫ τ

0
ψ(ξ̃(s))ds. (5.2.51)

On the other hand, we have

Ψ(z, ξ) =
∫ ∞

0
2z̃TPψ(ξ̃) z̃ dτ =

∫ ∞

0
W (z̃)ψ(ξ̃) dτ (5.2.52)

Substituting (5.2.51) in (5.2.52) we obtain the expression

Ψ(z, ξ) = W (z)
∫ ∞

0
e
∫ τ

0
ψ(ξ̃)dsψ(z̃)dτ = W (z)

(

e
∫
∞

0
ψ(ξ̃(s))ds − 1

)

We remark that Ψ is smooth although Assumptions 5.10 and 5.13 may not be

satisfied. 2

The control laws of the next section will employ the partial derivatives

of Ψ(z, ξ). For on-line computation of these control laws, when z and ξ are

known at time t, we need to evaluate
∂Ψ

∂z
and

∂Ψ

∂ξ
with desired accuracy.

Denote by Ψ?(z, ξ, τ) the line integral evaluated up to the time τ :

Ψ?(z, ξ, τ)
∆
=
∫ τ

0

∂W

∂z
(z̃) ψ(z̃, ξ̃)ds (5.2.53)
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We write Ψ? as a function of τ only, but we keep in mind that it also depends

on z and ξ. Ψ? is the solution of the differential equation

(Ψ?)′(τ) =
∂W

∂z
ψ

∣
∣
∣
∣
∣
(z̃(τ),ξ̃(τ))

, Ψ?(0) = 0 (5.2.54)

where the notation (Ψ?)′ stands for dΨ?

dτ
. By taking the partial derivatives

with respect to z and ξ, we obtain the following differential equations (in the

notation defined in (5.2.28) and (5.2.29))

(

∂Ψ?

∂z

)′
(τ) = ψz̃(τ)χ(τ) e

aτ (5.2.55)

(

∂Ψ?

∂ξ

)′
(τ) = ψz̃(τ) ν(τ) e

aτ + ψξ̃(τ)η(τ) (5.2.56)

with the initial conditions
∂Ψ?

∂z
(0) = 0 and

∂Ψ?

∂ξ
(0) = 0. The proof of Theorem

5.11 provides the bound

‖∂Ψ
∂z
− ∂Ψ?

∂z
(T )‖ ≤M(‖(z, ξ)‖)

∫ ∞

T
e−(α−a)sds =

1

α− aM(‖(z, ξ)‖)e−(α−a)T

for some M ∈ K∞. The same bound can be established for the difference

‖∂Ψ
∂ξ
− ∂Ψ?

∂ξ
(T )‖. We summarize this as follows.

Proposition 5.19 (Finite time integration)

For any given ε > 0 and a compact set Ω ⊂ Rnz+nξ , there exists a constant

T > 0 such that

‖∂Ψ
∂z
− ∂Ψ?

∂z
(τ)‖ < ε (5.2.57)

‖∂Ψ
∂ξ
− ∂Ψ?

∂ξ
(τ)‖ < ε (5.2.58)

for every τ > T whenever (z, ξ) ∈ Ω. 2

In other words, to obtain the partial derivatives with the desired accu-

racy we have to integrate the set of equations (5.2.22), (5.2.25), (5.2.55), and

(5.2.56) on an interval of sufficient length. In general, to achieve the accuracy

as in Proposition 5.19 the interval of integration has to increase with the size

of the compact set Ω.
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5.3 Relaxed Constructions

5.3.1 Geometric interpretation of the cross-term

In the preceding two sections we presented two different constructions of

Lyapunov functions for cascade systems: composite Lyapunov functions and

Lyapunov functions with a cross-term. When, with a change of coordinates

ζ = ζ(z, ξ), a cascade system can be decoupled into two separate subsystems,

then in the new coordinates (ζ, ξ), a composite Lyapunov function is the sum

of the subsystem Lyapunov functions. Because a Lyapunov function with the

cross-term Ψ(z, ξ) can be calculated for the same cascade in the original coor-

dinates (z, ξ), the link between the two Lyapunov functions gives a geometric

interpretation to the cross-term. We show this for the special cascade

ż = Fz + ψ(ξ), F + F T = 0

ξ̇ = a(ξ)
(5.3.1)

where all the eigenvalues of F are on the imaginary axis. Using W (z) = zT z

and the fact that zTFz = 0 we calculate the cross-term

Ψ(z, ξ) = 2
∫ ∞

0
z̃T (s)( ˙̃z(s)− F z̃(s))ds =

∫ ∞

0
d(z̃T (s)z̃(s))

= (z̃T (s)z̃(s))∞ − (z̃T (s)z̃(s))0 = (z̃T (s)z̃(s))∞ −W (z)

Thus, the Lyapunov function V0(z, ξ) for the cascade (5.3.1) is

V0(z, ξ) =W (z) + Ψ(z, ξ) + U(ξ) = (z̃T (s)z̃(s))∞ + U(ξ) (5.3.2)

We observe that ‖z̃(s)‖2 has a limit as s→∞, although the solution

z̃(s) = eFsz + eFs
∫ s

0
e−Fτψ(ξ̃(τ))dτ

itself does not have a limit, except when F ≡ 0.

We now proceed to find a change of coordinates needed to construct a

composite Lyapunov function. Because A = ∂a
∂ξ
(0) is Hurwitz and F has all its

eigenvalues on the imaginary axis, the cascade (5.3.1) has the stable manifold

in which the behavior of (5.3.1) is described by ξ̇ = a(ξ). The change of

coordinates which exhibits the stable manifold is

ζ = z +
∫ ∞

t
e−F (τ−t)ψ(ξ(τ + t; t; ξ))dτ (5.3.3)

where ξ(τ + t; t; ξ) = ξ(τ ; 0; ξ) = ξ̃(τ), because ξ̇ = a(ξ) is time-invariant. It is

easy to check by differentiating with respect to t, that (5.3.3) decouples (5.3.1)

into two systems
ζ̇ = Fζ

ξ̇ = a(ξ)
(5.3.4)



5.3. RELAXED CONSTRUCTIONS 199

This decoupled form identifies two invariant manifolds of the cascade: the

stable manifold ζ = 0 and the center manifold ξ = 0.

A composite Lyapunov function is the sum of the subsystem Lyapunov

functions:

V (ζ, ξ) = ζT ζ + U(ξ) (5.3.5)

To link V0(z, ξ) with V (ζ, ξ) we evaluate ζT ζ in the coordinates (z, ξ). Noting

that e(F+F
T )s = I for any s, we obtain for t = 0 and all s

ζT ζ =
(

z +
∫ ∞

0
e−Fτψ(ξ̃(τ))dτ

)T

(eFs)T eFs
(

z +
∫ ∞

0
e−Fτψ(ξ̃(τ))dτ

)

=
(

eFsz +
∫ ∞

0
eF (s−τ)ψ(ξ̃(τ))dτ

)T (

eFsz +
∫ ∞

0
eF (s−τ)ψ(ξ̃(τ))dτ

)

= (z̃(s) +
∫ ∞

s
eF (s−τ)ψ(ξ̃(τ))dτ)T (z̃(s) +

∫ ∞

s
eF (s−τ)ψ(ξ̃(τ))dτ)

Because the integrals converge to 0 as s→∞, we obtain

ζT ζ = lim
s→∞(z̃

T (s)z̃(s))

Thus, in the original coordinates (z, ξ), the two Lyapunov functions are iden-

tical:

V (ζ(z, ξ), ξ)) = V0(z, ξ)

Properties of V0(z, ξ). The construction of the Lyapunov function with the

cross-term eliminates the intermediate task of finding a decoupling change of

coordinates. Moreover, V0(z, ξ) can be constructed even when a decoupling

change of coordinates does not exist, that is when the cascade is not reducible

to the decoupled form (5.3.4).

Another property that does not require the existence of a decoupling change

of coordinates is that the sum W (z) + Ψ(z, ξ) in V0(z, ξ) equals the limit of

W (z̃(s)) as s → ∞. We show below that this holds whenever LfW ≡ 0

because then Ẇ reduces to

Ẇ =
∂W

∂z
ψ(z, ξ)

Integrating along the solution (z̃(s), ξ̃(s)) of the cascade (Σ0) we obtain

lim
s→∞

∫ s

0
Ẇ (z̃(τ)) dτ = lim

s→∞W (z̃(s))−W (z) =

=
∫ ∞

0
LψW (z̃(τ), ξ̃(τ)) dτ = Ψ(z, ξ)
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and hence

W (z) + Ψ(z, ξ) = W (z) + lim
s→∞W (z̃(s))−W (z) =: W∞(z, ξ) (5.3.6)

If f(z) ≡ 0, then the limit of z̃(s) is

z∞(z, ξ) := lim
s→∞ z̃(s) = z +

∫ ∞

0
ψ(z̃(s), ξ̃(s)) ds (5.3.7)

and W∞(z, ξ) = W (z∞(z, ξ)).

The mapping (z, ξ)→ (z∞, ξ) defines a local change of coordinates because

∂z∞
∂z

= I +
∫ ∞

0

∂ψ

∂z
(z̃(s), ξ̃(s)) ds (5.3.8)

and the integral vanishes at ξ = 0. It is clear from (5.3.8) that when ψ does

not depend on z, this change of coordinates is defined globally and decouples

(Σ0) into the two subsystems ζ̇ = 0, ξ̇ = a(ξ).

The following example illustrates a situation when a global change of co-

ordinates exists even though the interconnection depends on z.

Example 5.20 (Cross-term as a global decoupling change of coordinates)

The system

ż =
z2

1 + z2
ξ = ψ(z, ξ)

ξ = −ξ
(5.3.9)

satisfies Assumption 5.1 because for all z

|ψ(z, ξ)| =
∣
∣
∣
∣
∣

z2

1 + z2
ξ

∣
∣
∣
∣
∣
≤ |ξ|

Using W (z) = z2 we obtain from (5.3.6)

V0(z, ξ) = W (z) + Ψ(z, ξ) + ξ2 = z2∞ + ξ2 (5.3.10)

The explicit solution of (5.3.9) is z̃(s) ≡ 0, if z = 0, and

z̃(s) =
z2 − 1 + zξ(1− e−s) +

√

(z2 − 1 + zξ(1− e−s))2 + 4z2

2z
if z 6= 0

The limit as s→∞ is

z̃(s)→ z∞ =
z2 − 1 + zξ +

√

(z2 − 1 + zξ)2 + 4z2

2z
if z 6= 0



5.3. RELAXED CONSTRUCTIONS 201

The change of coordinates (z, ξ)→ (z∞, ξ) is globally defined because the

matrix
[

∂z∞
∂z

∂z∞
∂ξ

0 1

]

=





z2+1√
(z2−1+zξ)2+4z2

z∞
z

z∞z

0 1





is nonsingular and ‖(z∞, ξ)‖ → ∞ as ‖(z, ξ)‖ → ∞.

We thus obtain the Lyapunov function V0(z, ξ) = z2∞ + ξ2 for the system

(5.3.9) as

V0(z, ξ) =







(

z2 − 1 + zξ +
√

(z2 − 1 + zξ)2 + 4z2
)2

4z2
+ ξ2 if z 6= 0

ξ2 if z = 0
(5.3.11)

which, by Theorem 5.11 and Corollary 5.12, is C∞. 2

5.3.2 Relaxed change of coordinates

A decoupling change of coordinates was found for (5.3.1) because the system

has a global stable manifold ζ = 0 given in the integral form (5.3.3). Using

the graph z = η(ξ) of this manifold the decoupling change of coordinates is

ζ = z − η(ξ) and the PDE defining η(ξ) is

∂η

∂ξ
a(ξ) = Fη + ψ(ξ), η(0) = 0

This PDE is obtained by differentiating z = η(ξ) with respect to time and

substituting (5.3.1) in ż = ∂η
∂ξ
ξ̇.

We proceed to investigate the existence of a stable manifold for the cascade

(Σ0)

{

ż = f(z) + ψ(z, ξ)

ξ̇ = a(ξ)

In this case we let the manifold expression be implicit, ζ(z, ξ) = 0. If the

manifold exists, the decoupling transformation ζ = ζ(z, ξ) satisfies ζ̇ = f(ζ),

and the PDE defining ζ(z, ξ) is

∂ζ

∂z
(f(z) + ψ(z, ξ)) +

∂ζ

∂ξ
a(ξ) = f(ζ), ζ(z, 0) = z (5.3.12)

This equation is impractical for computation and we use it only to define a re-

laxed change of coordinates. We recall from Section 5.1.3 that the presence in

ψ(z, ξ) of terms linear in ξ prevented the construction of composite Lyapunov
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functions in Theorem 5.6. This motivates us to seek a relaxed change of coor-

dinates which removes only these terms linear in ξ. This can be accomplished

by finding a function ζ̄(z, ξ) which satisfies

∂ζ̄

∂z
(f(z) + ψ(z, ξ)) +

∂ζ̄

∂ξ
a(ξ) = f(ζ̄) +R(ζ̄ , ξ), ζ̄(z, 0) = z (5.3.13)

where R(ζ̄ , ξ) contains only quadratic and higher-order terms in ξ.

Proposition 5.21 (Relaxed manifold PDE)

Let Assumptions 5.1, 5.2, and 5.4 be satisfied and suppose that ζ̄(z, ξ) is a

solution of the relaxed manifold PDE (5.3.13) where R(ζ̄ , ξ) is quadratic or

higher-order in ξ and satisfies the linear growth assumption in ζ̄ (Assumption

5.1). Then if ζ = ζ̄(z, ξ) qualifies for a global change of coordinates, it trans-

forms (Σ0) into a cascade in which the interconnection ψ does not contain

terms linear in ξ. In the new coordinates (ζ, ξ), a Lyapunov function for (Σ0)

is given by

V (ζ, ξ) = ln(W (ζ) + 1) +
∫ U(ξ)

0
γ(s)ds

where the function γ(.) is constructed as in Theorem 5.6. 2

Requiring that the decoupling be achieved only up to the quadratic terms

in ξ has the advantage that such a relaxed change of coordinates exists and

is explicit when the z-subsystem is linear. This follows from the results of

Mazenc and Praly [75].

Proposition 5.22 (Relaxed change of coordinates)

Suppose that in addition to Assumption 5.1, the cascade (Σ0) satisfies:

(i) ż = Fz, and ψ(z, ξ) = Mξ +
∑nξ
l=1 ξlMlz + r(z, ξ), where r(z, ξ) is

quadratic or higher-order in ξ.

(ii) λi(A) 6= λj(F ) and λi(A) + λj(F ) 6= λk(F ), i = 1, . . . , nξ, j, k =

1, . . . , nz

Then a constant ν > 0 and matrices N,Nl, l = 1, . . . , nξ exist such that the

global change of coordinates

ζ = ζ̄(z, ξ) = (I +

∑nξ
l=1Nlξl

1 + ν‖ξ‖2 )z +Nξ (5.3.14)
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transforms (Σ0) into the partially decoupled form

ζ̇ = Fζ + ψ̄(ζ, ξ)

ξ̇ = a(ξ)

where ψ̄ does not contain terms linear in ξ, that is ∂ψ̄
∂ξ
(ζ, 0) ≡ 0. Matrices

N,Nl, l = 1, . . . , nξ can be obtained by solving a set of linear algebraic equa-

tions.

Proof: Below we denote by O(‖ξ‖2)(‖z‖ + 1) any term which is quadratic

or higher-order in ξ and which, for a fixed ξ, is bounded by k(‖z‖ + 1). The

change of coordinates (5.3.14) yields

∂ζ

∂z
= I +

nξ∑

l=1

Nlξl +O(‖ξ‖2)(‖z‖+ 1)

∂ζ

∂ξ
= N + [N1z . . . Nnξz] +O(‖ξ‖2)(‖z‖+ 1)

Substituting these expressions in the PDE (5.3.13) we obtain

(I +
nξ∑

l=1

Nlξl)(Fz +Mξ +
nξ∑

l=1

ξlMlz) + (N + [N1z . . . Nnξz])Aξ =

= F [(I +
nξ∑

l=1

Nlξl)z +Nξ] +O(‖ξ‖2)(‖z‖+ 1) (5.3.15)

Equating the linear terms yields NA−FN = −M and N exists and is unique

because λi(A) 6= λj(F ).

Equating the second-order terms yields

NlF − FNl +Πl(N1, . . . , Nnξ) =Ml, l = 1, . . . , nξ (5.3.16)

where the i-th column of Πl is Π
(i)
l =

∑nξ
k=1N

(i)
k akl. From [11] it is known that

(5.3.16) has a unique solution if λi(A) + λj(F ) 6= λk(F ).

Finally, given the matrices Nl one can always find a constant ν > 0 such

that 0.5 < |I +
∑nξ

l=1
Nlξl

1+ν‖ξ‖2 | < 1.5, which guarantees that (5.3.14) is a globally

invertible change of coordinates ζ ↔ z. 2

5.3.3 Lyapunov functions with relaxed cross-term

We have seen that the construction of Lyapunov functions with cross-term

remains applicable even when the decoupling change of coordinates does not
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exist. However, the cross-term Ψ(z, ξ) has to be calculated either by integra-

tion

Ψ(z, ξ) =
∫ ∞

0

∂W

∂z
(z̃(s))ψ(z̃(s), ξ̃(s))ds

or by solving the cross-term PDE

∂Ψ

∂z
(f(z) + ψ(z, ξ)) +

∂Ψ

∂ξ
a(ξ) = −∂W

∂z
ψ(z, ξ), Ψ(z, 0) = 0 (5.3.17)

as shown in Section 5.2.3. To avoid the burden of computation, we again

employ relaxation and obtain Ψ̄ from the PDE

∂Ψ̄

∂z
(f(z)+ψ(z, ξ))+

∂Ψ̄

∂ξ
a(ξ) = −∂W

∂z
ψ(z, ξ)+R(z, ξ), Ψ̄(z, 0) = 0 (5.3.18)

where R(z, ξ) is quadratic or higher-order in ξ near ξ = 0. We note that

Ψ̄ =
∫ ∞

0

∂W

∂z
ψ(z̃, ξ̃)−R(z̃, ξ̃) ds

satsifes (5.3.18). Its existence is proven in the same way as that of Ψ.

Proposition 5.23 (Relaxed cross-term for composite Lyapunov functions)

Let Assumptions 5.1, 5.2, and 5.4 be satisfied and let Ψ̄(z, ξ) be a solution of

(5.3.18), where R(z, ξ) satisfies

(i) ‖R(z, ξ)‖ is quadratic or higher-order in ‖ξ‖ near ξ = 0,

(ii) For ‖ξ‖ fixed and ‖z‖ large, ‖R(z, ξ)‖ is bounded by cW (z).

If, for some c2 > 0 and γ1(.) ∈ K, the function V̄ (z, ξ) satisfies

V̄ (z, ξ) = W (z) + Ψ̄(z, ξ) + γ1(U(ξ)) (5.3.19)

then a composite Lyapunov function for (Σ0) is

V (z, ξ) = ln(V̄ (z, ξ) + 1) +
∫ U(ξ)

0
γ(s)ds

where γ(.) is constructed as in Theorem 5.6.

Proof: The time-derivative of V (z, ξ) is

V̇ =
˙̄V

V̄ + 1
+ γ(U(ξ))LaU(ξ)



5.3. RELAXED CONSTRUCTIONS 205

and the time-derivative of V̄ satisfies

˙̄V =
∂W

∂z
(f(z) + ψ(z, ξ)) + ˙̄Ψ(z, ξ) + γ ′1(U(ξ))LaU(ξ)

≤ ∂W

∂z
ψ(z, ξ) + ˙̄Ψ(z, ξ) ≤ R(z, ξ) (5.3.20)

Returning to V̇ , and using (i) and (ii), we conclude

V̇ ≤ R(z, ξ)
V̄ + 1

+ γ(U(ξ))LaU(ξ) ≤ γ3(‖ξ‖) + γ(U(ξ))LaU(ξ)

where γ3(.) is quadratic or higher-order in ξ. The function γ which achieves

V̇ ≤ 0 can then be constructed as in Theorem 5.6. 2

An advantage in relaxing the cross-term Ψ to Ψ̄ is that the construction of

Ψ̄ is explicit when the z-subsystem is linear.

Proposition 5.24 (Construction of the relaxed cross-term)

Suppose that, in addition to Assumptions 5.1 and 5.4,

ż = Fz, and ψ(z, ξ) =Mξ +
nξ∑

i=1

ξlMlz + r(z, ξ) (5.3.21)

where r(z, ξ) is quadratic or higher-order in ξ.

Then a relaxed cross-term which satisfies Proposition 5.23 is

Ψ̄(z, ξ) = ξTΨ0ξ + ξTΨ1z + zT (
nξ∑

i=1

ξi
1 + ν‖ξ‖2Ψ2i)z (5.3.22)

where Ψ0, Ψ1, and Ψ2i, i = 1, . . . , nξ are constant matrices which can be

obtained by solving a set of linear algebraic equations.

Proof: Let W (z) = 1
2
zT W̄z where W̄ > 0 satisfies W̄F + F T W̄ ≤ 0. The

partial derivatives of the relaxed cross-term (5.3.22) are

∂Ψ̄

∂z
= ξTΨ1 + 2zT (

nξ∑

l=1

ξlΨ2l) +O(‖ξ‖2)(‖z‖2 + 1)

∂Ψ̄

∂ξ
= 2ξTΨ0 + (Ψ1z)

T + zT [Ψ21 . . .Ψ2nξ ]z +O(‖ξ‖2)(‖z‖2 + 1)

Substituting these expressions in (5.3.18)

∂Ψ̄

∂z
(Fz+Mξ+

nξ∑

l=1

ξlMlz)+
∂Ψ̄

∂ξ
Aξ = −zT W̄ (Mξ+

nξ∑

l=1

ξlMlz)+O(‖ξ‖2(‖z‖2+1)

(5.3.23)
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and equating the quadratic terms, we obtain

F TΨT
1 +ΨT

1A = −W̄M
ATΨ0 +Ψ0A = −1

2
(MTΨT

1 +Ψ1M)
(5.3.24)

The unique solutions Ψ0 and Ψ1 exist because A is Hurwitz and F is Lyapunov

stable, so that λi(A) 6= −λj(F ).
Equating the terms of the form zT (

∑nξ
l=1(.)ξl)z we obtain

Ψ2lF + F TΨ2l +Πl(Ψ21, . . . ,Ψ2nξ) = −W̄Ml, l = 1, . . . , nξ (5.3.25)

where the i-th column of Πl is Π
(i)
l =

∑nξ
k=1Ψ

(i)
2kakl. It is known from [11] that

(5.3.25) has a unique solution if λi(A) + λj(F ) 6= −λk(F ), which is satisfied

because λi(A) + λj(F ) < 0 and −λk(F ) ≥ 0. This completes the calculation

of Ψ̄ in (5.3.22).

By Assumption 5.4 the Lyapunov function U(ξ) is locally quadratic. Hence,

for each α2 > 0, a function γ1 ∈ K can be found such that γ1(U) + ξTΨ0ξ ≥
α2ξ

T ξ and we obtain

W (z) + Ψ̄(z, ξ) + γ1U(ξ) ≥

≥ zT (
1

2
W̄ +

nξ∑

i=1

ξi
1 + ν‖ξ‖2Ψ2i)z + ξTΨ1z + ξTΨ0ξ + γ1U(ξ)

≥ α1(ν)‖z‖2 + ξTΨ1z + α2‖ξ‖2

where α1(ν) =
1
2
λmin(W̄ ) +O( 1

ν
). In view of

|ξTΨ1z| ≤ k1‖ξ‖‖z‖ ≤
k1
2µ
‖ξ‖2 + k1µ

2
‖z‖2

which is true for any µ > 0, there exist positive constants ν, α2, µ, and c > 0

such that

α1(ν)‖z‖2 + ξTΨ1z + α2‖ξ‖2 ≥ (α1(ν)−
k1µ

2
)‖z‖2 + (α2 −

k1
2µ

)‖ξ‖2 ≥ c

2
zT W̄z

which proves (5.3.19). 2

We stress that the above explicit construction of Ψ̄(z, ξ) is valid even when

an invariant manifold ζ(z, ξ) = 0 and the corresponding decoupling change

of coordinates do not exist. In other words, Ψ̄(z, ξ) can be constructed even

when the nonresonance conditions of Proposition 5.22 are violated.
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Example 5.25 (Construction of a relaxed cross-term)

The system

ż = −z + ξ + zξ

ξ̇ = a(ξ), ∂a
∂ξ
(0) = −1 (5.3.26)

does not have an invariant manifold z = η(ξ) because its Jacobian linearization

is the Jordan block
(

−1 1
0 −1

)

Hence, a change of coordinates which removes the terms ξ and zξ does not

exist. We choose W (z) = 1
2
z2, and, using Proposition 5.24, construct the

cross-term Ψ̄ as

Ψ̄(z, ξ) =
1

4
ξ2 +

1

2
ξz +

1

3
z2

ξ

1 + νξ2

By selecting the constants γ1 = 1 and ν = 4 we obtain

V̄ (z, ξ) =
1

2
z2 + Ψ̄(z, ξ) + γ1ξ

2 = z2(
1

2
+

1

3

ξ

1 + νξ2
) +

1

2
ξz + (γ1 +

1

4
)ξ2 ≥ 1

4
z2

A Lyapunov function for (5.3.26) is thus V (z, ξ) = ln(V̄ (z, ξ)+1)+
∫ U(ξ)
0 γ(s)ds

where the function γ(.) can be constructed as in Theorem 5.6. 2

When the interconnection ψ(z, ξ) contains no bilinear terms ziξj, then the

quadratic approximation of V0(z, ξ) is sufficient for the construction of a Lya-

punov function for (Σ0).

Corollary 5.26 (Quadratic approximation of V0(z, ξ))

Suppose that, in addition to the assumptions of Proposition 5.24, matrices

Ml in (5.3.21) are zero, that is,

ψ(z, ξ) =Mξ + r(z, ξ)

Then a Lyapunov function for (Σ0) is

V (z, ξ) = ln(V̄ (z, ξ) + 1) +
∫ U(ξ)

0
γ(s)ds

where V̄ (z, ξ) is the quadratic approximation of the Lyapunov function V0(z, ξ)

given by (5.2.1). 2
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5.4 Stabilization of Augmented Cascades

5.4.1 Design of the stabilizing feedback laws

Lyapunov function V0(z, ξ) constructed in the preceding section will now be

employed for controller design for two types of cascade systems obtained by

augmenting the core system (Σ0).

In the first type of cascade

(Σ1)

{

ż = f(z) + ψ(z, ξ) + g1(z, ξ)u

ξ̇ = a(ξ) + b(ξ)u
(5.4.1)

(Σ0) appears as its uncontrolled part (u = 0). The damping control with V0 is

u1(z, ξ) = LGV0(z, ξ) = −
∂V0
∂z

(z, ξ)g1(z, ξ)−
∂V0
∂ξ

(z, ξ)b(ξ) (5.4.2)

where GT (z, ξ) = [gT1 (z, ξ) b
T (ξ)]. For the closed-loop system (Σ1, u1) the

derivative V̇0 is

V̇0(z, ξ) = LfW (z) + LaU(ξ)− u21(z, ξ) ≤ 0 (5.4.3)

From Section 3.5.2 we know that, by construction, the system (Σ1) with the

output y = u1(z, ξ) is passive with the storage function V0. Furthermore, if

(Σ1) with the output y = u1(z, ξ) is ZSD, then the feedback law u = u1(z, ξ)

achieves GAS of the equilibrium (z, ξ) = (0, 0).

In the second type of cascade

(Σ2)







ż = f(z) + ψ(z, ξ) + g2(z, ξ, y)y

ξ̇ = a(ξ) + b(ξ)y
ẏ = u

(5.4.4)

(Σ0) is the zero-dynamics subsystem with respect to the output y. For (Σ2)

the feedback passivation design of Section 5.4 achieves global stability and,

under additional assumptions, global asymptotic stability. In the first step,

the feedback transformation

u = −∂V0
∂z

g2 −
∂V0
∂ξ

b+ v (5.4.5)

renders the system passive from the new input v to the output y with the

storage function

V2(z, ξ, y) = V0(z, ξ) +
1

2
y2 (5.4.6)
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The additional feedback v = −y results in the control law

u2(z, ξ, y) = u1(z, ξ, y)− y (5.4.7)

where, with a slight abuse of notation, u1(z, ξ, y) denotes the expression (5.4.2)

with g1(z, ξ) replaced by g2(z, ξ, y). The derivative V̇2 along the solutions of

the closed-loop system (Σ2, u2) satisfies

V̇2 ≤ LfW (z)− LaU(ξ)− y2 ≤ 0 (5.4.8)

This guarantees global stabillity of the closed-loop system. Global asymptotic

stability is achieved if the system (Σ2) with input v and output y is ZSD.

Assuming, without loss of generality, that g1(z, 0) = g2(z, 0, 0), we denote

u1(z, 0) = u2(z, 0, 0) =: u0(z). Then the global asymptotic stability of both

(Σ1, u1) and (Σ2, u2) is achieved if z = 0 is the largest invariant set of ż = f(z)

contained in

E = {z ∈ IRnz | LfW (z) = 0;u0(z) = 0} (5.4.9)

The next example illustrates the fact that, with the designs (5.4.2) and

(5.4.7), higher-order terms of the function ψ can influence asymptotic stability

only if they are linear in ξ, such as z2ξ.

Example 5.27 (Stabilization through higher-order terms)

Consider the system
ż = zξ

ξ̇ = −ξ + u
(5.4.10)

which is in the form (Σ1). Setting u = 0 and using W (z) = z2, we obtain

V0(z, ξ) = z2∞+ξ2. Taking the limit for s→∞ of the solution z̃(s) = zeξ(1−e
−s),

we obtain the Lyapunov function

V0(z, ξ) = z2e2ξ + ξ2

The control law (5.4.2) is then given by

u1(z, ξ) = −
∂V0
∂ξ

= −2(z2e2ξ + ξ)

Because u1(z, 0) = 0 ⇒ z = 0, the set E in (5.4.9) is z = 0, which proves

global asymptotic stability of the closed-loop system.

However, this design fails if the z-subsystem is controlled through the terms

which are quadratic or higher-order in ξ. For the nonlinear system

ż = ξ3

ξ̇ = −ξ + u
(5.4.11)
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with u = 0, the solution z̃(s) = z + ξ3

3
(1 − e−3s) results in the Lyapunov

function

V0(z, ξ) = (z +
ξ3

3
)2 + ξ2

The feedback control (5.4.2) is now given by

u1(z, ξ) = −
∂V0
∂ξ

= −2(z + ξ3

3
)ξ2 − 2ξ

and it does not achieve asymptotic stability, because ξ = 0 is an equilibrium

manifold of the closed-loop system.

This design method fails, even though the system (5.4.11) is stabilizable.

For example, the control law u(z, ξ) = −z achieves global asymptotic stability

as can be verified with the Lyapunov function V (z, ξ) = z2

2
+ ξ4

4
. 2

5.4.2 A structural condition for GAS and LES

We now give a GAS condition which can be verified before the design. It

connects stabilizability of the Jacobian linearization of (Σ1) with GAS of the

closed-loop systems (Σ1, u1) and (Σ2, u2).

Assumption 5.28 (Structural conditions for asymptotic stabilization)

The subsystem Lyapunov functions W (z) and U(ξ) are locally quadratic, that

is ∂2W
∂z2

(0, 0) = W̄ > 0, ∂2U
∂ξ2

(0) = Ū > 0. Furthermore, z can be partitioned

into z = (z1, z2) in such a way that Assumption 5.10 is satisfied and, for all

z = (0, z2), the following holds:

∂ψ

∂ξ
(z, 0) :=M, g1(z, 0) := g0, and

∂W

∂z
(z) = zT2 W̄2

where M and W̄2 are constant matrices, and g0 is a constant vector.

Theorem 5.29 (GAS and stabilizability of the Jacobian linearization)

Under Assumption 5.28, (Σ1, u1) and (Σ2, u2) are globally asymptotically sta-

ble if the span of { ∂
∂z2
} lies in the stabilizable subspace of the Jacobian lin-

earization of (Σ1):

(Σ̄1)







ż1 = F1z1 +M1ξ + g01u
ż2 = F21z1 + F2z2 +M2ξ + g02u

ξ̇ = Aξ + b0u,
(5.4.12)
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Proof : Using (5.4.3) and Assumption 5.10, it is sufficient to consider the

invariant sets of ż2 = F2z2 in E ′ = {(z, ξ) = (0, z2, 0)| u0(z) = 0}. Using

Assumption 5.28, we rewrite E ′ as

E ′ = {(z, ξ) = (0, z2, 0)| − zT2 W̄2g0 −
∂Ψ

∂z
(z, 0)g0 −

∂Ψ

∂ξ
(z, 0)b0 = 0} (5.4.13)

To show that z2 = 0 attracts all solutions of ż2 = F2z2 in E ′, we use a

state decomposition (z, ξ) =: ζ = (ζu, ζs) of Σ̄1 into its unstabilizable and

stabilizable parts:

ζ̇ = Āζ + b̄u, Ā =

(

Āu 0
Āus Ās

)

, b̄ =

(

0
b̄s

)

Because ∂2W
∂z2

(0, 0) > 0, the Jacobian linearization of ż = f(z) at 0 is Lyapunov

stable, for otherwise LfW would not be nonpositive for all z. Hence, (Σ̄1) is

Lyapunov stable when u ≡ 0. Let P̄ > 0 satisfy P̄ Ā+ ĀT P̄ ≤ 0. The control

law ū = −2b̄T P̄ ζ results in

ζ̇u = Āuζu
ζ̇s = Āhζs + Ā1ζu, Ah = As − 2b̄sb̄

T
s P̄s

(5.4.14)

with P̄s being the positive definite submatrix of P̄ corresponding to Ās. Using

the detectability of the pair (b̄Ts , Ā
T
s ), we conclude that Ah is Hurwitz and,

hence, any solution of (5.4.14) with ζu(0) = 0 converges to zero. Because,

by assumption, E ′ belongs to the stabilizable subspace of (Σ̄1), for any initial

condition in E ′ the solution of (Σ̄1, ū) converges to zero.

One particular choice for P̄ results from the quadratic Lyapunov function

V̄ (z, ξ) =
1

2
zT W̄z + Ψ̄(z, ξ) + ξT Ūξ (5.4.15)

where, following Theorem 5.8,

Ψ̄(z, ξ) =
∫ ∞

0
z̄T W̄ M ξ̄(s) ds (5.4.16)

Here (z̄(s), ξ̄(s)) is the solution of the uncontrolled system (Σ̄1, u = 0) with

the initial condition (z, ξ). The corresponding control law

ū(z, ξ) = −zT W̄g0 −
∂Ψ̄

∂z
g0 −

∂Ψ̄

∂ξ
b− 2ξT Ūb0 (5.4.17)

achieves convergence of z2(t) to 0 along any solution of (Σ̄1, ū) starting in E ′.
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To complete the proof of the theorem, we will show that the control law

ū(z, ξ) restricted to the set {(z, ξ)|z1 = 0, ξ = 0} is equal to u0(z) and hence

in E ′ both are equal to 0. Because of this, if there exists a solution of (Σ1, u1)

which is contained in E ′ for all t, it is also a solution of (Σ̄1, ū), and therefore

converges to zero.

In E ′, the control law (5.4.17) becomes

ū((0, z2), 0) = −zT2 W̄2g0 −
∂Ψ̄

∂z
(z, 0)g0 −

∂Ψ̄

∂ξ
(z, 0)b

By definition, Ψ(z, 0) = Ψ̄(z, 0) = 0 for each z; it immediately follows that for

all z ∈ IRnz

∂Ψ

∂z
(z, 0) =

∂Ψ̄

∂z
(z, 0) = 0 (5.4.18)

Next note that, for each initial condition (0, z2, 0) and for all s ≥ 0,

z̃1(s) = z̄1(s) ≡ 0, ξ̃(s) = ξ̄(s) ≡ 0 and z̃2(s) = z̄2(s) = eF2sz2

Hence, for each initial condition ((0, z2), 0),

∂Ψ

∂ξ
(z, 0) =

∫ ∞

0

∂2W

∂z2
∂z̃

∂ξ
ψ(z̃(s), 0) ds+

∫ ∞

0

∂W

∂z

∂ψ

∂ξ

∂ξ̃

∂ξ
(z̃(s), 0) ds

The first term on the right hand side is 0 because ψ(z, 0) = 0. Since ∂ξ̃
∂ξ
(s)
∣
∣
∣
ξ=0

=

eAs, where A = ∂a
∂ξ
(0), the second term becomes

∫ ∞

0
z̃T2W2MeAs ds

which, using (5.4.16), is equal to ∂Ψ̄
∂ξ
((0, z2), 0). 2

The set of conditions in Assumption 5.28, which allowed us to verify apriori

the GAS property of the closed-loop system, restricted the form of ψ and g1.

These restrictions were introduced so that GAS can be concluded from the

properties of the Jacobian linearization. That this is not always possible can

be seen in the system
ż = zξ + ξ

ξ̇ = −ξ + u

which has controllable Jacobian linearization, but it is not stabilizible because

z = −1 is an equilibrium of the z-subsystem for all ξ and u. The only condition

of Theorem 5.29 that this system fails is that ∂ψ
∂ξ
(z, 0) = 1+ z is not constant.

However, as one can see in the case of the system (5.4.10) in Example 5.27,
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the fact that the conditions of Theorem 5.29 are not satisfied does not mean

that GAS is not achieved. Rather, it must be deduced from the Invariance

Principle.

By Theorem 5.11 and Corollary 5.12, Assumption 5.28 also guarantees

smoothness of the Lyapunov function and the control laws for (Σ1) and (Σ2).

In addition, the following corollary shows that local exponential stability is

achieved if the Jacobian linearization (Σ̄1) is stabilizable. This additional

property will be needed for the recursive designs in Chapter 6.

Corollary 5.30 (LES when the Jacobian linearization is stabilizable )

If (Σ0) satisfies Assumptions 5.1, 5.2, and 5.28 and if the Jacobian linearization

(Σ̄1) is stabilizable, then in addition to being globally asymptotically stable,

(Σ1, u1) and (Σ2, u2) are also locally exponentially stable.

Proof: We will show that the linearization of the control law (5.4.2) is a

stabilizing feedback for the Jacobian linearization of (Σ1). This implies that

the Jacobian linearization of (Σ1, u1) is asymptotically stable and therefore

exponentially stable.

First we write the approximations around (z, ξ) = (0, 0) of the relevant

functions by keeping the lowest order terms:

W (z) = 1
2
zT W̄z + h.o.t., U(ξ) = ξT Ūξ + h.o.t.

Ψ(z, ξ) = zTΨ1ξ + ξTΨ0ξ + h.o.t., ψ(z, ξ) =Mξ + h.o.t.
g(z, ξ, y) = g0 + h.o.t, b(ξ) = b0 + h.o.t
f(z) = Fz + h.o.t., a(ξ) = Aξ + h.o.t

where h.o.t. stands for “higher order terms.” The linearization of the control

law u1 becomes

u1l = zT W̄g0 − ξTΨT
1 g0 − zTΨ1b0 − 2ξTΨ0b0 − 2ξT Ūb0 (5.4.19)

For the Jacobian linearization of (Σ1) we use the same construction as in

Theorem 5.29 and design the linear control law

ū = zT W̄g0 − ξTΨT
l1g0 − zT Ψ̄1b0 − 2ξT Ψ̄0b0 − 2ξT Ūb0 (5.4.20)

where the matrices Ψ̄1 and Ψ̄0 are obtained from

Ψ̄(z, ξ) =
∫ ∞

0
z̄T (s)W̄Mξ̄(s) ds = zT Ψ̄1ξ + ξT Ψ̄2ξ

As in Theorem 5.29, the control law (5.4.20) stabilizes the linearized system

(Σ̄1).

To prove that the control law (5.4.20) is identical to the linearization

(5.4.19) we need to show that Ψ1 = Ψ̄1 and Ψ0 = Ψ̄0. This follows from

the uniqueness of the solution of (5.3.24). 2
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5.4.3 Ball-and-beam example

The well known ball-and-beam example [35], shown in Figure 5.1, is described

by

0 = r̈ +G sin θ + βṙ − rθ̇2
τ = (r2 + 1)θ̈ + 2rṙθ̇ +Gr cos θ

(5.4.21)

where r is the position of the ball, θ is the angle of the beam, the control

variable is the torque applied to the beam τ , G is the gravity (G = 9.81

for simulations), and β > 0 is the viscous friction constant (β = 0.1 for

simulations).

x3
x1x4

x2

Figure 5.1: The ball-and-beam system.

If we apply the feedback transformation

τ = 2rṙθ̇ +Gr cos θ + k1θ + k2θ̇ + (r2 + 1)u (5.4.22)

and define z1 = r, z2 = ṙ, ξ1 = θ, ξ2 = θ̇, we obtain the state equation

ż1 = z2
ż2 = −βz2 −G sin ξ1 + z1ξ

2
2

ξ̇1 = ξ2
ξ̇2 = −k1ξ1 − k2ξ2 + u

(5.4.23)

This system is in the cascade form (Σ1). First, when u = 0, the ξ-subsystem is

exponentially stable with the Lyapunov function U(ξ) = 1
2
(k1x

2
1+x

2
2). Second,

when ξ = 0, the z-subsystem is globally stable with the Lyapunov function

W (z) = 1
2
(βz1 + z2)

2 + 1
2
z22 .

Because the conditions of Theorem 5.8 are satisfied, (5.4.23) is globally

stable and

Ψ =
∫ ∞

0
(βz̃1(s) + 2z̃2(s))(−G sin ξ̃1(s) + x̃1(s)ξ̃

2
2(s)) ds
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is the desired cross-term which makes V0 =W (x)+Ψ(x, ξ)+U(ξ) a Lyapunov

function for the system (5.4.23).

The control law for (Σ1) given by

u1 = −
∂Ψ

∂ξ2
− ∂U

∂ξ2
= −∂Ψ

∂ξ2
− ξ2 (5.4.24)

achieves GAS as it can be shown by verifying that the consitions of Theorem

5.29 are satisfied. To evaluate u we need to compute ∂Ψ
∂ξ2

. Among different

mehods available for approximate evaluation of ∂Ψ
∂ξ2

we employ the on-line

integration in faster than real time. For this we need ξ̃, z̃, and the variational

variables ∂ξ
∂ξ2

and ν := ∂z
∂ξ2

.

We obtain

ξ̃(τ) = eAτξ, A =

[

0 1
−k1 −k2

]

(5.4.25)

and ∂ξ
∂ξ2

= [eAτ(12) e
Aτ
(22)]

T , where eAτ(ij) denotes the (i, j)-th entry of the matrix eAτ .

The set of differential equations to be integrated on a sufficiently long interval

[0, T ] is

d
dτ
z̃1 = z̃2 z̃1(0) = z1

d
dτ
z̃2 = −βz̃2 −G sin ξ̃1 + z̃1ξ̃

2
2 z̃2(0) = z2

d
dτ
ν1 = ν2 ν1(0) = 0

d
dτ
ν2 = −βν2 −G cos ξ̃1 e

Aτ
(12) + ν1ξ̃

2
2 + 2z̃1ξ̃2 e

Aτ
(22) ν2(0) = 0

d
dτ

∂Ψ∗

∂ξ2
= (βν1 + 2ν2)(G sin ξ̃1 + z̃1ξ̃

2
2) + (βz̃1 + 2z̃2)

×(G cos ξ̃1 e
Aτ
(12) + ν1ξ̃

2
2 + 2z̃1ξ̃2 e

Aτ
(22))

∂Ψ∗

∂ξ2
(0) = 0

(5.4.26)

where, ∂Ψ∗

∂ξ2
(τ), defined in Section 5.2.3, is an approximation of ∂Ψ

∂ξ2
obtained

by truncation of the integral at the time τ . By truncating at τ = T we obtain

the approximate control law

uapp = −
∂Ψ∗

∂ξ2
(T ; z, ξ)− ξ2 (5.4.27)

which is used in the simulations.

For the computer simulations, we have placed both eigenvalues of A at −2
with k1 = 4, k2 = 4. Thus ‖ξ̃(τ)‖ and ‖ψ(z̃(τ), ξ̃(τ))‖ decay as τe−2τ . Based

on this rate of decay we have set T = 10 seconds. A response of the closed-

loop system from the initial condition (1, 0,−1.57, 0) is shown in Figure 5.2.

This initial condition corresponds to the upright beam with the ball at 1 unit

(meter) distance below the pivot. The controller achieves an excellent control
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Figure 5.2: Typical transient of the designed ball-and-beam system

of the overshoot of the ball, but eventually the convergence of the ball position

becomes slow. This is a consequence of the application of damping control,

which, as shown in Example 3.39, prevents us from assigning a desired rate

of convergence. When the states are sufficiently small so that the Jacobian

linearization determines the response, the behavior of the ball position and

velocity becomes dominated by the slow mode at −β = −0.1.

5.5 Lyapunov functions for adaptive control

When a nonlinear cascade system depends on an unknown parameter θ ∈ IRp,

we construct the cross-term Ψ and the Lyapunov function V0 to be parame-

terized by θ. Our goal is to use this construction in the adaptive controller

design. As we shall see, this approach applies to systems for which other adap-

tive control design methods cannot be applied. A benchmark problem of this

kind, proposed in [54], is the third order system

ẋ1 = x2 + θx23
ẋ2 = x3
ẋ3 = u

(5.5.1)

with a scalar unknown parameter θ. This system is a representative of a

larger class of nonlinear systems with unknown parameters for which we will
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now solve the adaptive stabilization problem. The systems in this class are of

the form
ż = Fz +H(ξ)z + ψT (ξ)θ + gT (z, ξ, y)θ y

ξ̇ = Aξ + bT (z, ξ, y)θ y
ẏ = ϕT (z, ξ, y)θ + u

(5.5.2)

where H(0) = 0, ψ(0) = 0, z ∈ Rnx , ξ ∈ Rnξ , y ∈ R, u ∈ R, and θ ∈ Rp.

Output y and input u are assumed to be scalars for notational convenience.

All the results apply when y and u are m-vectors. The main assumption about

the cascade (5.5.2) is about the stability properties of its subsystems.

Assumption 5.31 (Stability of subsystems)

In (5.5.2) the matrix A is Hurwitz and ż = Fz is stable, that is, there exist

positive definite matrices PF , PA, QA and a positive semidefinite matrix QF

such that
F TPF + PFF = −QF

ATPA + PAA = −QA

If the parameters θ were known, the above assumption would make the

system (5.5.2) a special case of the augmented cascade (Σ2).

It is important to observe that for some θ ∈ Rp the system (5.5.2) may fail

to be controllable or even stabilizable. In general, its stabilizability is restricted

to θ ∈ ΩS ⊂ IRp. However, even when θ 6∈ ΩS the adaptive controller which

will be designed below will achieve boundedness of all the signals. A set

Π ⊂ ΩS, will be characterized in which the adaptive controller solves the state

regulation problem, that is, forces all the states to converge to 0.

5.5.1 Parametric Lyapunov Functions

With the output y the zero-dynamics subsystem of (5.5.2) is

ż = Fz +H(ξ)z + ψT (ξ)θ

ξ̇ = Aξ
(5.5.3)

This system is in the form (Σ0) and Assumptions 5.1 and 5.2 are satisfied.

Hence the construction of the cross-term from Section 6.2 is applicable and we

get

Ψ(z, ξ, θ) =
∫ ∞

0
2z̃T (s; (z, ξ), 0)PF [H(ξ̃(s; ξ, 0)) z̃(s; (z, ξ), 0)+ψT (ξ̃(s; ξ, 0))θ] ds

(5.5.4)

This cross-term is used in the Lyapunov function

V0(z, ξ, θ) = zTPF z +Ψ(z, ξ, θ) + ξTPAξ (5.5.5)
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Its derivative along the solutions of (5.5.3) is

V̇0 = −zTQF z − ξTQAξ ≤ 0 (5.5.6)

Our design of the adaptive controller requires that, possibly after a repa-

rameterization, the control law be a linear function of θ. This will be the case

when the Lyapunov function V0(z, ξ, θ) is a polynomial function of θ. The

above construction satisfies this requirement because, as we now show, the

cross-term Ψ is a polynomial of degree 2 in θ.

The solution of the system (5.5.3), with the initial condition (z, ξ) at time

s = 0, is

z̃(s) = Φξ(s, 0)z +
∫ s

0
Φξ(s, τ)ψ

T (ξ̃(τ))θ dτ =: Φξ(s, 0)z + JT (ξ, s)θ

ξ̃(s) = eAsξ
(5.5.7)

where Φξ(s, t) satisfies

Φ̇ξ(s, t) = [F +H(ξ̃(s))]Φξ(s, t), Φξ(t, t) = I

Substituting z̃ and ξ̃ into (5.5.4) we obtain Ψ as a quadratic polynomial in θ:

Ψ(z, ξ) =
∫ ∞

0
2(θTJ(ξ, s) + zTΦT

ξ (s, 0))×
×PF [H(ξ̄(s))(Φξ(s, 0)x+ JT (ξ, s)θ) + ψT (ξ̄(s))θ] ds

=: zTΨ0(ξ)z + zTΨ1(ξ)θ + θTΨ2(ξ)θ (5.5.8)

The coefficient matrices in the above expressions are

Ψ0(ξ) = 2
∫ ∞

0
ΦT
ξ PFHΦξ ds

Ψ1(ξ) = 2
∫ ∞

0
ΦT
ξ [(PFH +HTPF )J

T + PFψ
T ] ds

Ψ2(ξ) = 2
∫ ∞

0
JPF [HJ

T + ψT ] ds

(5.5.9)

With this expression for the cross-term the Lyapunov function (5.5.5) be-

comes

V0(z, ξ, θ) = zTPFx+ zTΨ0(ξ)z + zTΨ1(ξ)θ + θTΨ2(ξ)θ + ξTPAξ (5.5.10)

The cascade (5.5.3) satisfies Assumption 5.10 and hence Theorem 5.11

guarantees that Ψi’s are differentiable as many times as the functions H(ξ)

and ψ(ξ) in (5.5.2).
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5.5.2 Control with known θ

Let us first assume that the parameter vector θ is known and design a controller

which achieves global stability of the system (5.5.2). Because the cascade

(5.5.2) is in the form (Σ2), we employ the Lyapunov function V2 = V0 +
1
2
y2

and the feedback passivating control law (5.4.7) which in this case is given by

u(z, ξ, y, θ) = −y − ϕ(z, ξ, y)T θ − ∂V0
∂z

gT (z, ξ, y)θ − ∂V0
∂ξ

bT (z, ξ, y)θ

= −y − [ϕT + 2zT (PF +Ψ0)g
T + 2ξTPAb

T + zT
nx∑

i=1

zi
∂Ψ

(i)
0

∂ξ
bT ]θ

−θT [ΨT
1 g

T +
nx∑

i=1

zi
∂(ΨT

1 )
(i)

∂ξ
bT ]θ − θT

p
∑

i=1

θi
∂Ψ

(i)
2

∂ξ
bT θ

(5.5.11)

where, as in Section 5.3, the superscript (i) denotes the i-the column of the

corresponding matrix. Because

V̇2 = −zTQF z − ξTQAξ − y2 ≤ 0 (5.5.12)

we conclude that without any restriction on θ, the above control law achieves

global stability and the regulation of ξ and y, that is ξ → 0 and y → 0 as

t→∞. This is true for all θ, regardless of a possible lack of stabilizability. To

prove GAS of the closed-loop system (5.5.2), (5.5.11), we need one additional

assumption constraining θ. The set ΩS of θ for which (5.5.2) is stabilizable

is very difficult to characterize. Instead, we apply the Invariance Principle

and conclude that the solutions of the closed-loop system converge to E, the

largest invariant set where V̇2 = 0. This motivates the following definition.

Definition 5.32 (Addmissible set P)
Addmissible set P is the set of all θ ∈ Rp for which z = 0 is the only solution

of the equations

ż = Fz, zTQF z ≡ 0, χ(z, θ) ≡ 0 (5.5.13)

where χ(z, θ) = ϕT (z, 0, 0)θ + u(z, 0, 0, θ). 2

One important point, later illustrated in Example 5.41, is that the equa-

tions (5.5.13) are in the closed form even when the closed-form expression for

the control law is not available.

Proposition 5.33 (GAS with θ known)

If θ ∈ P then the closed-loop system (5.5.2), (5.5.11) is globally asymptotically

stable. 2
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Example 5.34 (Benchmark problem with θ known)

To design a controller which achieves global asymptotic stability for the bench-

mark system (5.5.1) we first transform (5.5.1) into the form (5.5.2) introducing

the output y = x2 + x3:

ẋ1 = x2 + θx22 + θ(y − 2x2)y
ẋ2 = −x2 + y
ẏ = −x2 + y + u

(5.5.14)

The zero-dynamics subsystem is

ẋ1 = x2 + θx22
ẋ2 = −x2

To construct the Lyapunov function (5.5.5) we let PF = 1 and using (5.2.48)

compute

Ψ(x1, x2, θ) =
∫ ∞

0
x̃1(s)(x̃2(s) + θx̃22(s)) ds = −x21 + (x1 + x2 +

1

2
θx22)

2

Thus, our Lyapunov function for the zero dynamics is

V0(x1, x2, θ) = (x1 + x2 +
1

2
θx22)

2 + x22

When θ is known, the control law (5.5.11) is implementable and is given by

u = −2y − x1 − x2 − θ[(x1 + x2)(y − x2) +
1

2
x22]−

1

2
θ2(y − x2)x22 (5.5.15)

It achieves boundedness of all the states and the convergence of x2 and y to 0.

To prove assymptotic stability we need to characterize the set P via (5.5.13).

In this case F = 0, QF = 0, ϕ = 0, so that the only nontrivial equation in

(5.5.13) is

χ(x1, θ) = u(x1, 0, 0, θ) = −x1 = 0

Becasue x1 = 0 is the only solution of (5.5.13) for all θ we have P = IR. Thus

the global asymptotic stability is achieved without any restriction on θ. 2

Example 5.35 (Lack of stabilizability)

The benchmark system (5.5.1) is stabilizable for any value of the parameter

θ. That this is not always the case is illustrated by

ż = ξ + θ1y

ξ̇ = −ξ + θ2y
ẏ = u

(5.5.16)
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This linear system with two parameters is in the form (5.5.2). From d
dt
(z +

ξ) = (θ1 + θ2)y it is obvious that (5.5.16) is not stabilizable for θ1 + θ2 = 0.

Nevertheless, we are able to achieve boundedness and regulation of ξ and y

for any θ1 and θ2.

The zero-dynamics subsystem is

ż = ξ

ξ̇ = −ξ

With PF = 1 the Lyapunov function (5.5.5) is

V0(z, ξ) = z2 + 2zξ + 2ξ2

and the control law

u = −2(θ1 + θ2)z − 2(θ1 + 2θ2)ξ − y

achieves global stability and convergence of ξ and y to 0.

In this example the only nontrivial equation in (5.5.13) is

χ(z, θ) = u(z, 0, 0, θ) = −2z(θ1 + θ2) = 0 (5.5.17)

If z = 0 is to be the only solution of (5.5.17) we must restrict θ to belong to

P = {(θ1, θ2) ∈ IR2 : θ1 + θ2 6= 0}. Thus, according to Proposition 5.33, if

θ ∈ P then the global asymptotic stability of the closed-loop system is also

achieved. 2

5.5.3 Adaptive Controller Design

The control law (5.5.11) is a cubic polynomial in θ. To design an adaptive

version of (5.5.11) we resort to overparameterization by introducing a new

parameter ϑl for every product of θi’s which appears in (5.5.11), such as ϑl1 :=

θiθj, ϑl2 := θiθjθk, etc. In this way we have defined the augmented vector

ΘT = [θT ϑT ] ∈ IRq where q ≤ 1
6
(p3 + 6p2 + 11p).

We rewrite the control law (5.5.11) as

u(z, ξ, y,Θ) = −y − wT (z, ξ, y)Θ (5.5.18)

where the function w can be derived from (5.5.11). Because the parameter

vector is not known, we replace it with an estimate Θ̂T ∆
= [θ̂T ϑ̂T ] and obtain

the “certainty equivalence” control law

u(z, ξ, y, Θ̂) = −y − wT (z, ξ, y)Θ̂ (5.5.19)
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Next we modify the Lyapunov function V2 to include the parameter esti-

mation error Θ̃ := Θ− Θ̂:

Ve(z, ξ, y, θ, Θ̃) = V0(z, ξ, θ) +
1

2
y2 +

1

2
Θ̃T Θ̃ (5.5.20)

Its time-derivative along the solutions of the closed-loop system is

V̇e(z, ξ, y, θ, Θ̃) = V̇0(z, ξ, θ) + yu(z, ξ, y, Θ̂) + Θ̃T ˙̃Θ

Adding and subtracting yu(z, ξ, y,Θ) from V̇e and using (5.5.12) we obtain

V̇e = −zTQF z − ξTQAξ − y2 + ywT (z, ξ, y)Θ̃ + Θ̃T ˙̃Θ

The parameter update law which eliminates the parameter error terms from

V̇e is
˙̂
Θ = w(z, ξ, y)y (5.5.21)

The remaining expression for Ve is negative semidefinite:

V̇e = −zTQF z − ξTQAξ − y2 ≤ 0 (5.5.22)

It follows by the standard argument that the adaptive controller consisting

of the control law (5.5.19) and the parameter update law (5.5.21) achieves

boundedness of all the states and regulation of ξ and y. Again it is not required

that the system (5.5.2) be stabilizable.

Proposition 5.36 (Stability of adaptive system)

For any θ ∈ Rp the system (5.5.2) with the adaptive controller (5.5.19), (5.5.21)

is globally stable and ξ and y converge to 0 as t→∞.

Additional properties can be deduced by analyzing E ′, the largest invariant

set of the closed-loop system (5.5.2), (5.5.19), (5.5.21) where V̇e = 0. In gen-

eral, E ′ is different from E and the analysis is more difficult than in Proposition

5.33.

We still want to examine whether the condition θ ∈ P can guarantee the

regulation of z, possibly with a modified adaptive controller. We will do it

in two steps. First we remove the dependence of E ′ on ϑ̂ by introducing the

following assumption:

Assumption 5.37 (Restiction on uncertainties in E)

ϕ(z, 0, 0) = 0 and either
∂ψ

∂ξ
(0) = 0 or b(z, 0, 0) = 0.
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It will be clear in the sequel that this assumption is needed only for the

uncertain parts of ϕ, ψ, and b. For example, if instead of ψT (ξ)θ we had

ψ0(ξ) + ψ1(ξ)
T θ, then the assumption applies only to ψ1.

Proposition 5.38 (Higher-order terms in θ)

If Assumption 5.37 is satisfied then

∂u

∂ϑ̂
(z, 0, 0, Θ̂) = 0

that is, the certainty equivalence control law (5.5.19) is independent of ϑ̂ when

ξ = 0, y = 0.

Proof: Recall that ϑ stands for the terms quadratic and cubic in θ in the

control law (5.5.11). It suffices to show that the functions multiplying these

nonlinear terms vanish when ξ = 0, y = 0. The portion of the control law

(5.5.11) which is nonlinear in θ is

θT [ΨT
1 g

T +
nx∑

i=1

zi
∂(ΨT

1 )
(i)

∂ξ
bT ]θ + θT

p
∑

i=1

θi
∂Ψ

(i)
2

∂ξ
bT θ (5.5.23)

Under Assumption 5.37 this expression vanishes when ξ = 0, y = 0. To see

this, note that Ψ1(ξ) is at least linear in ξ because J and h are both at least

linear in ξ. Also
∂Ψ

(i)
2

∂ξ
(0) = 0 because Ψ2 is at least quadratic in ξ. Finally,

from Assumption 5.37, either
∂Ψ

(i)
1

∂ξ
(0) = 0 (when ∂ψ

∂ξ
(0) = 0) or bT (z, 0, 0) = 0.

Therefore, when ξ = 0 and y = 0, the terms nonlinear in θ vanish and the

adaptive control law (5.5.19) depends only on θ̂.

2

Proposition 5.38 shows that the set E ′ is independent of ϑ̂. Note that,

y = 0 in E ′, in which case the estimate θ̂ is a constant vector denoted by θ̄.

To achieve the regulation of z, we will make sure that θ̄ ∈ P . To this end we

introduce a projection in the parameter update law which will keep θ̂ ∈ Π, a

closed and convex subset of P which need not be bounded.

Conformal with the partition of Θ into θ and ϑ, we let wT (z, ξ, y) =

[wT1 (z, ξ, y) w
T
2 (z, ξ, y)]. Then we modify the update law (5.5.21) as

˙̂
θ = ProjΠ{w1(z, ξ, y)y}
˙̂
ϑ = w2(z, ξ, y)y

(5.5.24)

where ProjΠ{·} is the standard projection operator (c.f. Section 4.4 in [40])

which guarantees that the vector θ̂(t) remains in the set Π.
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Theorem 5.39 (Adaptive regulation)

If Assumption 5.37 is satisfied and if the closed and convex set Π ⊂ P contains

θ, then the system (5.5.2) with the adaptive controller (5.5.19), (5.5.24) is

globally stable and z, ξ, and y converge to 0 as t→∞.

Proof: An important property of the parameter update law (5.5.24) is

that, if the set Π contains the true parameter vector θ, then

θ̃TProjΠ{w1(z, ξ, y)y} ≥ θ̃Tw1(z, ξ, y)y

Using this inequality we obtain

V̇e = −zTQF z − ξTQAξ − y2 + ywT1 θ̃ − θ̃TProjΠ{w1(z, ξ, y)y}
≤ −zTQF z − ξTQAξ − y2 ≤ 0

By Theorem 2.20 the states of the system are uniformly bounded and y and ξ

converge to 0.

Now we examine the largest invariant set E ′ where the following must hold:

1. ξ = 0, y = 0,
˙̂
Θ = 0

2. θ̂(t) = θ̄ ∈ Π ⊂ P

3. ż = Fz, zTQF z = 0

4. 0 ≡ ẏ = u(z, 0, 0,Θ).

The last item follows from Assumption 5.37 because ẏ = ϕT θ + u and ϕT

vanishes when ξ = 0, y = 0. By Proposition 5.38, u(z, 0, 0, Θ̂) is independent

of ϑ̂. Thus, u(z, 0, 0, Θ̂) = χ(z, θ̄). Since θ̄ ∈ P , z = 0 is the only solution

which satisfies items 3 and 4, which proves that the regulation of z is achieved.

2

Example 5.40 (Adaptive benchmark problem)

Returning to the benchmark system (5.5.1) we now allow that the parameter

θ be unknown. Our adaptive control law is a certainty equivalence version of

the control law (5.5.15) with θ replaced by θ̂ and θ2 replaced by an additional

estimate ϑ̂:

u = −2y − x1 − x2 − θ̂[(x1 + x2)(y − x2) +
1

2
x22]−

1

2
ϑ̂(y − x2)x22 (5.5.25)
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In Example 5.34 we have shown that for this problem P = IR. Because the

purpose of the projection in (5.5.24) was to keep θ̂ in P , we conclude that in

this case it is not needed. Thus, the parameter update law is

˙̂
θ = y[(x1 + x2)(y − x2) + 1

2
x22]

˙̂
ϑ = y(y − x2)x22

(5.5.26)

By Proposition 5.36 the adaptive controller (5.5.25), (5.5.26) achieves bound-

edness of x1, x2, y, θ̂, ϑ̂ and the regulation of x2 and y. From (5.5.2) and

(5.5.14) we conclude that Assumption 5.37 holds because ϕ = −x2 + y and

b = 1 do not include parametric uncertainties. Since P = IR, Theorem 5.39

establishes that the regulation of x1 is also achieved. 2

Example 5.41 (Adaptive design features)

Other prominent features of this adaptive design will become apparent on the

following nonlinear system

ż = zξ + θ1 sin
2 ξ + z2y2

ξ̇ = −ξ + θ2y
ẏ = θ3a(y)z

2 + u
(5.5.27)

Selecting W (z) = z2, the cross-term Ψ in the Lyapunov function for the zero-

dynamics subsystem
ż = zξ + θ1 sin

2 ξ

ξ̇ = −ξ (5.5.28)

is

Ψ(z, ξ) =
∫ ∞

0
2θ1z̃ sin2 ξ̃ ds = −z2 +

(

zeξ + θ1ρ(ξ)
)2

(5.5.29)

where

ρ(ξ) =
∫ ξ

0

eµ

µ
sin2 µ dµ

Even though this integral cannot be evaluated in closed form, it globally defines

an analytic function which can be either precomputed or generated on-line by

integration.

With (5.5.29) the Lyapunov function for the zero-dynamics subsystem

(5.5.28) is

V (z, ξ) =
(

zeξ + θ1ρ(ξ)
)2

+ ξ2 (5.5.30)

which yields the control law

u(z, ξ, θ) = −θ3a(y)z2 − y − ∂V
∂z
z2y − ∂V

∂ξ
θ2

= −θ3a(y)z2 − y − 2eξ
(

zeξ + θ1ρ(ξ)
) (

z2y + θ2z + θ1θ2
sin2 ξ
ξ

)

− 2θ2ξ

(5.5.31)
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The equations (5.5.13) reduce to

ż = 0, χ(z, 0, 0, θ) = −2θ2z2

and the admissible set is

P = {θ ∈ IR3 : θ2 6= 0} (5.5.32)

Note that for θ2 = 0 the system (5.5.27) is not stabilizable.

Case 1: If a(0) = 0, Assumption 5.37 is satisfied, so the adaptive con-

troller (5.5.19), (5.5.24) achieves boundedness of the signals and regulation

of (z, ξ, y) provided that we can find an appropriate closed and convex set Π

for the projection. From (5.5.32) we conclude that θ2 is the only parameter

which requires projection. For this we need to know the sign of θ2 and a lower

bound on |θ2|. The resemblance to linear adaptive systems, where the sign

of the high-frequency gain is a standard assumption, is not accidental. The

projection in our adaptive design serves the same purpose: to avoid the set of

parameter values for which the system cannot be stabilized.

Case 2: If a(0) 6= 0 Assumption 5.37 is not satisfied. Nevertheless, through

Proposition 5.36, the adaptive controller (5.5.19), (5.5.21) guarantees bound-

edness of the signals and regulation of ξ and y. To guarantee the regulation

of z we need that

(θ3 − θ̂3)a(0)− θ2 6= 0

The above expression involves the estimates of θ (and, in general, may also

involve ϑ̂) and is less helpful in the determination of the projection set Π.

With Assumption 5.37 we avoided this difficulty and determined the set Π

using (5.5.13). 2

5.6 Summary

For the control design methods presented in this book it is crucial that a

Lyapunov function be known. In this chapter we have developed methods for

its construction. We have restricted our attention to a cascade which consists

of a stable z-subsystem, GAS and LES ξ-subsystem, and an interconnection

term ψ.

We have presented two basic constructions: composite Lyapunov functions

and Lyapunov functions with a cross-term. The first construction method is

based on a specific choice of nonlinear weights, so that the indefinite term in V̇
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is dominated by the negative terms. For this, the interconnection ψ(z, ξ) must

be of second or higher order in ξ. A change of coordinates needed to remove

the terms linear in ξ exists when ż is linear in z and a nonresonance condition

is satisfied. In this case the change of coordinates is obtained by solving a set

of linear algebraic equations.

To encompass a wider class of systems, we have constructed a Lyapunov

function with a cross-term Ψ. We have proven that the cross-term is differen-

tiable and that the resulting Lyapunov function is positive definite and radially

unbounded. In special cases, the cross-term Ψ can be computed explicitely.

In general, numerical computation is required. An alternative approach is

to evaluate ∂Ψ
∂z
(z, ξ) and ∂Ψ

∂ξ
(z, ξ), and hence the control law, in real time at

any point (z, ξ), without the need to precompute and store the data. This

approach is straightforward to implement, as illustated by the ball-and-beam

example.

To avoid the computational burden associated with the evaluation of the

cross-term and its partial derivatives, a relaxed cross-term construction is de-

veloped, which, in contrast to the composite Lyapunov construction, is not

restricted by the nonresonance conditions.

The Lyapunov constructions developed for the basic (Σ0) are employed to

design stabilizing control laws for more general systems obtained by augment-

ing the cascade. The ZSD property required by the control laws depends on

the the cross-term. We have given structural conditions under which the ZSD

property is a priori guaranteed.

We have also presented a construction of the parameterized cross-term for

adaptive control of cascades with unknown parameters. As illustrated by the

benchmark problem, our adaptive design applies to nonlinear systems which

are not feedback linearizable.

5.7 Notes and references

Lyapunov constructions for cascades consisting of a GS subsystem and a

GAS/LES subsystem have appeared recently in the work by Mazenc and Praly

[75] and by the authors [46].

Mazenc and Praly pusrsued the composite approach and introduced the

exact and relaxed decoupling change of coordinates presented in Section 5.3.

The cross-term construction presented in Section 5.2 was introduced by

the authors in [46]. It removes nonresonance and linearity assumptions of the

composite approach.

The extension of the cross-term construction to the adaptive case and the
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solution of the adaptive benchmark problem in Section 5.5 are due to the

authors [47].



Chapter 6

Recursive designs

Feedback passivation designs, which have been successful for the cascade struc-

tures in Chapters 4 and 5, will now be extended to larger classes of nonlinear

systems. The common idea of the two main recursive procedures in this chap-

ter, backstepping and forwarding, is to apply a passivation design to a small

part of the system, and then to reapply it step-by-step by augmenting the sub-

system at each step. The design is completed when the augmentations recover

the whole system.

Backstepping and forwarding, presented in Section 6.1 and 6.2, complement

each other: backstepping is applicable to the lower-triangular, and forwarding

to the upper-triangular systems. Backstepping employs an analytic expression

for the time-derivative of the control law designed at the preceding step. In

forwarding, this operation is integration. The two procedures proceed in re-

verse order. Backstepping starts with the system equation (integrator) which

is the farthest from the control input and reaches the control input at the last

step. Forwarding, on the other hand, starts from the input and moves forward.

Both procedures construct a passivating output and a storage function to

be used as a Lyapunov function. They accomplish the same task by removing

two different obstacles to passivation: backstepping removes the relative degree

one obstacle, while forwarding removes the minimum phase obstacle.

In addition to backstepping and forwarding, we also present a family of

simplified designs. Instead of analytically implementing the derivatives used

in backstepping, a high-gain design dominates them by increasing the feedback

gains which, in turn, enforce a hierarchy of time scales and invariant manifolds.

The flexibility provided by backstepping can be used to avoid cancellations and

increase robustness, as in our control laws based on domination of destabilizing

uncertainties. Close to the origin, such control laws are “softer” than their

linear high-gain simplifications. They may exhibit a high-gain behavior only

229
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for large signals.

Simplifications of forwarding, such as nested saturation designs introduced

by Teel [109], also involve a hierarchy of time scales and invariant manifolds.

The time scales of nested saturation designs are slower at each step, while the

time scales of high-gain designs are faster at each step.

In Section 6.3, we consider interlaced systems, which can be designed by

combining the steps of forwarding and backstepping. This is the largest class of

systems which can be globally stabilized with restrictions only on the structure

of their feedback and feedforward interconnections.

6.1 Backstepping

6.1.1 Introductory example

Backstepping and simplified high-gain designs will be introduced for the fol-

lowing strict-feedback system

ẋ1 = x2 + θx21
ẋ2 = x3
ẋ3 = u

(6.1.1)

where θ is an uncertain parameter known to belong to the interval θ ∈ [−1, 1].
This system is represented by the block-diagram in Figure 6.1 which shows a

∫ ∫ ∫

θ(.)2

- - - -

¾

-

6

u x3 x2 x1

Figure 6.1: The block-diagram of a strict-feedback system.

feedback loop and the absence of feedforward paths other than the integrator

chain. For u = 0 the system exhibits two types of instability: a linear in-

stability due to the double integrator (x2, x3), and a more dramatic nonlinear

instability occurring in the subsystem ẋ1 = θx21. Our goal is to achieve global

asymptotic stability of this system by a systematic passivation design. To ap-

ply a passivation design from Chapter 4, we need to find a passivating output
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and a storage function to be used as Lyapunov function. We will accomplish

this by a recursive construction.

Recursive passivating outputs. The two requirements of a passivating out-

put are: first, relative degree one, and second, weak minimum phase. For an

output of (6.1.1) to be relative degree one, it must be a function of x3; thus

we let y3 = x3 − α2(x1, x2). Next we need to select α2(x1, x2) to satisfy the

minimum phase requirement, that is the GAS property of the zero dynamics.

Setting y3 ≡ 0 shows that the zero-dynamics subsystem is

ẋ1 = x2 + θx21
ẋ2 = α2(x1, x2)

(6.1.2)

For this subsystem we must find a stabilizing “control law” α2(x1, x2), that

is, we are again facing a feedback stabilization problem, However, and this

is extremely significant, this new stabilization problem is for a lower order

subsystem of the original third order system (6.1.1). The original problem is

thus reduced to the stabilization of the second order subsystem

ẋ1 = x2 + θx21
ẋ2 = x3

(6.1.3)

in which x3 is the “control”. To solve this lower order problem we need to

construct a new relative degree one passivating output y2 = x2 − α1(x1) and

design α1(x1) to achieve GAS of the zero-dynamics subsystem

ẋ1 = α1(x1) + θx21 (6.1.4)

Once more the problem has been reduced, now to the stabilization of the first

order subsystem

ẋ1 = x2 + θx21 (6.1.5)

in which x2 is the “control”, and y1 = x1 is the output.

Recursive passivating controls: backstepping. Our definitions of passivating

outputs y1, y2, and y3 proceeded in the bottom-up direction: from y3, to y2, to

y1. These outputs are to be obtained by constructing the functions α1(x1) and

α2(x1, x2), each playing the part of a “control law”: α1(x1) for x2 as a “vir-

tual control” of (6.1.5), and α2(x1, x2) for x3 as a “virtual control” of (6.1.3).

This shows that the recursive design procedure must proceed in the top-down

direction, by first designing α1(x1), then α2(x1, x2), and finally α3(x1, x2, x3)

for the actual control u. In this top-down direction, we start from the scalar
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subsystem (6.1.5), then augment it by one equation to (6.1.3), and again by

one more equation to the original system (6.1.1). On a block-diagram we

move “backward” starting with the integrator farthest from the control input.

Hence the term backstepping.

Let us now reinterpret the construction of the passivating outputs as a back-

stepping construction of the “control laws” α1(x1), α2(x1, x2), and α3(x1, x2, x3).

In the first step, the subsystem (6.1.5), with the output y1, and the input x2,

is rendered passive by the “control law” α1(x1). At the second step, the sub-

system (6.1.3) with the output y2 = x2 − α1(x1) and the input x3 is rendered

passive by the “control law” α2(x1, x2). At the third and final step, the orig-

inal system (6.1.1) with the output y3 = x3 − α(x1, x2) and the input u is

rendered passive and GAS by the control law u = α3(x1, x2, x3). At each step

a Lyapunov function is constructed which also serves as a storage function.

An interpretation is that backstepping circumvents the relative degree ob-

stacle to passivation. For the output y = x1, the original system has relative

degree three. However, at each design step, the considered subsystem has

relative degree one with the zero dynamics rendered GAS at the preceding

step.

We now present the design steps in more detail.

First step. At this step we design α1(x1) to stabilize (6.1.5). If θ were

known, this problem would be very simple, but even then we would not use a

cancellation control law α1(x1) = −x1 − θx21, because it would lead to nonro-

bustness with respect to small variations of θ. Instead, we apply domination.

Knowing that θ ∈ [−1, 1], we proceed with a design in which α1(x1) dominates

the term θx21. One such design is α1(x1) = −x1 − x31. It achieves GAS of

(6.1.5) for | θ |< 2. With this α1(x1), and V1 = 1
2
x21 as a Lyapunov function,

the derivative V̇1 of V1 for (6.1.5) is

V̇1|x2=α1 = −x21(1− θx1 + x21) ≤ −
1

2
x41 −

1

2
x21 (6.1.6)

With α1(x1) and V1 =
1
2
x21 constructed, the first step is completed.

Second step. Using y2 = x2 − α1(x1) as the output for (6.1.3) with x3 as

the input, we rewrite (6.1.3) as

ẋ1 = α1 + θx21 + y2
ẏ2 = x3 + (1 + 3x21)(α1 + θx21 + y2)

(6.1.7)

where we have substituted x2 = y2+α1(x1) and used the analytical expression
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for

α̇1 =
∂α1

∂x1
ẋ1 = −(1 + 3x21)(α1 + θx21 + y2) (6.1.8)

We now proceed to find a Lyapunov function V2 for (6.1.7). Because y2 is

a passivating output, a possible choice is the storage function V2 = V1 +
1
2
y22

whose derivative is

V̇2 = V̇1 + y2ẏ2 = V̇1
∣
∣
∣
y2=0

+
∂V1
∂x1

y2 + y2(x3 + (1 + 3x21)(α1 + θx21 + y2)) (6.1.9)

The key property of this expression is that all the potentially indefinite terms

appear multiplied by y2. Hence, our virtual control x3 = α2(x1, x2) can be

chosen to make V̇2 negative definite. A possible design is

α2 = −y2 − (1 + 3x21)y2 − x1 − (1 + 3x21)(α1 + θx21) (6.1.10)

but its last term is not implementable because it cancels a nonlinearity which

contains the uncertain parameter θ. Instead of (6.1.10) we proceed with dom-

ination.

To dominate the θ-term in V̇2, we can use the control law

α2 = −(2 + 3x21)y2 − 2(2 + 3x21)
2(1 + x21)y2 (6.1.11)

which, substituted into (6.1.9), yields

V̇2 = −x21(1− θx1 + x21) + y2[(1 + 3x21)(1− θx1 + x21) + x1]−
−2y22(2 + 3x21)

2(1 + x21)

≤ −1

2
V̇1
∣
∣
∣
y2=0
− (2 + 3x21)(1 + x21)y

2
2 (6.1.12)

We have dominated the θ-term in V̇2 by “completing the squares”, which

results in a rapidly growing nonlinear gain in the virtual control law (6.1.11).

As shown in [23], such a “hardening” of the nonlinearities in the virtual control

laws at each consecutive step is due to the quadratic form of the Lyapunov

functions. Here, we can avoid the hardening of the control law by noting that

the θ-term in V̇2 is

−y2(1 + 3x21)(x1 + x31 − θx21) (6.1.13)

This term has the form −y2 ∂Ṽ1

∂x1
, where Ṽ1 is the positive definite function

Ṽ1(x1) =
∫ x1

0
(1 + 3s2)(s+ s3 − θs2)ds
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Thus, when we use Ṽ1 instead of V1 =
1
2
x21, the term (6.1.13) does not appear

in ˙̃V1. As a consequence, for the modified Lyapunov function Ṽ2 = Ṽ1 +
1
2
y22,

we obtain

˙̃V2 =
∂Ṽ1
∂x1

(−x1 − x31 + θx21) + y2(α2 + (1 + 3x21)y2) (6.1.14)

A control law rendering ˙̃V2 negative definite is

α2 = −y2 − (1 + 3x21)y2 (6.1.15)

We have thus designed a control law with a gain margin [1,∞), which also

uses less effort than the control law (6.1.11). The construction of a Lyapunov

function like Ṽ1(x1) is always applicable to second-order systems and is one of

the flexibilities of backstepping.

Third step. With α2(x1, y2) in (6.1.15), we have constructed a passivating

output y3 = x3 − α2 for the full system (6.1.1), which in the new coordinates

(x1, y2, y3), is given by

ẋ1 = α1 + θx21 + y2
ẏ2 = α2(x1, x2) + y3 − α̇1(x1, y2)
ẏ3 = u− α̇2(x1, y2, y3)

(6.1.16)

In this system the explicit expressions for α̇1 and α̇2 are known. A Lyapunov

function is V3 = Ṽ2 +
1
2
y23 and its derivative for (6.1.16) is

V̇3 =
˙̃V2|y3=0 + y3(u− α̇2 + y2) (6.1.17)

It is clear that a control law u = α3(x, y1, y2) can be designed to make V̇3
negative definite. This control law will necessarily contain a term to dominate

the θ-dependent part of α̇2.

Exact and robust backstepping. With the just completed backstepping de-

sign we have achieved GAS of the nonlinear system (6.1.1) with an uncertain

parameter θ. The presence of the uncertainty prevented us from using a sim-

pler cancellation control law. For θ = 1 such a cancellation control law would

be α1(x1) = −x1−x21 and the first equation would have become ẋ1 = −x1+y2.
We will refer to this idealized form of backstepping as exact backstepping. In

the presence of uncertainties, such as θ ∈ [−1, 1], we are forced to use robust

backstepping. Then the “control laws” α1 and α2, as well as the true control

law u = α3 contain terms constructed to dominate the uncertainties.
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The above example shows that robust backstepping is more complicated and

more “nonlinear” than exact backstepping. The complexity of backstepping

control laws is considerable even in the case of exact backstepping. It grows

with the number of steps primarily because the analytical expressions of the

time-derivatives such as α̇1 and α̇2 are increasingly complex. This motivates

various simplifications, some of which we will explore later. We first present

the general backstepping procedure for strict-feedback systems.

6.1.2 Backstepping procedure

A family of backstepping designs can be constructed by recursive applications

of different versions of the same basic step: the augmentation by one equation

of the subsystem already made passive by a “virtual control”. The basic step,

already presented in Proposition 4.25, is now given in a different form.

Proposition 6.1 (Backstepping as recursive feedback passivation)

Assume that for the system

ż = f(z) + g(z)u, (6.1.18)

a C1 feedback transformation u = α0(z)+v0 and a C2 positive definite, radially

unbounded storage function W (x) are known such that this system is passive

from the input v0 to the output y0 = (LgW )T (z), that is Ẇ ≤ yT0 v0.

Then the augmented system

ż = f(z) + g(z)ξ

ξ̇ = a(z, ξ) + b(z, ξ)u,
(6.1.19)

where b−1(z, ξ) exists for all (z, ξ), is (globally) feedback passive with respect

to the output y = ξ − α0(z) and the storage function V (z, y) =W (z) + 1
2
yTy.

A particular control law (“exact backstepping”) which achieves passivity of

(6.1.19) is

u = b−1(z, ξ)(−a(z, ξ)− y0 +
∂α0

∂z
(f(z) + g(z)ξ) + v) (6.1.20)

The system (6.1.19) with (6.1.20) is ZSD for the input v if and only if

the system (6.1.18) is ZSD for the input v0. Moreover, if W (z(t)) is strictly

decreasing for (6.1.18) with u = α0(z), then W (z(t)) + 1
2
yT (t)y(t) is strictly

decreasing for (6.1.19) with v = −y.

Proof: Substituting ξ = y + α0(z), we rewrite (6.1.19) as

ż = f(z) + g(z)(α0(z) + y)
ẏ = a(z, y + α0(z)) + b(z, y + α0(z))u− α̇0(z, y),

(6.1.21)
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After the feedback transformation (6.1.20), this system becomes

ż = f(z) + g(z)(α0(z) + y)
ẏ = −y0 + v,

(6.1.22)

The passivity property from y to v is established with the storage function

V = W (z) + 1
2
yTy. Its time-derivative satisfies

V̇ = Ẇ + yT (−y0 + v) ≤ yTv

where we have used the passivity assumption Ẇ ≤ yT0 v0 and the fact that

v0 = y.

To verify the ZSD property of (6.1.22), we set y ≡ v ≡ 0 which implies

y0 ≡ 0. Hence, the system (6.1.22) is ZSD if and only if z = 0 is attractive

conditionally to the largest invariant set of ż = f(z) + g(z)α0(z) in the set

where y0 = (LgW )T = 0. This is equivalent to the ZSD property of the original

system (6.1.18) for the input v0 and the output y0.

Finally, with the control law v = −y, we obtain V̇ = Ẇ |y=0 − yTy which

is negative definite if and only if Ẇ |y=0 < 0 for all z 6= 0.

2

In Proposition 6.1 a new passivating output y is constructed from the pre-

vious passivating control law α0(z), and the new storage function is obtained

by adding yTy to the old storage function. Moreover, the ZSD property is

preserved in the augmented system.

Strict-feedback systems. Because Proposition 6.1 ensures that the aug-

mented system inherits the properties of the original system, we can use it at

each step of a recursive design procedure for a system which is an augmentation

of the z-subsystem in (6.1.19) by a lower-triangular ξ-subsystem:

ż = f(z) + g(z)ξ1
ξ̇1 = a1(z, ξ1) + b1(z, ξ1)ξ2
ξ̇2 = a2(z, ξ1, ξ2) + b1(z, ξ1, ξ2)ξ3

...

ξ̇n−1 = an−1(z, ξ1, . . . , ξn−1) + bn−1(z, ξ1, . . . , ξn−1)ξn
ξn = an(z, ξ1, . . . , ξn) + bn(z, ξ1, . . . , ξn)u, ξi ∈ IRq, i = 1, . . . , n

(6.1.23)

The systems in the lower-triangular configuration (6.1.23) are called strict-

feedback systems, because every interconnection in the system is a feedback

connection from the states located farther from the input. Assuming that the
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z-subsystem satisfies Proposition 6.1 and that every bi(z, ξ1, . . . , ξi) is invert-

ible for all (z, ξ1, . . . , ξi), the system (6.1.23) with the output y1 = ξ1 − α0(z)

has relative degree n. We will recursively reduce the relative degree to one by

proceeding as in the introductory example. For yn = ξn − αn−1(z, ξ1, . . . , ξn)
to be a passivating output for the whole system, the virtual control law

ξn = αn−1(z, ξ1, . . . , ξn−1) must be a passivating feedback for the zero-dynamics

subsystem consisting of (6.1.23) minus the last equation. Likewise, yn−1 =

ξn−1 − αn−2(z, ξ1, . . . , ξn−2) will be a passivating output for this subsystem if

αn−2 is a passivating feedback for its zero-dynamics subsystem. Continuing

this process upward, we end up with the recursive expressions for passivating

outputs:

yi = ξi − αi−1(z, ξ1, . . . , ξi−1)

In the presence of uncertainties, αi’s must be constructed to dominate

them (“robust backstepping”). If, in the absence of uncertainties, α′is are

constructed employing some cancellations (“exact backstepping”), then the

backstepping recursion is

yi = ξi − αi−1(z, ξ1, . . . , ξi−1)
αi(z, ξ1, . . . , ξi) = b−1i (−ai − yi−1 + α̇i−1 − yi), i = 2, . . . , n

(6.1.24)

In these expressions, the time-derivatives α̇i are evaluated as explicit functions

of the state variables, that is, α̇0 =
∂α1

∂z
(f + gξ1), α̇1 =

∂α1

∂z
(f + gξ1)+

∂α1

∂ξ1
(a1+

b1ξ2), etc.

Construction of a CLF. Proposition 6.1 ensures another important feature

of backstepping. It guarantees that, if at the first step the strict negativity

of Ẇ is achieved with u = α0(z), then this property is propagated through

each step of backstepping. Because of it, the final storage function V (z, ξ) =

W +
∑n
i=1 y

T
i yi is a CLF for (6.1.23) and can be used to design a control law

with desirable stability margins. In this way, the n steps of backstepping can

be seen as construction of the CLF V (z, ξ) = W +
∑n
i=1 y

T
i yi and of the new

coordinates y1, . . . , yn. Even in exact backstepping, this construction involves

no cancellation in the control law until the last step. At the last step, instead

of the passivating control law

u = αn(z, ξ1, . . . , ξn) + v (6.1.25)
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which requires cancellations and does not possess a guaranteed stability mar-

gin, we can design the control law

uS(x, ξ) =







−
(

c0 +
LFV+

√
(LFV )2+((LGV )TLGV )2

(LGV )TLGV

)

LGV , LGV 6= 0

0 , LGV = 0

(6.1.26)

where

G(z, ξ) = (0, . . . , 0, bn(z, ξ))
T ,

F (z, ξ) = (f(z) + g(z)ξ1, a1(z, ξ1) + b1(z, ξ1)ξ2, . . . , an(z, ξ1, . . . , ξn))
T

According to Proposition 3.44, the control law (6.1.26) minimizes a cost func-

tional of the form J =
∫∞
0 (l(x) + uTR(x)u)dt. This means that it achieves a

sector margin ( 1
2
,∞). It may also serve as the starting point of a domination

redesign to achieve a disk margin D( 1
2
).

Removing the relative degree obstacle. The absence of any feedforward con-

nection in the system (6.1.23) is crucial for recursive backstepping: it guaran-

tees that the relative degree of ξi is ri = n− i + 1 for each i. Because of this

property, the relative degree one requirement of feedback passivation is met

at step i, not with respect to the true input u but rather with respect to the

virtual input ξi+1. Only the output yn is relative degree one with respect to

the true input u.

In all the passivation designs of cascade systems in Chapter 4, we have

required that a relative degree one output can be factored out of the intercon-

nection term. Using the above backstepping procedure, this restriction is now

removed and replaced by a right-invertibility assumption.

Proposition 6.2 (Feedback passivation with backstepping)

Suppose that for the cascade

ż = f(z) + ψ(z, ξ)

ξ̇ = Aξ +Bu
(6.1.27)

there exists an output y = Cξ such that

(i) the interconnection ψ(z, ξ) can be factored as ψ(z, ξ) = ψ̃(z)y;

(ii) the system (A,B,C) is right-invertible and minimum phase.

If ż = f(z)+ψ̃(z)k(z) is GAS and ifW (z) is a positive definite and radially

unbounded function such that Lf+ψ̃kW ≤ 0, then global stabilization of the

cascade (6.1.27) is achieved by recursive backstepping starting with the virtual

control law y = k(z). 2
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Proof: We assume without loss of generality that the system (A,B,C) is in

the normal form
ξ̇0 = A0ξ0 +B0y
ẏ(r) = u

(6.1.28)

where r ≥ 1 is the relative degree of the system. (This form may involve

adding integrators for some control components.) If r = 1, Proposition 4.25

yields a globally stabilizing feedback u = α0(ξ0, y, z). If r > 1, α0 is a virtual

control law which can be backstepped through r− 1 integrators by a repeated

application of Proposition 6.1.

2
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6.1.3 Nested high-gain designs

As can be seen from our introductory example, the recursive formula (6.1.24)

for αi generates analytical expressions of increasing complexity, primarily due

to the dependence of αi on the time-derivative α̇i−1. After a couple of recur-

sive steps, the expression for αi may become discouragingly complicated and

motivate the designer to seek some simplifications. One such simplification,

proposed in [36], is to use an approximately differentiating filter, that is to

replace α̇i−1 by s
τis+1

(αi−1), where τi is a small time constant. Another possi-

bility, discussed here, is to dominate α̇i−1 by a linear high-gain feedback. This

simplified design is of interest because it reveals the underlying geometry of

backstepping. To illustrate its main features, we return to our introductory

example (6.1.1) and consider its (x1, x2)-subsystem

ẋ1 = x2 + θx21
ẋ2 = x3

(6.1.29)

in which we treat x3 as the control variable. As before, in the first step we

design α1(x1) = −x1 − x31 as the control law for the virtual control x2. We

proceed to introduce y2 = x2 − α1(x1) = x2 + x1 + x31 and rewrite (6.1.29) as

ẋ1 = −x1 − x31 + θx21 + y2
ẏ2 = x3 − α̇1 = x3 + (1 + 3x21)(−x1 − x31 + θx21 + y2)

(6.1.30)

Although in this case the expression for α̇1 is not very complicated, let us

avoid it by using the high-gain feedback

x3 = α2 = −ky2 (6.1.31)

to obtain
ẋ1 = −x1 − x31 + θx21 + y2
ẏ2 = −ky2 − α̇1

(6.1.32)

While global stabilization cannot be guaranteed, we expect that with larger

values of k we can increase the region in which ky2 dominates α̇1 and therefore

results in larger regions of attraction. Differentiating the Lyapunov function

Ṽ2 of Section 6.1.1, we obtain

˙̃V2 ≤ −y22(k − (1 + 3x21))

An estimate of the region of attraction is thus given by the largest level set of

Ṽ2 in which x21 <
k−1
3
. It is clear that this region expands as k →∞.

Geometry: invariant manifolds. The high-gain feedback α2 = −ky2 en-

forces a fast decay of y2, that is, a rapid convergence of x2 to its desired value
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Figure 6.2: The fast convergence towards the desired manifold x2 = α(x1)
enforced by the high-gain k

x2 = α1(x1). As a result, the virtual control law x2 = α1(x1) is approxi-

mately implemented after a fast transient. Geometrically, this means that

the solutions of the feedback system converge rapidly to the desired manifold

x2 = α(x1). The design creates a time-scale separation between the conver-

gence to the manifold, which is fast, and the convergence to the origin in the

manifold, which is slow. This qualitative description of the solutions, illus-

trated in Figure 6.2, holds in a bounded region whose size increases with the

gain k.

Defining the small parameter ε = 1
k
, the feedback system (6.1.30) is in the

standard singularly perturbed form

ẋ1 = −x1 − x31 + θx21 + y2
εẏ2 = −y2 − εα̇1

(6.1.33)

For ε sufficiently small (k large), singular perturbation theory guarantees that

(6.1.33) possesses an invariant manifold y2 = h(x, ε). Differentiating this ex-

pression with respect to time and using ẋ1 and ẏ2 from (6.1.33) we obtain the

manifold PDE

−h(x1, ε)− εα̇1(x1, h(x1, ε)) = ε
∂h

∂x1
(−x1 − x31 + θx21 + h(x1, ε)) (6.1.34)

For an O(εn)-approximation of its solution h(x1, ε), we substitute h(x1, ε) =

h0(x1)+ εh1(x1)+ . . .+ εn−1hn−1(x1)+O(εn) in (6.1.34) and equate the terms
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of the like powers in ε. In particular, the zeroth-order approximation is y2 = 0.

Since y2 = x2−α1(x1) this means that the invariant manifold y2 = h(x1, ε) is ε-

close to the desired manifold x2 = α1(x1). We say in this case that x2 = α1(x1)

is near-invariant. In the limit as ε = 1
k
→ 0, the system (6.1.33) reduced to the

manifold x2 = α(x1) is the GAS zero-dynamics subsystem ẋ1 = −x1−x31+θx21.
It is of interest to compare the high-gain feedback α2 = −ky2 with the

previously designed backstepping control law α2 = −(2 + 3x21)y2. A simplifi-

cation is obvious: the nonlinear “gain” (2 + 3x21) is replaced by the constant

gain k which, if high, would make x2 = α1(x1) near-invariant. In contrast, the

backstepping “gain” is high only for large x21 where it is needed to dominate

uncertainties. Near x1 = 0 this nonlinear gain is low. Thus, in the backstep-

ping design, the manifold x2 = α1(x1) is not invariant and it serves only to

construct a passivating output and a Lyapunov function. As a consequence,

the backstepping control law does not need large gains which would render

x2 = α1(x1) near-invariant even near x1 = 0.

The high-gain feedback design extends to more general systems involving

chains of intergrators.

Proposition 6.3 (High-gain design)

Assume that for the system

ż = f(z) + g(z)u,

a C1 control law u = α0(z) achieves GAS and LES of z = 0, and consider the

augmented system
ż = f(z) + g(z)ξ1
ξ̇1 = ξ2,

...

ξ̇n = u

(6.1.35)

Let p(s) = λn+an−1λ
n−1+. . .+a1λ+a0 be an arbitrary Hurwitz polynomial.

Then the feedback

u = −k(an−1ξn + k(an−2ξn−1 + k(. . .+ k(a1ξ2 + ka0(ξ1 − α0(z)) . . .) (6.1.36)

achieves semiglobal stabilization of (z, ξ) = (0, 0), that is, for any compact

neighborhood Ω of (z, ξ) = (0, 0), there exists k∗ such that for all k ≥ k∗, the

region of attraction contains Ω.

Proof: Let ζ1 = ξ1 − α0(z) and introduce the scaling

ζi =
ξi
ki−1

, i = 2, . . . , n
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In these new coordinates, the closed-loop system is

ż = F (z) + g(z)ζ1
ζ̇ = kAζ + e1α0(z, ζ1), eT1 = (1, 0, . . . , 0)

(6.1.37)

where ż = F (z) = f(z) + α0(z)g(z) is LES and GAS, and the matrix A is

Hurwitz with characteristic polynomial p(s).

LetW (z) be a radially unbounded positive definite function, locally quadratic,

such that LFW (z) < 0 for all z 6= 0, and let P > 0 be the solution of the

Lyapunov equation ATP + PA = −I. For the system (6.1.37) we employ the

composite Lyapunov function

V (z, ζ) = W (z) + ζTPζ (6.1.38)

Let Ω be a desired compact region of attraction of (z, ξ) = (0, 0) and let

R > 0 be such that

∀(z, ξ) ∈ Ω; ‖(z, ξ)‖ ≤ R

Assuming without loss of generality that k ≥ 1, we have ‖(z, ξ)‖ ≤ R ⇒
‖(z, ζ)‖ ≤ R. Because V is radially unbounded, we can pick a level set VR
such that ‖(z, ζ)‖ ≤ R⇒ V (z, ζ) ≤ VR. By construction, Ω is included in the

compact region

ΩR = {(z, ζ)|V (z, ζ) ≤ VR}
We will now show that k can be chosen large enough such that V̇ is negative

definite in ΩR, which is therefore included in the region of attraction of (z, ξ) =

(0, 0).

The time-derivative of V is

V̇ = LFW (z) + ζ1(LgW + α0(z, ζ1))− kζT ζ (6.1.39)

Because ż = F (z) is LES and ΩR is compact, there exist constants c1 > 0 and

c2 > 0 such that for all (z, ζ) ∈ ΩR,

LFW (z) ≤ −c1‖z‖2 and |LgW + α0(z, ζ1)| ≤ c2‖z‖

Completing the squares in (6.1.39) and selecting k >
c21
c2

proves that V̇ < 0 in

ΩR. 2

Strict-feedback systems. For the strict-feedback system

ż = f(z) + g(z)ξ1
ξ̇1 = ξ2 + a1(z, ξ1)

ξ̇2 = ξ3 + a2(z, ξ1, ξ2)
...

ξn = u+ an(z, ξ1, . . . , ξn), ξi ∈ IRq, i = 1, . . . , n

(6.1.40)



244 CHAPTER 6. RECURSIVE DESIGNS

the proof of Proposition 6.3 is easily adapted to the case when the nonlineari-

ties satisfy a linear growth assumption in (ξ2, . . . , ξn), that is, when there exist

continuous functions γij such that

‖ai(z, ξ1, . . . , ξi)‖ ≤ γi1(‖(z, ξ1)‖) + γi2(‖(z, ξ1)‖)‖(ξ2, . . . , ξi)‖, i = 2, . . . , n

(6.1.41)

With this growth restriction, an increase of the controller gain k is sufficient to

dominate the nonlinearities in any prescribed region. However, if the growth

of ai’s is not restricted, a prescribed region of attraction can no longer be

guaranteed with the control law (6.1.36). Worse yet, the actual size of the re-

gion of attraction may shrink in certain directions as k increases. An example,

adapted from [58], illustrates this phenomenon.

Example 6.4 (Vanishing region of attraction)

In the strict-feedback system

ż = −z + ξ1z
2

ξ̇1 = ξ2
ξ̇2 = u+ ξ32

(6.1.42)

the z-subsystem is globally stabilized by the virtual control law ξ1 = α0(x) =

0. With this α0(x), the control law (6.1.36) reduces to the high-gain linear

feedback

u = −k2ξ1 − kξ2
Using the scaling transformation

τ = k t, ζ1 = k
1
2 ξ1, ζ2 = k−

1
2 ξ2

we rewrite the closed-loop ξ-subsystem as

d
dτ
ζ1 = ζ2

d
dτ
ζ2 = −ζ1 − ζ2 + ζ32

(6.1.43)

Recognizing this system as a reversed-time version of the Van der Pol’s equa-

tion, we conclude that its equilibrium (ζ1, ζ2) = (0, 0) is surrounded by an

unstable limit cycle which is the boundary of the region of attraction. All the

initial conditions outside this region, such as those satisfying

ζ21 + ζ22 > 32 (6.1.44)

lead to unbounded solutions. In the original coordinates, the instability con-

dition (6.1.44) is

kξ21 +
1

k
ξ22 > 3
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In particular, every initial condition (ξ1(0), 0) leads to an unbounded solution

if ξ1(0) >
3√
k
. We conclude that, as k → ∞, the region of attraction of

the system (6.1.43) shrinks to zero along the axis ξ2 = 0. This shows that

the control law (6.1.36) does not achieve semiglobal stabilization for a general

strict-feedback system. 2

The shrinking of the region of attraction as the controller gain increases is

a consequence of peaking. We have shown in Chapter 4 that a fast convergence

of ξ1 implies that its derivatives ξ2, . . . , ξn, u, peak with increasing exponents.

If a destabilizing nonlinearity is multiplied by a peaking state, a higher gain

is needed to counteract its effect. On the contrary, the higher the gain, the

more destabilizing is the effect of peaking. With a sufficient growth of the

nonlinearities, this will cause the region of attraction to shrink.

To achieve larger regions of attraction for the strict-feedback system (6.1.40),

we replace the control law (6.1.36) with the more general expression

u = −kn(ξn + kn−1(ξn−1 + kn−2(. . .+ k2(ξ2 + k1(ξ1 − α0(z)) . . .) (6.1.45)

In this control law we can increase not only the gains but also their separa-

tion. The existence of a suitable set of parameters {k1, . . . , kn} to guarantee

a prescribed region of attraction is asserted by a recursive application of the

following result by Teel and Praly [112], quoted without proof.

Proposition 6.5 (Semiglobal backstepping)

Assume that for the system

ż = f(z) + g(z)u,

a C1 control law u = αk1(z) achieves semiglobal asymptotic stability of z = 0,

that is, the region of attraction can be arbitrarily increased by increasing the

parameter k1.

If, in addition, u = αk1(z) achieves LES of z = 0, then for the augmented

system
ż = f(z) + g(z)ξ

ξ̇ = a(z, ξ) + u
(6.1.46)

semiglobal stabilization of (z, ξ) = (0, 0) is achieved with the control law

u = −k2(ξ − αk1(z)) (6.1.47)

2
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Instead of the simple sum W (z) + yTy used in Proposition 6.3, the proof

of this result employs a composite Lyapunov function of the form

V (z, y) = c
W (z)

c+ 1−W (z)
+ µ

yTy

µ+ 1− yTy (6.1.48)

where the constants c and µ can be adjusted for the prescribed region of

attraction, as illustrated on the system considered in Example 6.4.

Example 6.6 (Semiglobal stabilization with sufficient separation of the gains)

We return to the strict-feedback system

ż = −z + ξ1x
2

ξ̇1 = ξ2
ξ̇2 = u+ ξ32

(6.1.49)

to achieve its stabilization in a prescribed region of attraction ‖(z, ξ1, ξ2)‖2 ≤
R. We first consider the subsystem

ż = −z + ξ1x
2

ξ̇1 = ξ2

for which semiglobal stabilization is achieved with the virtual control law ξ2 =

α1(z, ξ1) = −k1ξ1. With this control law, the time-derivative of W = z2 + ξ21
is

Ẇ = −2z2 + 2ξ1z
3 − 2k1ξ

2
1

which is negative in the set where z4 < 4k1. Hence we choose k1 = R2+1
4

to

include the level set W (z, ξ1) = R in the region of attraction.

To stabilize the complete system (6.1.49), we apply one step of semiglobal

backstepping, which yields the linear control law

u = −k2y2 = −k2(ξ2 + k1ξ1) (6.1.50)

The gain k2 of (6.1.50) is determined with the help of the Lyapunov function

V ((z, ξ1), y) = µ1
W (z, ξ1)

µ1 + 1−W (z, ξ1)
+ µ2

y22
µ2 + 1− y22

where µ1 = R and µ2 = (1 + k1)
2R are chosen to satisfy

‖(z, ξ1, ξ2)‖2 ≤ R⇒ V ((z, ξ1), y2) ≤ µ21 + µ22

We now show that with k2 large enough we can render V̇ negative definite in

the region where V ≤ µ21 + µ22 + 1. Differentiating V yields

V̇ =
µ1(µ1 + 1)

(µ1 + 1−W )2
Ẇ+

µ2(µ2 + 1)

(µ2 + 1− y22)2
(−2(k2−k1)y22+2y2(k

2
1ξ1+(y2+k1ξ1)

3)

(6.1.51)
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When V ≤ µ21 + µ22 + 1, we can use the bounds

c1m :=
µ1

µ1 + 1
≤ µ1(µ1 + 1)

(µ1 + 1−W )2
≤ (µ21 + µ22 + 1 + µ1)

2

µ1(µ1 + 1)
=: c1M

c2m :=
µ2

µ2 + 1
≤ µ2(µ2 + 1)

(µ2 + 1− y22)2
≤ (µ21 + µ22 + 1 + µ2)

2

µ2(µ2 + 1)
=: c2M

and obtain

V̇ ≤ −c1m(x2+k1ξ21)+2|y2|(|ξ1|(c1M+c2Mk
2
1)+c2M |y2+k1ξ1|3)−2c2m(k2−k1)y22

(6.1.52)

It is clear that with k2 large enough the negative terms dominate the cross-

term and render V̇ negative definite in the region where V ≤ µ2
1+µ

2
2+1. Hence

the region of attraction contains the prescribed compact set ‖(x, ξ1, ξ2)‖2 ≤ R.

2

The above example shows how the gains needed to achieve a prescribed re-

gion of attraction can be estimated from a Lyapunov function (6.1.48). How-

ever, it also points to two practical difficulties of control laws with several

nested high-gains such as (6.1.45): first, excessive gains may be needed for

prescribed regions of attractions, and second, the simplification of the back-

stepping design is lost in the analysis required to determine these gains.

The situation is more favorable when several time scales are already present

in the system and the desired manifolds can be created without excessive gains.

This is the case with the following VTOL aircraft example.

Example 6.7 (VTOL aircraft)

The model
ẍ = −u1 sin θ + εu2 cos θ
ÿ = u1 cos θ + εu2 sin θ − 1

θ̈ = u2

(6.1.53)

has been employed by Hauser, Sastry, and Meyer [34] for the motion of a

VTOL (vertical take off and landing) aircraft in the vertical (x,y)-plane. The

parameter ε > 0 is due to the “sloped” wings and is very small, ε ¿ 1. We

will thus base our design on the model (6.1.53) with ε = 0 and then select the

controller parameters to take into account the effects of ε 6= 0.

In this case study we first consider backstepping and then proceed with

a linear high-gain approximation of backstepping. Finally, recognizing that

the model (6.1.53) with ε > 0 is a peaking cascade, we select the controller

parameters to reduce peaking to an acceptable level. Compared with the

dynamic extension design of [34, 74], ours is a dynamic reduction design, based

on singular perturbations [27].
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Backstepping. For model (6.1.53) with ε = 0, the backstepping idea is to

use u1 and θ as the first pair of controls and assign the independent linear

dynamics to x and y:

ẍ = −u1 sin θ = −k11x− k12ẋ := v1(x, ẋ)
ÿ = u1 cos θ − 1 = −k21y − k22ẏ := v2(y, ẏ)

(6.1.54)

This will be achieved if u1 and θ satisfy

u1 =
[

v21(x, ẋ) + (v2(y, ẏ) + 1)2
] 1

2 (6.1.55)

θ = α(x, ẋ, y, ẏ) = arctan

(

v1(x, ẋ)

v2(y, ẏ) + 1

)

(6.1.56)

Since u1 is an actual control variable, we can use (6.1.55) as its control law.

This is not the case with θ, which can not satisfy (6.1.56), because it is a

state variable. To proceed with backstepping, we introduce the error variable

ξ = θ − α, select a Lyapunov function and design a control law for u2 in the

subsystem

ξ̈ = u2 − α̈ (6.1.57)

The lengthy expression for α̈ as a function of x, ẋ, y, ẏ, ξ, ξ̇, is obtained by

twice differentiating (6.1.56). Either backstepping or cascade designs make

use of this complicated expression.

High-gain design (“dynamic reduction”). A simpler approach is to approxi-

mately implement (6.1.56). With a high-gain control law for θ̈ = u2 we will

create an attractive invariant manifold near θ = α to which the states will

converge after a fast transient.

Using standard trigonometric identities we rewrite the model (6.1.53) with

ε = 0, in the cascade form

ẍ = v1 − 2v1 sin(
θ+α
2
) sin( θ−α

2
)

ÿ = v2 − 2(v2 + 1) cos( θ+α
2
) sin( θ−α

2
)

θ̈ = u2

(6.1.58)

The interconnection term is zero at θ − α = 0, which makes it obvious that

the desired dynamics of x and y are achieved if θ = α . To enforce θ = α we

use the high-gain controller

u2 = −k1k2(θ − α)− k2kθ̇ (6.1.59)

where 0 < k1 ≤ 1, 0 < k2 ≤ 1, and k is the high gain proportional to the

magnitude of the eigenvalues of the θ-subsystem:

θ̈

k2
+ k2

θ̇

k
+ k1θ = k1α (6.1.60)
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Figure 6.3: The response of the VTOL aircraft to the 30-unit step command
for x: S-design is above and F -design is below.

Clearly, if k →∞ then θ → α and the off-manifold transients decay exponen-

tially as e−kt. The conditions of Proposition 6.3 are satisfied and the control

law (6.3) achieves semiglobal stabilization of (6.1.58).

Controller calibration to limit peaking. We now consider the fact that the

feedback control laws (6.1.55) and (6.1.59) will be applied to the model (6.1.53)

with ε > 0, say ε = 0.1. It is clear from (6.1.59) that the high-gain control u2 is

initially peaking with k2, because, in general, θ − α 6= 0 at t = 0. This means

that the neglected ε-terms in (6.1.53) will be large, unless εk2 ¿ 1, which

severely restricts the value of k. The time-scale separation between the slow x-

and y-dynamics, and the fast θ-dynamics, can still be enforced by slowing down

x and y, rather than speeding up θ. This can be accomplished by lowering the

gains k11, k12, k21, k22, in (6.1.54), while retaining the slow manifold geometry

which is due to the singular perturbation form of the designed system. By

selecting two sets of values for k11, k12, k21, k22, k1, k2, and k, we assign two

sets (S and F) of locations of the eigenvalues λx,y and λθ:

S : λx,y = −0.08± j0.06, λθ = −0.4± j0.3
F : λx,y = −0.3,−0.3 λθ = −2.4± j1.8

For both sets, the λθ’s are about 5–8 times larger than the λxy’s.
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The responses in Figure 6.3 are for a transfer of x from 0 to 30 which,

ideally, should not disturb y. In the faster transfer (F), the peak in y is about

three times larger than in the slower transfer (S). In both cases, the effect of

peaking is small and may be practically acceptable. As ε increases, so does

the effect of peaking, and an alternative design may be required. 2

6.2 Forwarding

6.2.1 Introductory example

The main ideas of forwarding will be introduced for the following strict-

feedforward system
ẋ1 = x2 + x23 + x2u
ẋ2 = x3 − x23u
ẋ3 = u

(6.2.1)

represented by the block-diagram in Figure 6.4.

-∫-

ϕ1(.)

6

∫-

ϕ2(.)

6

∫
- - -

6 66 66

u x3 x2 x1

Figure 6.4: Block-diagram of a strict-feedforward system.

The block-diagram is characterized by the absence of feedback paths. This

property excludes severe instabilities such as ẋ1 = x21, which may appear in

strict-feedback systems, see Section 6.1.1. The solutions exist for all t ≥ 0 as

can be seen by rewriting (6.2.1) in the integral form:

x3(t) = x3(0) +
∫ t
0 u(s)ds

x2(t) = x2(0) +
∫ t
0(x3(s) + x23(s)u(s))ds

x1(t) = x1(0) +
∫ t
0(x2(s) + x23(s) + x2(s)u(s))ds

(6.2.2)

However, it is important to observe that, when u = 0 this system is unstable

due to the triple integrator. Hence, some of its solutions grow unbounded as
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t → ∞. Our goal is to achieve global asymptotic stability by a systematic

design procedure.

In backstepping, we have exploited the lower-triangular configuration of

strict-feedback systems to develop a “top-down” recursive procedure. In a

dual way, we will now exploit the upper-triangular configuration of the system

(6.2.1) to develop a “bottom-up” recursive procedure.

Forwarding design, first step. In the first step we stabilize the last equation

of (6.2.1), that is, ẋ3 = u. For this passive system, a storage function is

V3 =
1
2
x23 and a stabilizing feedback is u = α3(x3) = −x3.

With u = −x3 we augment ẋ3 = −x3 by the x2-equation and write the

augmented system in the cascade form:

ẋ2 = 0 + ψ2(x3)
ẋ3 = −x3 (6.2.3)

where ψ2(x3) = x3 − x23α3(x3) = x3 + x33 is the interconnection term. In this

cascade ẋ2 = 0 is stable and ẋ3 = −x3 is GAS and LES. Therefore, the cascade

is globally stable and the cross-term constructions of Chapter 5 are applicable.

We apply it to construct a Lyapunov function V2 for the augmented system

(6.2.3) given the Lyapunov function V3 for the system ẋ3 = −x3. From Section

5.3.1 we get

V2 = V3 +
1

2
x22 +

∫ ∞

0
x̃2(s)ψ(x̃3(s))ds

= V3 +
1

2
lim
s→∞

x̃22(s)

= V3 +
1

2
(x2 + x3 +

x33
3
)2 (6.2.4)

By construction, the time-derivative of V2 satisfies

V̇2
∣
∣
∣
u=α3(x3)

= V̇3
∣
∣
∣
u=α3(x3)

= −x23 (6.2.5)

Although the control law u = α3(x3) has not achieved asymptotic stability of

the augmented system (6.2.6), it allowed us to construct a Lyapunov function

V2 whose derivative for the subsystem

ẋ2 = x3 − x23u
ẋ3 = u

(6.2.6)

can be rendered negative by feedback u = α2(x2, x3) = α3(x3) + v2:

V̇2
∣
∣
∣
u=α3(x3)+v2

= V̇2
∣
∣
∣
u=α3(x3)

+ x3v2 + (x2 + x3 +
x33
3
)(1 + x23)v2 (6.2.7)
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To make V̇2 negative we let

v2 = −(x2 + x3 +
x33
3
)(1 + x23) (6.2.8)

and obtain

V̇2 = −x23 + x3v2 − v22 < 0

so that the control law α2(x2, x3) = −x3 + v2 achieves GAS/LES of the equi-

librium (x2, x3) = (0, 0) of (6.2.6).

Optimality of forwarding. The optimality of the forwarding design is demon-

strated by rewriting (6.2.7) as

V̇2 = V̇2
∣
∣
∣
u=u3(x3)

+ (LgV2)v2 = −(LgV3)2 + (LgV2)v2 (6.2.9)

where gT (x) = (x2, x
2
3, 1) is the control vector field of the system (6.2.1). From

(6.2.8) we see that v2 = −LgV2 + LgV3, which gives

V̇2 = −(LgV3)2 + (LgV2)(LgV3)− (LgV2)
2 ≤ 1

2
(LgV3)

2 − 1

2
(LgV2)

2 (6.2.10)

and

α2 = α3 + v2 = −LgV3 − (LgV2 − LgV3) = −LgV2 (6.2.11)

This proves that, with respect to the output y2 = LgV2, the system (6.2.6) is

OFP(−1
2
) and that V2 is a storage function. Hence, using the results of Section

3.4, we conclude that for the subsystem (6.2.6), the control law

u = α2(x2, x3) = −x3 − (x2 + x3 +
x33
3
)(1 + x23) (6.2.12)

minimizes a cost functional of the form

J =
∫ ∞

0
(l(x2, x3) + u2) dt, l ≥ 0

and has a disk margin D( 1
2
). This property will be propagated through each

step of forwarding.

Forwarding design, second step. Having completed the design of a stabi-

lizing control law for the second-order subsystem (6.2.6), we proceed to the

stabilization of the full third-order system

ẋ1 = x2 + x23 + x2u
ẋ2 = x3 − x23u
ẋ3 = u

(6.2.13)
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With u = α2(x2, x3) in (6.2.12), this system has the cascade form

ẋ1 = 0 + ψ1(x2, x3)
ẋ2 = x3 − x23α2(x2, x3)
ẋ3 = α2(x2, x3)

(6.2.14)

where ψ1(x2, x3) = x2+x
2
3+x2α2(x2, x3) is the interconnection term. For this

globally stable cascade, the cross-term construction of Chapter 5 yields the

Lyapunov function

V1 = V2 +
1

2
x21 +

∫ ∞

0
x̃1(s)ψ1(x̃2(s), x̃3(s))ds

= V2 +
1

2
lim
s→∞

x̃21(s)

= V2 +
1

2
(x1 + φ(x2, x3))

2 (6.2.15)

In contrast to the explicit construction of V2 in (6.2.4), we no longer have a

closed-form expression for

φ1(x2, x3) =
∫ ∞

0

(

x̃2(s) + x̃23(s) + x̃2u2(x̃2(s), x̃3(s)
)

ds (6.2.16)

This function has to be evaluated numerically or approximated analytically.

By construction, the time-derivative of V1 satisfies

V̇1
∣
∣
∣
u=α2(x2,x3)

= V̇2
∣
∣
∣
u=α2(x2,x3)

≤ −1

2
(LgV2)

2 (6.2.17)

and hence,

V̇1
∣
∣
∣
u=α2(x2,x3)+v1

= V̇1
∣
∣
∣
u=α2(x2,x3)

+ LgV1v1 ≤ −
1

2
(LgV2)

2 + LgV1v1 (6.2.18)

By choosing v1 = −LgV1 + LgV2 we obtain u = α1(x1, x2, x3) = −LgV1 and

V̇1 ≤ −1
2
(LgV1)

2. The control law u1 achieves GAS for the system (6.2.1)

because it can be verified that V̇1 is negative definite.

The disk margin D( 1
2
) of the control law is thus preserved in the forwarding

recursion. The control law u1(x1, x2, x3) requires the partial derivatives of the

function φ1(x2, x3), which can be precomputed or evaluated on-line.

Instead of v1 = −LgV1 +LgV2, we could have used v1 = −LgV1 to make V̇1
in (6.2.18) negative definite. The choice vi = −LgVi at each step of forwarding

results in the optimal value function V = V1 + V2 + V3.

Reducing the complexity. Because of the integrals like (6.2.16), the com-

plexity of forwarding control laws is considerable. A possible simplification
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is to use the relaxed constructions of Chapter 5 for the successive Lyapunov

functions constructed at each step. Because of the nonlinear weighting of such

Lyapunov functions, the resulting design is akin to the designs using nested

saturations introduced by Teel [109]. We will discuss such simplified designs

in Section 6.2.4.

6.2.2 Forwarding procedure

To present the forwarding procedure we start from a system

ξ̇ = a(ξ) + b(ξ)u (6.2.19)

which, by assumption, is OFP(− 1
2
) with an already constructed storage func-

tion U(ξ) and the output y = LgU(ξ). To make the procedure recursive, we

want to achieve the same OFP(− 1
2
) property for the augmented system

ż = f(z) + ψ(z, ξ) + g(z, ξ)u

ξ̇ = a(ξ) + b(ξ)u
(6.2.20)

The construction of the new storage function makes use of the cascade

results of Chapter 5 valid under assumptions which we now collect for conve-

nience in a single forwarding assumption.

Assumption 6.8 (Forwarding assumption)

(i) ż = f(z) is GS, with a Lyapunov function W (z) which satisfies Assump-

tion 5.2.

(ii) The functions ψ(z, ξ) and g(z, ξ) satisfy a linear growth assumption in

z, Assumption 5.1.

(iii) The function f(z) has the form

f(z) =

(

f1(z1)
F2z2 + f2(z1, z2)

)

, z =

(

z1
z2

)

(6.2.21)

where f2(0, z2) = 0, ż1 = f1(z1) is GAS, and ż2 = F2z2 is GS,

Assumption 5.10.

(iv) W (z1, z2) is locally quadratic, that is ∂2W
∂z2

(0, 0) = W̄ > 0, and for each

z = (0, z2), the following holds:

∂ψ

∂ξ
(z, 0) :=M, g(z, 0) := g0, and

∂W

∂z
(z) = zT2 W̄2

where M, g0 and W̄2 are constant matrices, Assumption 5.28. 2
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As discussed in Chapter 5, assumptions (i) and (ii) are fundamental, while

(iii) and (iv) are made for convenience to avoid separate tests of GAS and

differentiability of V .

The following theorem presents the basic recursive step of forwarding.

Theorem 6.9 (Forwarding as a recursive output feedback passivation)

Let U(x) be a positive definite, radially unbounded, locally quadratic, storage

function such that the system

ξ̇ = a(ξ) + b(ξ)u, y0 = (LbU)
T (ξ) (6.2.22)

is OFP(−1
2
) and ZSD. Furthermore, let the pair ( ∂a

∂ξ
(0), b(0)) be stabilizable.

Then, under Assumption 6.8, the cascade

ż = f(z) + ψ(z, ξ) + g(z, ξ)u

ξ̇ = a(ξ) + b(ξ)u, y = (LgV )T (z, ξ)
(6.2.23)

is OFP(−1
2
) with a positive definite, radially unbounded storage function

V (z, ξ) = W (z) + Ψ(z, ξ) + U(ξ). Its cross-term is

Ψ(z, ξ) =
∫ ∞

0

∂W

∂z
(z̃(s))(ψ(z̃(s), ξ̃(s)) + g(z̃(s), ξ̃(s))y0(ξ̃(s)) ds (6.2.24)

evaluated along the solution (z̃(s), ξ̃(s)) = (z̃(s; (z, ξ)), ξ̃(s; ξ)) of the system

(6.2.23) with the feedback control u = −y0(ξ).
Moreover, if the Jacobian linearization of (6.2.23) is stabilizable, the control

law u = −y = −(LgV )T achieves GAS and LES of (z, ξ) = (0, 0).

Proof: The system ξ̇ = a(ξ) − b(ξ)LbU(ξ) is GAS and LES. This follows

from the OFP(- 1
2
) and ZSD properties of (6.2.22) and the stabilizability of its

Jacobian linearization (Corollary 5.30).

The construction of V (z, ξ) is an application of Theorem 5.8 to the cascade

ż = f(z) + ψ(z, ξ)− g(z, ξ)(LbU)T (ξ)
ξ̇ = a(ξ)− b(ξ)(LbU)T (ξ)

(6.2.25)

By this construction, the derivative of V (z, ξ) along the solutions of (6.2.25)

is

V̇ = LfW (z) + U̇
∣
∣
∣
u=−(LbU)T

≤ −1

2
‖LbU‖2 (6.2.26)

where we have used the OFP(− 1
2
) property of the system (6.2.22).
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With u = −1
2
y + v = −1

2
(LgV )T + v, we obtain

V̇
∣
∣
∣
u=− 1

2
y+v

= V̇
∣
∣
∣
u=−(LbU)T

+ (LgV )(LbU −
1

2
LgV )T + LgV v

≤ −1

2
‖LbU‖2 + LgV (LbU)

T − 1

2
‖LgV ‖2 + LgV v

≤ LgV v = yTv (6.2.27)

which proves that (6.2.23) is OFP(− 1
2
).

When the Jacobian linearization of (6.2.23) is stabilizable, Theorem 5.29

and Corollary 5.30 guarantee that GAS/LES of the equilibrium (z, ξ) = (0, 0)

is achieved with the control law ũ = −(LbU)T − (LgV )T , which adds the

damping control −(LgV )T to the stable system (6.2.25). This result implies

that (z, ξ) = (0, 0) attracts all the solutions which start in the largest invariant

set of ż = f(z), ξ̇ = a(ξ) where ‖LgV ‖ ≡ ‖LbU‖ ≡ 0. Because V̇
∣
∣
∣
u=−(LgV )T

≤
−1

4
‖LbU‖2− 1

4
‖LgV ‖2, Theorem 2.21 implies that the control law u = −(LgV )T

also achieves GAS of (z, ξ) = (0, 0). LES follows from the stabilizability of the

Jacobian linearization of (6.2.23).

2

Feedforward systems. With a recursive application of the basic forwarding

step we now construct a design procedure for systems in the form

ż1 = f1(z1) + ψ1(z1, z2, . . . , zn, ξ) + g1(z1, z2, . . . , zn, ξ)u
...

żn−1 = fn−1(zn−1) + ψn−1(zn−1, zn, ξ) + gn−1(zn−1, zn, ξ)u
żn = fn(zn) + ψn(zn, ξ) + gn(zn, ξ)u

ξ̇ = a(ξ) + b(ξ)u, zi ∈ IRqi , i = 1, . . . , n

(6.2.28)

where each zi-block satisfies Assumption 6.8, with the required modification

of notation. We point out that Assumption 6.8 imposes two fundamental

restrictions on the system (6.2.28). They are the linear growth in zi of the

interconnection terms ψi and gi, and the polynomial growth of the Lyapunov

functions Wi(zi). Taken together they prevent the possibility of the solutions

of (6.2.28) from escaping to infinity in finite time.

Proposition 6.10 (Absence of escape in finite time)

Consider (6.2.28) under Assumption 6.8 and let u(t) be such that the solution

ξ(t) of the last equation exists for all t ≥ 0. Then, the solution (z(t), ξ(t)) of

(6.2.28) also exists for all t ≥ 0.
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Proof: We first prove that zn(t) exists for all t ≥ 0. Proceeding as in the

proof of Theorem 4.7, we use

Ẇn = LfnWn + LψnWn + LgnWnu(t) ≤ LψnWn + LgnWnu(t) (6.2.29)

and the fact that, for zn large,

|LψnWn + LgnWnu(t)| ≤ γ(‖(ξ(t), u(t))‖)Wn(zn(t)) (6.2.30)

These inequalities yield the estimate

Ẇn ≤ γ(‖(ξ, u)‖)Wn (6.2.31)

which can be integrated as

Wn(zn(t)) ≤ e
∫ t

0
γ(‖(ξ(s),u(s))‖)dsWn(zn(0)) (6.2.32)

Because ξ(t) and u(t) exist for all t ≥ 0, so does Wn(zn(t)). Because Wn is

radially unbounded, this also implies that zn(t) exists for all t ≥ 0. The proof

is analogous for each zi, i ≤ n− 1. 2

Forwarding procedure. If the Jacobian linearization of (6.2.28) is stabiliz-

able, we can achieve GAS/LES of (z, ξ) = (0, 0) in n recursive forwarding

steps. The design is a bottom-up procedure in which a passivating output y1
and the Lyapunov function V1 for the entire system are constructed at the

final step. Using the notation

G(z1, . . . , zn−1, zn, ξ) = (g1(z1, . . . , zn, ξ), . . . , gn−1(zn−1, zn, ξ), gn(zn, ξ), b(ξ))
T

we start with y0 = LbU(ξ). The first step of forwarding yields

Vn(zn, ξ) = Wn(zn) + Ψn(zn, ξ) + U(ξ)

Ψn(zn, ξ) =
∫ ∞

0

∂Wn

∂zn
(z̃n)(ψn(z̃n, ξ̃)− gn(z̃n, ξ̃)LbU(ξ̃) ds

yn = LGVn(zn, ξ)

where the integral is evaluated along the solutions of

żn = fn(zn) + ψn(zn, ξ) + gn(zn, ξ)u

ξ̇ = a(ξ) + b(ξ)u

with the feedback u = −LbU(ξ). For i = n−1, . . . , 1, the recursive expressions

are

Vi(zi, . . . , zn, ξ) = Wi(zi) + Ψi(zi, . . . , zn, ξ) + Vi+1(zi+1, . . . , zn, ξ)

Ψi(zi, . . . , z1, ξ) =
∫ ∞

0

∂Wi

∂zi
(ψi − giyi+1) ds

yi = LGVi(zi, . . . , zn, ξ), i = n− 1, . . . , 1
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where the integral is evaluated along the solutions of (6.2.28) with the control

law u = −yi+1(zi+1, . . . , zn, ξ).

The final Lyapunov function is thus

V (z1, . . . , zn, ξ) = U +
1∑

i=n

(Wi +Ψi)

and GAS/LES of the entire system (6.2.28) is achieved with the feedback

control law

u = −LGV = −LGU −
1∑

i=n

LG(Wi +Ψi)

Stability margins. The stability margins of the forwarding design follow

from its optimality. Proposition 6.9 shows that, if one starts with an OFP(− 1
2
)

system, this property is propagated through each step of forwarding. By Theo-

rem 3.23, this means that, at each step, the control law ui = −LGVi minimizes

a cost functional of the form

J =
∫ ∞

0
(l(z, ξ) + uTu)dt, l(z, ξ) ≥ 0

and hence, achieves a disk margin D( 1
2
).

We stress that the stability margins of forwarding are achieved despite the

fact that, in general, the constructed Lyapunov function V is not necessarily a

CLF. The reason is that we have not imposed any restriction on the dimension

of the vectors zi and ξ so that, in general, V̇ is rendered only negative semi-

definite, rather than negative definite. As an illustration, let the last equation

of (6.2.28) be

ξ̇ = Aξ + b(ξ)u, A+ AT = 0 (6.2.33)

The time-derivative of the Lyapunov function U = 1
2
ξT ξ is

U̇ = (LbU)u = ξT b(ξ)u

which means that Vn is a CLF for (6.2.33) only if the dimension of u is greater

than or equal to that of ξ. When this is not the case, the task of finding a

CLF may not be straightforward even for (6.2.33).

6.2.3 Removing the weak minimum phase obstacle

The above forwarding procedure started with the output y0 = LbU , which

satisfied only the relative degree requirement. The recursive steps consisted

of passivation designs for the subsystems of increasing dimensions. Only the

output y1 = LGV constructed in the final step satisfied both the relative degree
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one and the weak minimum phase requirements. In all the intermediate steps,

the zero-dynamics subsystems for the constructed outputs can be unstable.

Forwarding has thus removed the weak minimum phase obstacle to feedback

passivation. In this sense, forwarding complements backstepping which has

removed the relative degree obstacle.

It should be stressed, however, that the forwarding assumptions (Assump-

tion 6.8) restrict the type of zero-dynamics instability. Instability in the Jaco-

bian linearization can be caused only by repeated eigenvalues on the imaginary

axis and, as shown in Proposition 6.10, no solution can escape to infinity in

finite time. In Chapter 4 (Theorem 4.41), we have shown that with this non-

minimum phase property the semiglobal stabilization of nonpeaking cascades

is still possible.

Partially linear cascades. We now return to the cascade in Chapter 4:

ż = f(z) + ψ̃(z, ξ)y

ξ̇ = Aξ +Bu, y = Cξ
(6.2.34)

where ż = f(z) is GAS and the pair (A,B) is stabilizable. In Theorem 4.41, we

have achieved semiglobal stabilization of (6.2.34) using partial-state feedback,

under the assumption that (6.2.34) is a nonpeaking cascade, that is, the system

(A,B,C) is nonpeaking and ψ̃ depends only on its nonpeaking states. We have

also shown that, if either one of these conditions is not satisfied, then there

exist vector fields f(z) for which (6.2.34) is not semiglobally stabilizable, even

by full-state feedback.

We now prove that under the same nonpeaking assumption, the cascade

(6.2.34) can be globally stabilized. Our proof does not require an extra LES as-

sumption of the z-subsystem ż = f(z), although it involves steps of forwarding

in which the state z is part of the lower subsystem. This difficulty is overcome

by modifying the Lyapunov functionW (z) in such a way that, near the origin,

the designed control laws do not depend on z. This modification ensures, at

each step of forwarding, an exponential convergence of all the states involved

in the construction of the cross-term.

Theorem 6.11 (Nonpeaking cascades: global stabilization)

Assume that (6.2.34) is a nonpeaking cascade, that is, (A,B,C) is a nonpeak-

ing system, and ξ enters the interconnection ψ̃(z, ξ)y only with its nonpeaking

components: ψ̃ = ψ̃(z, y, ξs). Then the cascade (6.2.34) is globally stabilizable

by full-state feedback.

Proof: As in the proof of Proposition 6.2, we assume, without loss of general-

ity, that the ξ-subsystem has a uniform relative degree r and is in the normal
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form [

ξ̇u
ξ̇s

]

=

[

Au AJ
0 As

] [

ξu
ξs

]

+

[

Bs

Bu

]

y

y(r) = u

(6.2.35)

where As is Lyapunov stable, Au has all its eigenvalues on the imaginary axis,

and AJ is a part of the unstable Jordan blocks corresponding to the repeated

eigenvalues on the imaginary axis.

The proof is in three parts: feedback passivation, forwarding, and back-

stepping.

Feedback passivation: Treating ẏ = v1 as our virtual control, we extract

the feedback passive part of the cascade (6.2.34):

ż = f(z) + ψ̃(z, ξs, y)y

ξ̇s = Asξs +Bsy
ẏ = v1

(6.2.36)

Proposition 4.21 yields the stabilizing feedback

v1 = α1(z, y, ξs) = −y − (Lψ̃W )T −BT
s Psξs (6.2.37)

and the storage function V1(z, ξs, y) =W (z)+ ξTs Pξs+
1
2
yTy, where W (z) is a

Lyapunov function for ż = f(z) and Ps > 0 satisfies PsAs + ATs Ps ≤ 0. Note,

however, that (z, ξs, y) = (0, 0, 0) need not be LES.

Forwarding: If Au is stable, we apply forwarding to the augmented subsys-

tem
ξ̇u = Auξu + Ausξs +Buy

ż = f(z) + ψ̃(z, ξs, y)y

ξ̇s = Asξs +Bsy
ẏ = −y − (Lψ̃W )T −BT

s Psξs + v2

(6.2.38)

If Au is not stable, we partition it and ξu in such a way that the ξu-subsystem

takes the form
[

ξ̇uu
ξ̇us

]

=

[

Auu AuJ
0 Aus

] [

ξuu
ξus

]

+

[

AJu Buu

AJs Bus

] [

ξs
y

]

(6.2.39)

where Aus is stable. Now we apply forwarding to

ξ̇us = Ausξus + AJsξs +Busy

ż = f(z) + ψ̃(z, ξs, y)y

ξ̇s = Asξs +Bsy
ẏ = −y − (Lψ̃W )T −BT

s Psξs + v2

(6.2.40)
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and leave the ξuu-block to be stabilized in the recursive application of forward-

ing.

Forwarding requires that, when v2 ≡ 0, the states ξs and y, entering

the ξus-subsystem of (6.2.40) converge exponentially to zero. However, the

z-subsystem is not assumed to be exponentially stabilizable and the term

(Lψ̃W )T in (6.2.38) may destroy the exponential convergence of y. To elim-

inate the effect of this term near z = 0, we “flatten” the Lyapunov function

W (z) around z = 0 by replacing W (z) with

W̃ (z) =
∫ W (z)

0
γ(s)ds

where γ is a smooth positive function satisfying the following requirements:

γ(s) = 0, for s ∈ [0, 1]
γ(s) ≥ δ > 0, for s ≥ 2

(6.2.41)

One such function is γ(s) = e
− 1

(s−1)2 for s ≥ 1 and γ(s) = 0 otherwise. The

term Lψ̃W̃ vanishes near the origin. The modified storage function Ṽ1 =

W̃ + ξTs Pξs +
1
2
yTy is radially unbounded, but it is not positive definite. It is

only positive semidefinite. To prove that (z, ξs, y) = (0, 0, 0) is GAS with the

modified control

v1 = α̃1(z, y, ξs) = −y − (Lψ̃W̃ )T −BT
s Psξs, (6.2.42)

we use Theorem 2.24. The closed-loop system (6.2.36), (6.2.42) is asymptoti-

cally stable conditionally to the set {(z, ξs, y)|Ṽ1 = 0} and GAS follows because
˙̃V1 ≡ 0 ⇒ y ≡ 0 ⇒ ξs → 0. In the manifold ξs = 0, y = 0 the z-dynamics re-

duces to ż = f(z) which implies that z → 0. Hence, for a given initial condition

(z(0), ξs(0), y(0)) there exists T such that ‖z(t)‖ ≤ 1,∀ t ≥ T . Furthermore,

for t ≥ T , the control v1 is independent of z and becomes v1 = −y − BsPsξs,

which guarantees the exponential convergence of ξs(t) and y(t).

Now the conditions for the construction of the cross-term Ψ are satisfied

and we can proceed with the forwarding design for (6.2.40). Assumption 6.8 is

satisfied because the added ξus-subsystem is linear and the pair (A,B) is stabi-

lizable. A Lyapunov function V2 and a stabilizing feedback v2 = α2(z, ξs, ξus, y)

are thus constructed to achieve GAS of (z, ξus, ξs, y) = (0, 0, 0, 0). For the next

step of forwarding we extract the stable part of ξuu to augment the cascade

(6.2.40). This procedure is repeated until ξu...u is void. The number of steps

of forwarding needed is equal to the maximal multiplicity q of the eigenvalues

of Au. In the last step we obtain vq = αq(z, ξ, y), the stabilizing control law

for (6.2.38), and the accompanying Lyapunov function Vq(z, ξ, y).



262 CHAPTER 6. RECURSIVE DESIGNS

Backstepping. If r = 1 in (6.2.35), the control law

u = α(z, ξs, ξu, y) = α1(z, ξs, y) + αq(z, ξs, ξu, y) (6.2.43)

achieves GAS of (z, y, ξu, ξs) = (0, 0, 0, 0) and V̇q|u=α ≤ 0. If r > 1, (6.2.43)

is a virtual control law for ẏ. This control law must be backstepped through

r − 1 integrators to stabilize the entire system.

2

Although more complicated than the partial-state linear feedback in Theo-

rem 4.41 which achieves semiglobal stabilization, the full-state feedback design

in Theorem 6.11 achieves global stabilization and leads to an improvement in

performance.

Example 6.12 (Forwarding design for a nonpeaking cascade)

We have achieved semiglobal stabilization of the nonpeaking cascade

ż = −δz + ξ3z
2, δ > 0

ξ̇1 = ξ2
ξ̇2 = ξ3
ξ̇3 = u

(6.2.44)

in Example 4.42 with the linear high-low gain feedback

u = −aξ3 − ξ2 −
1

a
ξ1, (6.2.45)

The design (6.2.45) is appealing for its simplicity but we have seen that it

causes the fast peaking of the control u and the slow peaking of the state ξ1.

In addition, because it does not use z for feedback, it does not improve the

slow convergence of ż = −δz.
We will now show that these undesirable features can be eliminated by the

full-state feedback forwarding design of Theorem 6.11. In this design we first

disregard the ξ1-equation and achieve feedback passivation of the subsystem

ż = −δz + z2y

ξ̇2 = ξ3
ξ̇3 = u, y = ξ3

(6.2.46)

This subsystem meets the relative degree one and weak minimum phase re-

quirements of Proposition 4.21 which yields the stabilizing control law

u = −ξ2 − ξ3 − z3 (6.2.47)

and the Lyapunov function U = 1
2
(z2 + ξ22 + ξ23).
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Figure 6.5: Typical response of the forwarding design for (6.2.46). Compared
with the low-high gain design (dotted in ξ1), the peaking of u and ξ1 is signif-
icantly reduced.

To stabilize the entire system (6.2.44), we apply one step of forwarding by

constructing a Lyapunov function for the augmented system

ξ̇1 = ξ2
ż = −δz + z2ξ3
ξ̇2 = ξ3
ξ̇3 = −ξ2 − ξ3 − z3

(6.2.48)

Defining the new state

ζ = ξ1 +
∫ ∞

0
ξ̃2(s)ds = ξ1 + φ1(ξ2, ξ3, z) (6.2.49)

where ξ̃2(s) = ξ̃2(s; (z, ξ2, ξ3)) is a solution of (6.2.48), we obtain the Lyapunov

function

V = U +
1

2
ζ2 =

1

2
(z2 + ξ22 + ξ23 + ζ2) (6.2.50)

With the additional feedback

v = −∂φ1
∂ξ3

ζ, (6.2.51)

the final control law is

u = ξ2 − ξ3 − z3 −
∂φ1
∂ξ3

ζ (6.2.52)
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With this control law, the time-derivative of V is

V̇ = −δz2 − ξ23 −
∂φ1
∂ξ3

ζξ3 − (
∂φ1
∂ξ3

ζ)2 ≤ 0 (6.2.53)

and the closed-loop system has a gain margin ( 1
2
,∞).

The control law (6.2.52) contains the integrals φ1 and ∂φ1

∂ξ3
. As in Section

5.4.3, these integrals were numerically evaluated over the interval T = 60.

Figure 6.5 shows the significant improvement in performance with respect

to the partial-state feedback design in Figure 4.8. The overshoot of ξ1 is

reduced in half and the settling time is reduced by an order of magnitude. By

comparing the control effort we see that the partial-state feedback design is

active only during a very short transient with a peak about two times larger

than the full-state design. On the other hand, the full-state feedback remains

active steering ξ3 to achieve fast convergence of ξ1 and z. Because the design

does not force ξ3 to stay small after its fast convergence, it alleviates the slow

peaking of the state ξ1. All the states converge in the same time scale. 2

6.2.4 Geometric properties of forwarding

To exhibit the underlying geometry of forwarding, we consider a special class

of feedforward systems

ż1 = F1z1 + ψ1(z2, . . . , zn) + g1(z2, . . . , zn)u
...

żn−1 = Fn−1zn−1 + ψn−1(zn) + gn−1(zn)u
żn = Fnzn + gnu

(6.2.54)

where Fi + F T
i = 0, i = 1, . . . , n. We call such systems strict-feedforward

systems because they exclude any feedback connection except in żi = Fzi. It

is easily verified that each subsystem of (6.2.54) satisfies Assumption 6.8 with

a quadratic Lyapunov function Wi(zi) = 1
2
zTi zi. Hence, (6.2.54) is globally

stabilizable if its Jacobian linearization is stabilizable.

At each step of forwarding, a Lyapunov function is constructed for the

corresponding cascade
żi = Fizi + ψ(ξ)

ξ̇ = a(ξ),
(6.2.55)

where ξ̇ = a(ξ) is GAS and LES. As shown in Section 5.3.1, the construction of

the cross-term Ψ for such a cascade is equivalent to the use of the decoupling

change of coordinates

ζi = zi +
∫ ∞

t
e−Fi(τ−t)ψ(ξ(τ + t; t; ξ))dτ, (6.2.56)
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which transforms (6.2.55) into

ζ̇i = Fiζi
ξ̇ = a(ξ)

In the new coordinates (ζi, ξ), the Lyapunov function Vi(z, ξ) = 1
2
zTi zi +

Ψ(zi, ξ) + U(ξ) reduces to the sum 1
2
ζTi ζi + U(ξ). This change of coordinates

will help us to display significant geometric properties of forwarding.

Proposition 6.13 (Geometry of forwarding)

If the Jacobian linearization of (6.2.54) is stabilizable, then there exists a global

change of coordinates ζ = T (z), such that, in the new coordinates, a storage

function for (6.2.54) is quadratic

V (T−1(ζ)) =
1

2

1∑

i=n

ζTi ζi

For the output y = LGV , the system (6.2.54) is OFP(− 1
2
) and the feedback

control

u = −y = −LGV (T−1(ζ)) = −
n∑

i=1

κi(ζi+1, . . . , ζn)
T ζi (6.2.57)

where κi(ζi+1, . . . , ζn) = LGζi, achieves GAS and LES of z = 0.

The resulting closed-loop system (6.2.54), (6.2.57) has the form

ζ̇1 = (F1 − κ1κT1 )ζ1
ζ̇2 = (F2 − κ2κT2 )ζ2 − κ2κT1 ζ1

...

ζ̇n−1 = (Fn−1 − κn−1κTn−1)ζn−1 − κn−1(
∑n−2
i=1 κ

T
i ζi)

ζ̇n = (Fn − κnκTn )ζn − κn(
∑n−1
i=1 κ

T
i ζi)

(6.2.58)

2

A geometric interpretation of the change of coordinates ζ = T (z) is that

at each step of the design, it transforms the added equation into

ζ̇i = Fiζi + κivi (6.2.59)

so that, for vi = 0, the hyperplane ζi = 0 is the global stable manifold of the

augmented cascade: the solutions starting in the manifold converge to the ori-

gin. This manifold remains invariant under feedback vi = −κi(ξi+1, . . . , ξn)ζi,

which renders it attractive, that is, achieves GAS of the augmented system.
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Figure 6.6: The stable manifold ζ2 = 0 of the system (6.2.60) with v2 = 0 is
rendered attractive by the forwarding design.

Example 6.14 (Phase portrait of a forwarding design)

Let us reexamine the second step of our introductory example

ẋ2 = x3 + x33 − x23v2
ẋ3 = −x3 + v2

(6.2.60)

When v2 = 0, then ζ2 = x2 + x3 + x33 is constant along each solution of

(6.2.60). The solutions converge to the axis x3 = 0, dashed curves in Figure

6.6. With the additional feedback

v2 = −κ2(x3)ζ2 = −x2 − x3 −
x33
3

(6.2.61)

the solutions converge to the globally stable manifold ζ2 = 0, solid curves in

Figure 6.6.

2

The geometry of the second order system (6.2.60) is propagated through

the steps of forwarding to form a sequence of nested invariant submanifolds.

After n steps, the solutions are attracted first, to the manifold ζ1 = 0, which is

invariant; then to the submanifold ζ1 = ζ2 = 0, which is also invariant. Even-

tually, the solutions are attracted to the submanifold ζ1 = ζ2 = . . . = ζn−1 = 0,

in which the feedback system is described by ζ̇n = (Fn − κn(ζ)κTn (ζ))ζn. Each
of the invariant submanifolds is the stable manifold of the cascade (6.2.55). At
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each step of the design, the stable manifold of the corresponding augmented

system is rendered attractive by the new term −κi(ζ)T ζi added in the control

law.

6.2.5 Designs with saturation

Because of the complexity of forwarding, which is due to the integrations

required for the construction of cross-terms Ψi, simplified designs are even

more desirable than in the case of backstepping. In our simplification of back-

stepping, the exact implementation of derivatives was avoided by employing

high-gain feedback loops to enforce the convergence to desired invariant sub-

manifolds. To avoid computation of the integrals required for forwarding,

we will employ low-gain control laws with saturation. They let the solutions

approach nested submanifolds which are different from the submanifolds of

forwarding.

0
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a
s
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F
a
s
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Figure 6.7: The saturation design lets the solutions of the system (6.2.60)
approach the manifold x3 = 0.

Example 6.15 (Phase portrait of saturation design)

To illustrate such a simplification of forwarding, we again consider the second

order system (6.2.60). We have just seen that, with v2 = 0, its solutions

converge to the axis x3 = 0. If v2 is saturated at a small ε, then the solutions

will converge to an ε-neighborhood of x3 = 0, where |x3| is small, and the
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following approximations hold:

V2 =
x23
2

+
1

2
(x2 + x3 + x33)

2 ≈ x23
2

+
1

2
(x2 + x3)

2 (6.2.62)

and

LgV2 = x2 + x3 +
x33
3
≈ x2 + x3 (6.2.63)

The ε-saturated control law

v2 = −σε(x2 + x3) (6.2.64)

has the following two properties. First, while in saturation, it lets the solutions

of (6.2.60) converge to a neighborhood of x3 = 0. Second, in this neighborhood,

the damping control v = −LgV2 can be replaced by its linear approximation

(6.2.63).

Figure 6.7 shows the phase portrait of (6.2.60) with the saturated control

law (6.2.63) for ε = 0.3. A comparison with Figure 6.6 shows the difference

in geometric properties of the two designs. Instead of converging to the stable

manifold ζ2 = 0, as in Figure 6.6, the solutions in Figure 6.7 mimic the uncon-

trolled behavior (v2 = 0) until they approach the axis x3 = 0. In addition, the

smallness of ε creates a time-scale separation between the convergence rate to

the manifold x3 = 0, which is fast, and the convergence rate to the origin along

the manifold x3 = 0, which is slow because it is governed by the equation

ζ̇ = −σε(ζ) +O(x23), ζ = x2 + x3

The separation between the off-manifold behavior and in-manifold behavior

illustrated in Figure 6.7 depends on the smallness of the parameter ε. Inter-

mediate phase portraits between the extremes shown in Figures 6.6 and 6.7

can be obtained with larger values of ε.

The above example is important because it shows that a linear design

combined with a saturation suffices to achieve global stabilization of the feed-

forward system
ẋ2 = x3 + x33 − x23v
ẋ3 = −x3 + v

(6.2.65)

The linear part of the saturation design is a forwarding design for the Jacobian

linearization of the system (6.2.60), that is for the double integrator ẋ2 = x3,

ẋ3 = u. For this system, forwarding yields the Lyapunov function V2 =
1
2
x23 +

1
2
(x2+x3)

2 and the linear control v = −x2−x3, which correspond, respectively,
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to the approximations (6.2.62) and (6.2.63) of the forwarding design for the

original system (6.2.65). 2

Nested saturation design. The design illustrated on the system (6.2.65) is

now extended to the class of strict-feedforward systems (6.2.54). For the linear

part of the design, we consider only the Jacobian linearization

ż1 = F1z1 +M1[z
T
2 , . . . , z

T
n ]
T +G1u

...
żn−1 = Fn−1zn−1 +Mn−1zn +Gn−1u
żn = Fnzn + gnu

(6.2.66)

and assume that it is stabilizable. A forwarding design for this linear system

yields the quadratic Lyapunov function

V =
n∑

i=1

(zTi Wizi + ziΨi[z
T
i+1 . . . z

T
n ]
T ) =:

n∑

i=1

[zTi . . . z
T
n ]Pi[z

T
i . . . z

T
n ]
T

and the linear control law

u = −LGV = −
n∑

i=1

(

[GT
i . . . G

T
n ]Pi[z

T
i . . . z

T
n ]
T
)

:= −
n∑

i=1

Kiz

By combining this linear design with saturations, we recover the nested sat-

uration design of Teel [109], which was the first constructive result for the

stabilization of feedforward systems.

Proposition 6.16 (Nested saturation design)

Consider the strict-feedforward system (6.2.54) and assume that its Jacobian

linearization is stabilizable. Then, for any εn > 0 there exists a sequence of

saturation levels εn > εn−1 > . . . > ε1 > 0 of the saturation functions σn, . . . ,

σ1, such that control law

u = −σn(Knz + σn−1(Kn−1z + . . .+ σ1(K1z)) . . .) (6.2.67)

achieves global asymptotic stability (GAS) and local exponential stability

(LES) of z = 0. 2

It is of interest to compare the nested saturation design with the nested

high-gain design of Proposition 6.5 for strict-feedback systems. Because sat-

urations are used instead of linear low gains, the result of Proposition 6.16 is

global as opposed to the semiglobal result of Proposition 6.5. As stated here,

these two results are asymptotic in the sense that they are guaranteed to hold

for sufficiently small values of the parameters εi. Additional effort is required

to quantify these values.
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Example 6.17 (Saturation design for a nonpeaking cascade)

The basic idea of the nested saturation design can be used in the stabilization

of the cascade in Example 6.12:

ξ̇1 = ξ2
ż = −δz + ξ3z

2

ξ̇2 = ξ3
ξ̇3 = u

(6.2.68)

Repeating the feedback passivation part of the forwarding design, and ignoring

first the state ξ1, we obtain

u = −ξ2 − ξ3 − z3 + v (6.2.69)

For the Lyapunov function U = 1
2
(z2 + ξ22 + ξ2ξ3 + ξ23), this feedback transfor-

mation achieves

U̇ = −δz2 − ξ22 − ξ2ξ3 − ξ23 + ξ3v ≤ −δz2 −
1

2
ξ22 −

1

2
ξ23 + ξ3v (6.2.70)

Here we depart from the forwarding design and avoid the computation of the

integrals in Example 6.12. We augment the control law (6.2.69) with the

saturated feedback

v = −σε(ζl), ζl = ξ1 + ξ2 + ξ3 (6.2.71)

where ζl is the linearization of ζ , obtained in the forwarding design (6.2.49).

The bound |v| ≤ ε and (6.2.70) imply that U̇ < 0 provided that

|ξ3| > 2ε, |z| > ε√
2δ
, or |ξ2| >

ε√
2

Hence, for any solution of the closed-loop system, there exists t = t1 after

which the states z(t), ξ2, and ξ3(t) are bounded by O(ε). For t ≥ t1, we have

ζ̇l = −σε(ζl) + z3 = −σε(ζl) +O(ε3) (6.2.72)

which implies that ζl will also be bounded by ε after some time t = t2. For t ≥
t2, the control law is not saturated and the system (6.2.68) is an exponentially

stable linear system perturbed by higher-order terms in ξ3 and z. For ε small

enough, the solution is in the region of attraction of (z, ξ) = (0, 0), which

proves that the saturation design achieves GAS/LES of (z, ξ) = (0, 0).

The above analysis does not quantify the saturation level ε which achieves

GAS. If this level has to be chosen too small, the performance and robustness

of the saturation design may be compromised. With the control law (6.2.71),
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Figure 6.8: Saturation design for (6.2.68), solid curves, compared with for-
warding, dashed curves.

simulations have shown that saturation levels higher than ε = 1 do not improve

the performance because the response becomes more oscillatory. However,

ε = 1 gives a satisfactory performance shown in Figure 6.8 for the same initial

condition as in Example 6.12.

2

Relaxed forwarding. Using the relaxed construction of Section 5.3, we

now provide a simplification of forwarding for a larger class than the strict-

feedforward systems. The main building block in this simplification of for-

warding is the cascade

ż = Fz + ψ(z, ξ) + g(z, ξ)u

ξ̇ = a(ξ) + b(ξ)u,
(6.2.73)

where ż = Fz is stable, and ψ(z, ξ) = Mξ + r(z, ξ), with r(z, ξ) second or

higher order in ξ. For this system Corollary 5.26 guarantees the existence of

a Lyapunov function which is obtained from the quadratic approximation of

the cross term Ψ.

Proposition 6.18 (Relaxed forwarding)

Suppose that U(x) is a positive definite, radially unbounded storage function



272 CHAPTER 6. RECURSIVE DESIGNS

such that the system

ξ̇ = a(ξ) + b(ξ)u, y0 = LbU(ξ) (6.2.74)

is OFP(−1
2
) and ZSD, and, moreover, U̇ |u=−y0 is locally quadratic, that is,

U̇ |u=−y0 ≤ −c‖ξ‖2, in some neighborhood of the origin. Let V̄ (z, ξ) be the

quadratic approximation of the Lyapunov function V0 =W (z)+Ψ(z, ξ)+U(ξ).

Then the cascade (6.2.73) with the output y = LGV (z, ξ) and the storage

function

V (z, ξ) = U(ξ) + ln(V̄ (z, ξ) + 1) +
∫ U(ξ)

0
γ(s)ds

is OFP(−1
2
).

If the Jacobian linearization of (6.2.23) is stabilizable, the control law u =

−y = −LGV achieves GAS and LES of the cascade. 2

The relaxed forwarding procedure employs Proposition 6.18 as its basic

step. The development of this procedure follows that of Section 6.2.2 and is

not given here. We see that the main simplification in the relaxed procedure

is that the Lyapunov function V (z, ξ) can be computed by solving the set of

algebraic equations (5.3.24) rather than evaluating the integrals needed for the

cross-term Ψ(z, ξ).

Relaxed forwarding applies to a larger class of systems than the nested satu-

ration design because ψ and g in (6.2.73) are allowed to depend on z. Another

important difference is that it provides a Lyapunov function for the closed-

loop system. However, the control laws designed with relaxed forwarding and

nested saturations have similar geometric properties because the control law

u = −LGV in the above proposition is of the form

u = −(1 + γ(U))LbU −
LGV̄

1 + V̄
(6.2.75)

where the function γ has to be sufficiently large to achieve domination in V̇ .

As in the saturation design, the second term of the control law (6.2.75) is

saturated and its gain lower than the “gain” (1+ γ(U)) of the first term. The

similarity with a saturation design is illustrated in the following example.

Example 6.19 (Relaxed forwarding for a nonpeaking cascade)

We return to the a nonpeaking cascade considered in Examples 6.12 and 6.17.

The first step, feedback passivation, is the same as in the forwarding and

saturation designs and we arrive at the cascade

ξ̇1 = ξ2
ż = −δz + z2ξ3
ξ̇2 = ξ3
ξ̇3 = −z3 − ξ2 − ξ3 + v

(6.2.76)
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To construct a composite Lyapunov function, we employ the relaxed change

of coordinates given in Proposition 5.22 because the nonresonance condition

is satisfied. Since Ml = 0, we solve NA− FN = −M , where

F = 0, M =
[

0 1 0
]

, A =






−δ 0 0
0 0 1
0 −1 −1






The solution N = [0 1 1] and ζ1 = ξ1+N
[

z ξ2 ξ3
]T

= ξ1+ξ2+ξ3 transform

the system (6.2.76) into

ζ̇1 = −z3 + v
ż = −δz + z2ξ3
ξ̇2 = ξ3
ξ̇3 = −z3 − ξ2 − ξ3 + v

(6.2.77)

Since the cross-term z3 in the ζ1-subsystem is independent of ζ1, we can use

the Lyapunov function

V =
√

ζ21 + 1− 1 +
∫ U

0
γ(s) ds (6.2.78)

where U(z, ξ2, ξ3) =
1
2
(z2 + ξ22 + ξ23) and γ has to be chosen to guarantee

V̇ =
−z3ζ1
√

ζ21 + 1
+ γ(U)(−δz2 − ξ23) ≤ 0

One such γ is γ(U) = 1
δ
(1 + U).

Returning to the cascade (6.2.77), we employ the damping control law

v = −LGV = −1

δ
(1 + U)ξ3 −

ζ1
√

ζ21 + 1
(6.2.79)

Let us now compare this control law with the one obtained by the saturation

design. Clearly, the second term of (6.2.79) is a saturated function of ζ1 with

saturation level one. Instead of employing a small saturation level ε, the

relaxed design increases the gain in the first term of the control law (6.2.79).

Because the control law (6.2.79) is a rescaled version of the saturated control

law, the responses of the two designs are similar.

2
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6.2.6 Trade-offs in saturation designs

Simplification versus performance. By avoiding the computation of the cross-

terms Ψi, saturation and relaxed forwarding designs considerably simplify for-

warding but they also change its geometric properties. It has already been

shown in Figures 6.6 and 6.7 that the saturation design is less active in the

regions of the state space where the control law saturates and a similar con-

clusion applies to the relaxed forwarding design. In particular, these designs

do not react to large excursions of the state zi during the stabilization of the

lower states (zi+1, . . . , zn). In fact, the stabilization of the state zi is delayed

until the solution has approached the manifold zi+1 = . . . = zn = 0. Along

this manifold, the convergence of zi is slow because of saturation.

The saturation in forwarding is dual to the domination in backstepping.

A benefit from these simplified designs is that they tolerate more uncertainty

in the form of the nonlinearities: a growth estimate is sufficient to determine

the control law gains. However, this is also a limitation, because the system

nonlinearities are not actively employed for stabilization.

Flexibility in the choice of the saturation levels. In forwarding, an addi-

tional feedback is designed at each step to achieve GAS of a system which is

already GS. Because damping controls vi = −LgVi have a disk margin D(0),

the designer is free at each step to replace the control law vi = −LgVi by the

control law vi = −ϕ(LgVi) where ϕ(.) is any static nonlinearity in the sector

(0,∞), with ϕ′(0) > 0 to ensure local exponential stability. The added control

law can thus be saturated at each step at a level chosen by the designer.

The situation is different in the saturation designs where the smallness

of the saturation levels is dictated by system nonlinearities. This situation is

dual to high-gain designs where the gains must dominate system nonlinearities

and cannot be freely chosen by the designer. High gains and low saturation

levels are both harmful for the robustness of the feedback system: high gains

increase the sensitivity to fast unmodeled dynamics, while low saturation levels

increase the sensitivity to external disturbances. Because of the saturation,

the control law does not react to an instability caused by such disturbances.

Example 6.20 (Saturation levels as design parameters)

We consider the stabilization of the strict-feedforward system

ẋ1 = x2 + 3x32 − 3x33
ẋ2 = x3
ẋ3 = u

(6.2.80)
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Forwarding design. We first stabilize the (x2, x3)-subsystem of (6.2.80)

with

u = −x2 − x3 + v1

and the Lyapunov function V2 = 1
2
x22 +

1
2
x23. To complete the design with

forwarding, we evaluate

ζ1 := x1 +
∫ ∞

0
(x̃2(s) + 3x̃32(s)− 3x̃33(s))ds (6.2.81)

along the solutions of the subsystem

˙̃x2 = x̃3
˙̃x3 = −x̃2 − x̃3

We obtain

ζ1 = x1 + x2 + x3 + 3x32 + 3x22x3 + 3x2x
2
3, (6.2.82)

and use it to construct the Lyapunov function V = 1
2
(ζ21 + x22 + x23). The

resulting damping control law

v1 = −LgV = −x3 − κ1(x2, x3)ζ1, κ1 =
∂ζ1
∂x3

= 1 + 3x22 + 6x2x3 (6.2.83)

achieves GAS. This follows from V̇ = −x23 − (LgV )2 ≤ 0 and the fact that

x3 ≡ 0 and LgV ≡ 0 imply x2 ≡ x1 ≡ 0. The control law u = −x2− x3−LgV
also achieves LES of x = 0 and D( 1

2
) disk margin.

If it is desirable to limit the control effort, the flexibility of forwarding

allows us to saturate the nonlinear part (6.2.83) of the control law and use

instead v1 = −σM(LgV ), that is

u = −x2 − x3 − σM(LgV ) (6.2.84)

where M is the saturation level. The GAS and LES properties are preserved

with (6.2.84) since V̇ = −x23−LgV σM(LgV ) ≤ 0. In contrast to the saturation

design, the saturation level M introduced in forwarding is a free design pa-

rameter, not dictated by system’s nonlinearities. We will see how this freedom

can be used to enhance robustness and performance.

Saturation design. In this design we saturate the linearization of κ1ζ1 to

obtain the control law

u = −x2 − x3 − σε(x1 + x2 + x3) (6.2.85)

Proposition 6.16 guarantees GAS and LES of the closed-loop system if the

saturation level ε is sufficiently small.
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To determine ε required for stability, we introduce ζl = x1 + x2 + x3 and

rewrite the closed-loop system (6.2.80), (6.2.85) as

ζ̇l = −σε(ζl) + 3x32 − 3x33
ẋ2 = x3
ẋ3 = −x2 − x3 − σε(ζl)

(6.2.86)

The linear (x2, x3)-subsystem is exponentially stable and its input σε(ζl) is

bounded by ε, so that |3x32 − 3x33| ≤ 6ε3 after some finite time. Substituting

this bound into the first equation in (6.2.86) we obtain that the closed-loop

system is asymptotically stable if ε < 0.408.

0
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Figure 6.9: Transient of x1 due to the initial condition (x1, x2, x3) = (−2, 3, 1)
for forwarding and saturation designs

Performance comparison. For the saturation design, we select ε = 0.4. This

value is not conservative because our simulations show instability already at

ε = 0.6. For forwarding design (6.2.84), we let the saturation level M be

our only design parameter. For M = 1, 2, 5, Figure 6.9 shows that the x1-

transients are superior to the transient obtained with the saturation design.

Large swings in x1 are caused by 3x32 − 3x33. However, the same nonlinearity

can be used to rapidly bring x1 back, which is accomplished by forwarding. On

the other hand, saturation design is incapable of exploiting this opportunity

because its only information about the nonlinearity is an upper bound. Indeed,



6.3. INTERLACED SYSTEMS 277

the saturation design (6.2.85) would remain the same even if the sign of the

nonlinearity is reversed.

Another drawback of low saturation levels is that an external disturbance

of magnitude ε is sufficient to destabilize the system. In the system (6.2.86),

a constant disturbance w = −0.41 added at the input causes the state x1 to

grow unbounded. 2

6.3 Interlaced Systems

6.3.1 Introductory example

With backstepping and forwarding, we are able to recursively design feedback

control laws for global stabilization of strict-feedback and strict-feedforward

nonlinear systems. A combination of backstepping and forwarding is now

employed to achieve global stabilization of a larger class of interlaced systems.

To begin with, we consider the third-order interlaced system

ẋ1 = x2 + x2x3
ẋ2 = x3 + x22
ẋ3 = u+ x1x2x3

(6.3.1)

As in the other two introductory examples (6.1.1) and (6.2.1), the Jacobian

linearization of (6.3.1) is a chain of integrators. However, because of the non-

linear term x2x3, the system (6.3.1) is not in feedback form, nor is it in feedfor-

ward form, because of the terms x1x2x3 and x
2
2. Nevertheless, the structure of

(6.3.1) is conducive for a systematic design, starting with a scalar subsystem

and proceeding with two successive augmentations.

Instead of starting from the top equation, as in Section 6.1.1, or from the

bottom equation, as in Section 6.2.1, we start with the middle equation

ẋ2 = x3 + x22 (6.3.2)

and treat x3 as our virtual control. For this scalar system, a Lyapunov function

is V1 = 1
2
x22 and a stabilizing feedback is x3 = α1(x2) = −x2 − x22. We then

employ one step of forwarding to stabilize the subsystem (6.3.2) augmented

by the top equation of (6.3.1)

ẋ1 = x2 − x22 − x32 + x2v
ẋ2 = −x2 + v

(6.3.3)

where the “control” x3 has been augmented to x3 = α1(x2) + v. With v = 0,

the equilibrium (x1, x2) = (0, 0) of (6.3.3) is globally stable and forwarding
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yields the Lyapunov function

V2 = V1 + lim
s→∞ x̃

2
1(s) (6.3.4)

=
1

2
x22 +

1

2
ζ21 , ζ1 = x1 + x2 −

1

2
x22 −

1

3
x32 (6.3.5)

The additional feedback v = −Lg(V2 − V1) = −(1 − x22)ζ1 achieves GAS of

(6.3.3) and the augmented control law is

x3 = α1(x2) + v = −x2 − x22 − (1− x22)ζ1 := α2(ζ1, x2) (6.3.6)

To stabilize the entire system (6.3.1), we employ one step of backstepping.

With the passivating output y = x3 − α2(ζ1, x2) we rewrite the system (6.3.1)

as
ζ̇1 = (1− x22)(−ζ1 + y)
ẋ2 = α2(ζ1, x2) + x22 + y
ẏ = u+ x2x3x1 − α̇2(ζ1, x2)

(6.3.7)

Augmenting V2 by y2

2
we obtain the CLF V3 = V2 +

y2

2
= 1

2
(x22 + ζ21 + y2)

and employ it to design a control law u = α3(ζ1, x2, y) which achieves GAS of

(6.3.7), and hence, of (6.3.1).

We have solved the stabilization problem for the interlaced system (6.3.1)

by using first one step of forwarding and then one step of backstepping. For

an interlaced system of the form

ẋ1 = x2 + a1(x2, x3) + g1(x2, x3)u
ẋ2 = x3 + x22
ẋ3 = u+ a3(x2, x3)

(6.3.8)

we proceed in the reverse order: first one step of backstepping for the subsys-

tem
ẋ2 = x3 + x22
ẋ3 = u+ a3(x2, x3)

(6.3.9)

and then one step of forwarding for the entire system (6.3.8).

With the examples (6.1.1), (6.2.1), (6.3.1), and (6.3.8) we have illustrated

four different decompositions of the stabilization problem for a third-order sys-

tem. In each of these examples, the sequence of design steps was determined by

system interconnections, that is, by the states which enter the nonlinearities.

The growth of the nonlinearities is unrestricted and uncertainties, such as the

unknown sign of the parameter θ in the system (6.1.1), can be accommodated.

When a system configuration does not permit a decomposition into a se-

quence of backstepping/forwarding steps, then additional properties, like the
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growth or the sign of the nonlinearities, become important, as illustrated by

the system
ẋ1 = x2 + a1(x1, x3)
ẋ2 = x3
ẋ3 = u

(6.3.10)

This system has the same Jacobian linearization as the four previous examples

but differs in the structure of its nonlinear term a1(x1, x3). Because this non-

linearity depends on x1 and x3, the design can not be decomposed as before.

For global stabilizability we need a further characterization of the nonlinearity

a1(x1, x3). In forwarding we impose a linear growth assumption of a1 as a

function of x1 and a stability condition a1(x1, 0)x1 ≤ 0. Without such restric-

tions, the global stabilization may be impossible. For example, in the case

a1(x1, x3) = x21 + x23, using η = x1 + x2, we obtain

η̇ = x3 + x23 + η + (x21 − x1) ≥ −1 + η (6.3.11)

This shows that, irrespective of the choice of the control, initial conditions

which satisfy η(0) > 1 cannot be driven to the origin.

6.3.2 Non-affine systems

Thus far, our presentation of backstepping and forwarding has been restricted

to nonlinear systems affine in the control, that is, ẋ = f(x) + g(x)u. This

restriction is not essential and we now briefly discuss non-affine situations.

Even if the entire system is affine in the control variable u, non-affine situations

are likely to occur at intermediate steps of interlaced designs, as in the following

example:
ẋ1 = x2 + x23
ẋ2 = x3 + x22
ẋ3 = u

(6.3.12)

This system can be stabilized by one step of forwarding followed by one step

of backstepping. However, the first step of forwarding is for the subsystem

ẋ1 = x2 + x23
ẋ2 = x3 + x22

(6.3.13)

which is not affine in the “control” x3.

For backstepping, we will only be interested in the non-affine case

ż = f(z, ξ)

ξ̇ = a(z, ξ) + b(z, ξ)u
(6.3.14)
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where we assume that a virtual control law ξ = α(z) is designed to achieve

GAS of the non-affine z-subsystem. As before, the new variable y = ξ − α(z)
is a passivating output for the system (6.3.14) which can be rewritten in the

form
ż = f(z, α(z)) + g̃(x, y)y
ẏ = a(z, y + α) + b(z, y + α)u− α̇(x, y) (6.3.15)

Backstepping is then pursued as in the affine case.

To apply forwarding to the non-affine system

ż = γ(z, ξ, u)

ξ̇ = a(ξ, u)
(6.3.16)

we assume that the control u = α(ξ) transforms it into the cascade of a GS

subsystem ż = γ(z, 0, 0) with a GAS/LES subsystem ξ̇ = a(ξ, α(ξ)), and the

interconnection term ψ(z, ξ) = γ(z, ξ, α(ξ))−γ(z, 0, 0). If this cascade satisfies
Assumptions 5.1 and 5.2 of Chapter 5, a Lyapunov function with cross-term

can be constructed as before. What differs from the affine case is the design

of the additional control v for the system

ż = γ(z, ξ, α(ξ) + v)

ξ̇ = a(ξ, α(ξ) + v)
(6.3.17)

Instead of the damping control v = −LgV used in the affine case, a control law

v must be designed to enhance the negativity of V̇ |v=0 ≤ 0. This is achieved

with the help of the following proposition by Lin [66].

Proposition 6.21 (Damping control for non-affine systems)

Consider the system

ẋ = f(x, u) = f(x, 0) + g0(x)u+O(x, u) (6.3.18)

where O(x, u) contains only quadratic and higher-order terms in u. Assume

that V (x) is a C1 positive definite radially unbounded function such that

Lf(x,0)V (x) ≤ 0. If ẋ = f(x, 0) + g0(x)u with output y = Lg0V is ZSD, then a

nonlinear gain σ(x) can be constructed such that the damping control

u = −σ(x)(Lg0V )T (x)

achieves GAS of (6.3.18). 2
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6.3.3 Structural conditions for global stabilization

We now characterize interlaced systems by certain properties of the configu-

ration matrix

P (x, u) =
∂f

∂(x, u)
=

(

∂f

∂x

∂f

∂u

)

(6.3.19)

of the general nonlinear system

ẋ = f(x, u), u ∈ IR, x ∈ IRn (6.3.20)

The zero entries of P (x, u) determine the feedback and feedforward connec-

tions which are absent from a block-diagram representation of the system. In

our introductory examples, this structural characterization of the nonlineari-

ties was sufficient to determine the sequence of backstepping and forwarding

steps needed for the stabilization task. The same sequence applies to other

systems if their configuration matrices have the zero entries.

With one step of backstepping or forwarding, the configuration matrix is

augmented by one additional row and one additional column. Thus, when one

step of backstepping augments the system (6.3.20) to

ẋ = f(x, ζ)

ζ̇ = a(x, ζ) + b(x, ζ)u, ζ ∈ IR (6.3.21)

its configuration matrix P undergoes a top-down augmentation to

Pbst =









0

P
...
0

p̃1 . . . p̃n+1 b









(6.3.22)

The zeros in the last column are necessary to apply one step of backstepping.

In a dual manner, when in forwarding the system (6.3.20) is augmented to the

form
ζ̇ = γ(x, u)
ẋ = f(x, u), ζ ∈ IR (6.3.23)

its configuration matrix P undergoes a bottom-up augmentation to

Pfwd =









0 p̃1 . . . p̃n
0
... P
0









(6.3.24)

where the zero entries in the first column are necessary to apply one step of

forwarding.



282 CHAPTER 6. RECURSIVE DESIGNS

Backstepping imposes restrictions on some nonzero entries of the config-

uration matrix. For the system (6.3.21), we must have b(x, ζ) 6= 0 for all

(x, ζ) ∈ IRn+1. This implies that, if the Jacobian linearization of (6.3.20) is

stabilizable, so is the Jacobian linearization of the augmented system (6.3.21).

Forwarding requires stabilizability of the Jacobian linearization.

Examining all the configuration matrices which can be generated by re-

peated top-down augmentations of the type (6.3.22) or bottom-up augmen-

tations of the type (6.3.24), we arrive at the following characterization of

interlaced systems.

Definition 6.22 (Interlaced systems)

A system (6.3.20) is called interlaced if its Jacobian linearization is stabilizable

and its configuration matrix P (x, u) satisfies the following requirements:

(i) If j > i + 1 and pij 6≡ 0, then pkl(x) ≡ 0 for all k ≥ l, k ≤ j − 1, and

l ≤ i.

(ii) If pij 6≡ 0 for some j ≤ i, then pi i+1 is independent of xi i+1 and pi i+1(x) 6=
0 for all x.

2

Definition 6.22 characterizes interlacing by (i) and excludes degenerate situa-

tions in which the lack of stabilizability occurs in the Jacobian linearization

or in which backstepping cannot be applied because of a nonglobal relative

degree (condition (ii)).

Example 6.23 (Three-dimensional interlaced systems)

For third-order systems, the four different types of configuration matrix which

satisfy the requirement (i) of Definition 6.22 are listed below with the two-step

sequences of backstepping (bst) and forwarding (fwd):

bst + bst :






∗ ∗ 0 0
∗ ∗ ∗ 0
∗ ∗ ∗ ∗




 fwd + fwd :






0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗






bst + fwd :






0 ∗ ∗ ∗
0 ∗ ∗ 0
0 ∗ ∗ ∗




 fwd + bst :






0 ∗ ∗ 0
0 ∗ ∗ 0
∗ ∗ ∗ ∗






Only these four configuration matrices can be generated with two top-down

and/or bottom-up augmentations. In each case, a sequence of backstepping

and forwarding steps to be followed can be determined from the matrix con-

figuration. 2
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Theorem 6.24 (Stabilization of interlaced systems)

Every interlaced system is globally stabilizable by a sequence of scalar steps

of backstepping and/or forwarding. The design simultaneously yields the con-

struction of a globally stabilizing feedback and of a CLF. 2

Definition 6.22 guarantees that global stabilization can be achieved with-

out any restriction on the sign or the growth of the nonlinearities. Global

stabilizability of systems which are not interlaced cannot be guaranteed.

Theorem 6.25 (Loss of stabilizability in noninterlaced systems)

Let P (x, u) be a configuration matrix for a system whose Jacobian lineariza-

tion is a chain of integrators. If P (x, u) does not satisfy the condition (i)

of Definition 6.22, then there exists a system, with the configuration matrix

which contains all the zeros of P (x, u), and satisfies the other requirements of

Definition 6.22, which is not globally stabilizable.

Proof: Let pij(x) and pkl(x) be two nonzero entries of P (x, u) such that

j > i + 1, k ≥ l, k ≤ j − 1, and l ≤ i. We consider a system consisting

of a chain of integrators ẋ1 = x2, . . . , ẋn = u, except for its i-th and k-th

equations, which are
ẋi = xi+1 + x2j
ẋk = xk+1 + x2l

(6.3.25)

In the configuration matrix P (x, u) of this system the only nonzero entries

are the off-diagonal entries pmm+1 ≡ 1, m ∈ {1, . . . , n}, and the two entries

pij(x) = 2xj, pkl(x) = 2xl. Therefore, it satisfies the conditions (ii) and (iii)

of Definition 6.22 and contains all the zeros of P (x, u).

We will now show that this system is not globally stabilizable. Using the

fact that l ≤ k, i ≤ j − 1, we define the new state η = xl + . . . + xj−1 which

satisfies

η̇ = (xl+1 + . . .+ xj) + x2l + x2j (6.3.26)

= η − xl + x2l + xj + x2j ≥ η − 1 (6.3.27)

This proves that initial conditions η(0) > 1 cannot be driven to zero, irrespec-

tive of the choice of the control. 2

For the cascade systems of Chapter 4, we have obtained stabilization results

with the help of a structural characterization of nonpeaking cascades, which

excludes the peaking states from the interconnection term. It sets a structural

limit to global stabilization with cascade designs because, if this structural

characterization is missing, interconnection growth must be restricted.
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The characterization of interlaced systems plays a similar role in the re-

cursive designs of this chapter. If its structural restrictions are relaxed, global

stabilizability cannot be guaranteed without additional conditions. An illus-

tration is given by the nonstrict-feedforward systems of this chapter: they do

not satisfy the interlacing condition (i) of Definition 6.22 because they allow

certain feedback loops. However, a forwarding design is still possible for these

systems because the relaxation in the structural requirements is compensated

for by additional growth and stability restrictions.

6.4 Summary and Perspectives

Backstepping and forwarding are the two building blocks for recursive con-

struction of Lyapunov functions and globally stabilizing control laws. By

successive augmentations of smaller systems, recursive designs achieve global

stabilization of larger systems. They overcome the structural limitations of

feedback passivation: the relative degree one and the weak minimum phase

requirements. Backstepping provides the construction of a CLF, which can be

employed to ensure desired stability margins. Forwarding has an optimality

property which guarantees a desired disk margin.

Various simplifications of backstepping and forwarding reduce their com-

plexity by forcing the solutions to converge towards nested invariant manifolds

in different time scales. This geometric property stems from high-gain feedback

in simplifications of backstepping and low-gain saturation in simplifications of

forwarding. Excessive gain separation may be harmful for both performance

and robustness.

With the characterization of interlaced systems, which combine feedback

and feedforward connections, we have reached the limit of systematic nonlinear

designs which exploit the structural properties of interconnections but do not

restrict the growth of the nonlinearities. However, our characterization of

interlaced systems is coordinate dependent, and hence, not complete from a

geometrical point of view.

Stabilizability and controller design of noninterlaced nonlinear systems are

largely open. For the cascade systems, growth restrictions and stronger sta-

bility assumptions are alternatives to the structural nonpeaking conditions to

guarantee global stabilization. Possibilities for such relaxations of the struc-

ture of interlaced systems are yet to be explored.

With their different emphasis on analysis and geometry, the design proce-

dures presented in this book reveal structural limitations of nonlinear designs

and stress the need for trade-offs between performance, robustness, and com-
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plexity. A systematic treatment of these issues is yet to be undertaken.

6.5 Notes and References

The developement of nonlinear recursive designs is recent. The first back-

stepping design of Saberi, Kokotović, and Sussmann [92] removed the relative

degree obstacle in the global stabilization of partially linear cascades. The

backstepping methodology has since become popular and is presented in sev-

eral recent textbooks [61, 73, 43]. The recursive semiglobal high-gain design

for strict-feedback systems was developed by Teel and Praly [112].

For strict-feedforward systems, a recursive design with nested saturations

introduced by Teel [109] has led to further advances in this direction. Mazenc

and Praly [75] extended it with a Lyapunov design for feedforward systems.

The forwarding design presented in this chapter was developed by the authors

in [46, 95].

Our new characterization of interlaced systems was inspired by the work

by Wei [118] dealing with robust stabilization of linear systems which contain

uncertain entries in the matrices A and b. Initial steps toward interlaced

designs of nonlinear systems were made by Qu [90].
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Appendix A

Basic geometric concepts

A.1 Relative Degree

For SISO linear systems, the relative degree r is the difference between the

number of poles and zeros in the transfer function

H(s) = k
q0 + q1s+ . . .+ sn−r

p0 + p1s+ . . .+ sn
(A.1.1)

The systems with r ≥ 0 are called proper, and with r > 0, strictly proper.

In this book we do not consider systems with r < 0. To interpret r for a

state-space representation

ẋ = Ax+ bu
y = cx+ du, x ∈ IRn, u, y ∈ IR (A.1.2)

we expand H(s) as

H(s) = d+ c(sI − A)−1b
= d+ cb

1

s
+ cAb

1

s2
+ . . .+ cAr−1b

1

sr
+ . . . (A.1.3)

When r = 0 we see from (A.1.3) that H(∞) = d 6= 0, that is, the system has

a nonzero infinite frequency throughput. For strictly proper systems (r > 0),

the throughput is zero, d = 0, and r is determined by the two conditions

cAk b = 0, for 0 ≤ k ≤ r − 2, and cAr−1 b 6= 0 (A.1.4)

287
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The meaning of these two conditions in the time domain becomes clear from

the r-th derivative y(r) of the output:

ẏ = cẋ = cAx+ cb u = cAx
...

...
...

y(r−1) = cx(r−1) = cAr−1x+ cAr−2b u = cAr−1x
y(r) = cx(r) = cArx+ cAr−1b

︸ ︷︷ ︸

6=0

u

(A.1.5)

The statement that ”the system has relative degree r” means that the input

appears explicitely for the first time in the r-th derivative of the output.

This definition of the relative degree admits a direct extension to nonlinear

systems. The nonlinear system

ẋ = f(x) + g(x)u
y = h(x) + j(x)u, x ∈ IRn; u, y ∈ IR (A.1.6)

has a relative degree zero at x = x0 if j(x0) 6= 0. If j(x) ≡ 0 in a neighborhood

of x0, we differentiate the output

ẏ =
∂h

∂x
ẋ = Lfh(x) + Lgh(x)u

If Lgh(x0) 6= 0, then ẏ explicitely depends on u near x = x0, and, hence, r = 1.

If Lgh(x) ≡ 0 near x = x0, one more differentiation of y yields

ÿ =
∂

∂x
(Lgh)ẋ = L2

fh(x) + LgLfh(x)u

Now, if LgLfh(x0) 6= 0 then r = 2. We see, therefore, that Lgh(x0), LgLfh(x0),

are the nonlinear analogs of cb, cAb. Likewise, LgL
k
fh(x) is the nonlinear analog

of cAkb.

Definition A.1 (Relative degree of SISO systems)

The relative degree of the nonlinear sysem (A.1.6) at x = x0 is the integer r

such that

(i) LgL
k
fh(x) ≡ 0, for k = 0, . . . , r − 2, and x in a neighborhood of x = x0;

(ii) LgL
(r−1)
f h(x0) 6= 0. 2

For nonlinear systems, the relative degree is a local concept, defined in

some neighborhood of x = x0. If conditions (i) and (ii) hold globally, we say

that the system (A.1.6) has a global relative degree r. In contrast to the linear

case, the relative degree of a nonlinear system may not be defined at some
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point x = x0. Thus, for the system ẋ = u, y = sin x, a relative degree is not

defined at x0 =
π
2
.

A MIMO system with m inputs and m outputs

ẋ = f(x) + g(x)u
y = h(x) + j(x)u, x ∈ IRn, u, y ∈ IRm (A.1.7)

has relative degre zero at x = x0 if j(x0) is nonsingular. If j(x) ≡ 0 near

x = x0, we associate to each output yi an integer ri which is the number

of differentiations of the output yi needed for one of the inputs to appear

explicitely.

Definition A.2 (Relative degree of MIMO systems)

The MIMO system (A.1.7) has a relative degree {r1, . . . , rm} at x = x0 if

(i) LgjL
k
fhi(x) = 0 for all 1 ≤ i, j ≤ m, for all k < ri − 1, and for all x

in a neighborhood of x = x0,

(ii) the m×m matrix

R(x) =




∂y

(ri)
i

∂uj





1≤i,j≤m

=







Lg1L
r1−1
f h1(x) . . . LgmL

r1−1
f h1(x)

...
...

Lg1L
rm−1
f h1(x) . . . LgmL

rm−1
f hm(x)







(A.1.8)

is nonsigular at x = x0. 2

Condition (ii) is the MIMO generalization of the condition LgL
r−1
f h(x0) 6= 0

in the SISO case. If r1 = r2 = . . . = rm, we say that the system (A.1.7) has a

uniform relative degree r1.

A.2 Normal Form

When the relative degree r of the SISO system (A.1.6) is defined at x = x0,

then a change of coordinates

(ξ, z) = T (x), ξ ∈ IRr, z ∈ IRn−r (A.2.1)

which transforms the nonlinear system ẋ = f(x) + g(x)u in a normal form

exists near x = x0. We assume f(x0) = 0, set T (x0) = (0, 0), and define the

first r components Ti(x) of T (x) as

ξ1 = T1(x) = y = h(x)
ξ2 = T2(x) = ẏ = Lfh(x)

...
...

ξr = Tr(x) = y(r−1) = Lr−1f h(x)

(A.2.2)
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Because, by assumption, LgL
(r−1)
f h(x0) 6= 0, the new coordinates ξi satisfy

ξ̇1 = ξ2
...

ξ̇r−1 = ξr
ξ̇r = Lrfh(x) + LgL

(r−1)
f h(x) u

(A.2.3)

Proposition A.3 (Linear independence of output derivatives)

If a SISO system has relative degree r at x = x0, then the row vectors
{

∂T1
∂x

(x0), . . . ,
∂Tr
∂x

(x0)

}

(A.2.4)

are linearly independent.

Proof: By contradiction, suppose that there exists constants ck such that

∂Tr
∂x

(x0) =
r−1∑

k=1

ck
∂Ti
∂x

(x0) (A.2.5)

Then we have

LgL
(r−1)
f h(x0) =

∂Tr
∂x

(x0)g(x0)

=
r−1∑

k=1

ck
∂Tk
∂x

(x0)g(x0)

=
r−1∑

k=1

ckLgL
(k−1)
f h(x0) = 0

which contradicts the relative degree assumption that LgL
(r−1)
f h(x0) 6= 0. 2

In the MIMO case, we associate in a similar way ri components of T (x) to

the output yi and its first (ri − 1) derivatives, that is,

ξi1 = T i1(x) = yi, ξ
i
2 = T i2(x) = Lfhi(x), . . . , ξ

i
ri
= Lri−1f hi(x)

The proof of Proposition A.3 is easily extended to show that the so defined

r =
∑m
i=1 ri components of the change of coordinates are linearly independent

at x = x0 if the relative degree is {r1, . . . , rm}.
In general, the change of coordinates needs to be completed by n − r

functions Tr+1(x), . . . , Tn(x) such that the matrix
(

∂T

∂x

)

(x0) (A.2.6)
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is nonsingular. This is necessary for T (x) to qualify as a local change of

coordinates. Using the notation

ξi = (ξi1, . . . , ξ
i
ri
)T , ξ = (ξ1, . . . , ξm),

z = (Tr+1(x), . . . , Tn(x))
T

bij(z, ξ) = LgjL
(ri−1)
f hi(T

−1(z, ξ)) for 1 ≤ i, j ≤ m (A.2.7)

ai(z, ξ) = Lrif hi(T
−1(z, ξ)) for 1 ≤ i ≤ m (A.2.8)

we rewrite the system ẋ = f(x) + g(x)u, y = h(x), in the normal form

ż = q(z, ξ) + γ(z, ξ)u

ξ̇i1 = ξi2
...

ξ̇iri−1 = ξiri
ξ̇iri = ai(z, ξ) +

∑m
j=1 bij(z, ξ)uj,

yi = ξi1, 1 ≤ i ≤ m

(A.2.9)

In special situations, including the SISO case, it is possible to select the

coordinates z such that γ(z, ξ) ≡ 0, and, hence, ż = q(z, ξ).

The coefficients bij(z, ξ) in (A.2.7) are the elements of the matrix

R(x) =




∂y

(ri)
i

∂uj





1≤i,j≤m

=







Lg1L
r1−1
f h1(x) . . . LgmL

r1−1
f h1(x)

...
...

Lg1L
rm−1
f h1(x) . . . LgmL

rm−1
f hm(x)







which, by the relative degree definition, is invertible near x = x0. Thus,

b−1(z, ξ) exists and the feedback transformation

u = b−1(z, ξ)(−a(z, ξ) + v) (A.2.10)

which is well-defined in the neighborhood of (z, ξ) = (0, 0), transforms the

ξ-subsystem of (A.2.9) into m decoupled integrator chains

ξ̇i1 = ξi2, . . . , ξ̇iri−1 = ξiri , ξ̇iri = vi, 1 ≤ i ≤ m (A.2.11)

Each output yi = ξi1 is controlled by the new input vi through a chain of ri
integrators.

Thus, when ẋ = f(x) + g(x)u, y = h(x), has a well-defined relative de-

gree near x = 0, then a change of coordinates (z, ξ) = T (x) and a feedback

transformation

u = α(x) + β(x)v, β(x) invertible, (A.2.12)
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can make its input-ouput behavior near x = x0 be the same as that of the

m chains of integrators (A.2.11). In that sense, the relative degree is a struc-

tural invariant of the nonlinear system: it cannot be altered by changes of

coordinates or feedback transformations.

The relative degree can be modified by dynamic feedback transformations.

Tthe addition of integrators at the input v increases the relative degree. In

particular, we can make the m chains of integrators in (A.2.11) to be of equal

length by defining r∗ = max{r1, . . . , rm} and by adding r∗ − ri integrators to
each chain:

v̇i = ζ i1, ζ̇
i
1 = ζ i2, . . . , ζ̇ ir∗−ri−1 = wi (A.2.13)

Then the augmented system with the new input w and the old output y has

a uniform relative degree r∗.

A.3 The Zero Dynamics

The relative degree property is useful for input-ouput linearization, decoupling,

output tracking, and similar control tasks. However, the feasibility of these

tasks depends critically on the subsystem

ż = q(z, ξ) + γ(z, ξ)u (A.3.1)

The state z of this subsystem is rendered unobservable by the control law

(A.2.10) which cancels all the z-dependent terms in the ξ-subsystem of (A.2.9).

To see the importance of the subsystem (A.3.1), we analyze it when the

output y of (A.2.9) is maintained at zero, that is, when ξ(0) = 0 and the

control (A.2.10) is chosen to satisfy y(t) ≡ 0, that is,

u = −b−1(z, 0)a(z, 0) (A.3.2)

The subsystem (A.3.1) then becomes an autonomous system

ż = q(z, 0)− γ(z, 0)b−1(z, 0)a(z, 0) =: fzd(z) (A.3.3)

with an equilibrium at z = 0. Its solutions are the dynamics of the system

(A.2.9) which remain upon “zeroing the output” y(t) ≡ 0, hence the term zero

dynamics.

The zero dynamics of a SISO linear system (A.1.2) are determined by

the zeros of its transfer function H(s), as we now show using the state-space
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representation

A =












0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−p0 −p1 −p2 . . . −pn−1












b =












0
0
...
0
k












c =
(

q0 q1 . . . qn−r−1 1 0 . . . 0
)

With the first r coordinates ξ1 = cx, ξ2 = cAx, . . . , ξr = cAr−1x and the

remaining n − r coordinates z1 = x1, z2 = x2, . . . , zn−r = xn−r, the normal

form (A.2.9) becomes

ż = Qz + ey

ξ̇1 = ξ2
...

ξ̇r = ρT1 ξ + ρT2 z + k u

(A.3.4)

The constraint y(t) ≡ 0 is enforced with ξ1(0) = ξ2(0) = . . . = ξr(0) = 0 and

the feedback

u = −1

k
(ρT1 ξ + ρT2 z) (A.3.5)

The zero-dynamics subsystem is

ż = Qz (A.3.6)

and the above calculation shows that

Q =












0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−q0 −q1 −q2 . . . −qn−r−1












b =












0
0
...
0
1












This means that the eigenvalues of Q are the zeros of H(s). With the feedback

(A.3.5), the eigenvalues of Q become n− r eigenvalues of the system (A.3.4),

the other r eigenvalues being zero. With this pole-zero cancellation, the zero

dynamics z(t) are rendered unobservable. When the zero-dynamics subsystem

is unstable, that is, H(s) is a nonminimum phase transfer function, the pole-

zero cancellation destabilizes the whole system and must be avoided. When

the zero-dynamics subsystem is asymptotically stable (stable), the system is
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minimum phase (weakly minimum phase), and pole-zero cancellations do not

cause instability.

For a nonlinear system, the zero-dynamics subsystem (A.3.3) is also de-

termined by the constraint y(t) ≡ 0, and its properties are not altered by a

change of coordinates or a feedback transformation. The zero-dynamics sub-

system (A.3.3) is thus another structural invariant of the nonlinear system

(A.1.7).

A.4 Right-Invertibility

With the normal form (A.2.9) we can solve the tracking problem in which we

force y(t) to track a reference signal yR(t). The requirement y(t) = yR(t)

constraints the state ξ in (A.2.9):

ξ(t) ≡ ξR(t) = (ξ1R(t), ξ
2
R(t), . . . , ξ

m
R (t))

T (A.4.1)

where ξiR(t) =
(

yiR(t), ẏiR(t), . . . , y
(ri−1)
iR (t)

)T

The constraint (A.4.1) is enforced with an initial condition

ξ(0) = (ξ1R(0), ξ
2
R(0), . . . , ξ

m
R (0))

T

and the input

u = uR(t) = b−1(ξR(t), z(t))(−a(z(t), ξR(t)) +







y
(r1)
1R (t)
...

y
(rm)
mR (t)






) (A.4.2)

where z(t) is the solution of

ż = q(z, ξR(t)) + p(z, ξR(t))b
−1(z, ξR(t))(−a(z, ξR(t)) +







y
(r1)
1R (t)
...

y
(rm)
mR (t)






) (A.4.3)

with any initial condition z(0).

The expressions (A.4.2) and (A.4.3) define an inverse system which for

a given y(t) = yR(t) at its input generates uR(t) at its output. The required

number of derivatives of yR(t) is determined by the relative degree {r1, . . . , rm}.
They drive the “inverse-dynamics” subsystem (A.4.3), which, for yR(t) ≡ 0,

reduces to the zero-dynamics subsystem (A.3.3).

A system for which the tracking problem can be solved is called right-

invertible, and the system (A.4.3) with input yR(t), output u(t), and state
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z(t), is a right-inverse of the original system. Right-invertibility is thus a

property implied by the existence of a relative degree.

The concepts of relative degree, zero dynamics, and right-invertibility, are

extended in a straightforward manner to “non-square” MIMO systems with

m inputs and p outputs, provided that m ≥ p.

A.5 Geometric properties

Here, and elsewhere in the book, we call certain dynamic system properties

geometric, if they cannot be altered by the choice of coordinates. We have seen

that relative degree, zero dynamics, and right-invertibility are input-output

geometric properties which remain invariant under feedback.
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Appendix B

Proofs of Theorems 3.18 and
4.35

B.1 Proof of Theorem 3.18

We first prove a converse stability result.

Lemma B.1 (Converse stability with parameters)

Consider the system

ẋ = f(x, θ), x ∈ IRn (B.1.1)

where θ ∈ Rp is constant, f is a Cr function, and f(0, θ) = 0 for all θ ∈ Θ

where Θ ⊂ Rp may be unbounded. If the equilibrium x = 0 is GAS and LES

for all θ ∈ Θ, then there exists a Cr function V (x, θ) such that, for all θ ∈ Θ,

c(θ)‖x‖2 ≤ V (x, θ) ≤ γθ(‖x‖)
∂V

∂x
f(x, θ) ≤ −‖x‖2

(B.1.2)

where c(θ) > 0 is a continuous function and γθ(·) ∈ K∞.

Proof: In the system

˙̄x =
1

1 + ‖f(x̄, θ)‖2f(x̄, θ) =: f̄(x̄, θ) (B.1.3)

the globally Lipschitz vector field f̄ has the same direction as f in (B.1.1)

at each x. In rescaled time, the solutions of (B.1.1) and (B.1.3) coincide.

Therefore, the equilibrium x̄ = 0 of (B.1.3) is GAS and LES.

We let x̄(s;x0, 0) denote the solution of (B.1.3) with the initial condition

x̄(0;x0, 0) = x0. For all θ ∈ Θ

V (x0, θ) =
∫ ∞

0
‖x̄(s;x0, 0)‖2 ds (B.1.4)

297
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is a Cr function. Thanks to the global Lipschitz property of f̄

‖f̄(x, θ)‖ ≤ L(θ)‖x‖, L(θ) = max

{

1, sup
‖x‖≤1

∥
∥
∥
∥
∥

∂f

∂x
(x, θ)

∥
∥
∥
∥
∥

}

we can use
d

ds
‖x̄‖2 = 2x̄T f̄(x̄, θ) ≥ −2L(θ)‖x̄‖2

to obtain ‖x̄(s)‖2 ≥ e−2L(θ)s‖x0‖2 and prove

V (x0, θ) ≥
∫ ∞

0
e−2L(θ)s‖x0‖2 ds = c(θ)‖x0‖2

On the other hand, the GAS/LES properties of (B.1.3) guarantee the ex-

istence of κθ(·) ∈ K and λ(θ) > 0 such that

‖x̄(s)‖ ≤ κθ(‖x0‖)e−λ(θ)s‖x0‖, ∀θ ∈ Θ

Substituting in (B.1.4), we obtain

V (x0, θ) ≤
∫ ∞

0
κ2θ(‖x0‖)e−2λ(θ)s‖x0‖2 ds =

κ2θ(‖x0‖)
2λ(θ)

‖x0‖2 =: γθ(‖x0‖)

The time-derivative of V along the solutions of (B.1.3) is, by construction,

V̇ (x0, θ)
∣
∣
∣
(B.1.3)

= −‖x0‖2

Finally, the time-derivative of V along the solutions of the original system

(B.1.1) is

V̇ (x0, θ)
∣
∣
∣
(B.1.1)

=
∂V

∂x
f(x0, θ) = −(1 + ‖f(x0, θ)‖2)‖x0‖2 ≤ −‖x0‖2

2

We now proceed with the proof of Theorem 3.18. Introducing ζ = z− z̄(x)
we rewrite the singularly perturbed system (3.2.13),(3.2.14) as

ẋ = f(x, z̄(x)) + p(x, ζ)

µζ̇ = q(x, ζ) + µ ∂z̄
∂x
(f(x, z̄(x)) + p(x, ζ))

(B.1.5)

By Lemma B.1, for the subsystem ẋ = f(x, z̄(x)) there exists a C2 function

W1(x) such that
c1‖x‖2 ≤ W1(x) ≤ γ1(‖x‖)
∂W

∂x
[f(x, z̄(x))] ≤ −‖x‖2

(B.1.6)
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Likewise, for the subsystem ζ̇ = q(x, ζ), with x as the parameter, there exists

a C2 function W2(ζ, x) such that

c2(x)‖ζ‖2 ≤ W2(ζ, x) ≤ γ2,x(‖ζ‖)
∂W

∂ζ
q(ζ, x) ≤ −‖ζ‖2

(B.1.7)

As a Lyapunov function for the system (B.1.5) we use

V (x, ζ) =W1(x) +W2(ζ, x) (B.1.8)

which is positive definite and radially unbounded in both x and ξ. For the

compact sets Cx and Cz defined in the theorem, there exists a compact set Cζ
such that, whenever x ∈ Cx, z ∈ Cz, then ζ ∈ Cζ . Thus, there exists a real

number N > 0 such that the set N := {(x, ζ) : V (x, ζ) ≤ N} ⊃ Cx × Cζ is

compact.

The differentiability properties ofW1,W2, p, f , z̄ andW2(0, x) = 0, p(x, 0) =

0, ∀x, imply that there exists M > 0 independent of µ, such that, for any

(x, ζ) ∈ N ,
∥
∥
∥
∂W1

∂x

∥
∥
∥ ≤M‖x‖

∥
∥
∥
∂W2

∂x

∥
∥
∥ ≤M‖ζ‖

∥
∥
∥
∂W2

∂ζ

∥
∥
∥ ≤M‖ζ‖

∥
∥
∥
∂z̄
∂x

∥
∥
∥ ≤M

‖p‖ ≤M‖ζ‖ ‖f‖ ≤M‖x‖
Using these bounds we obtain

V̇ =
∂W1

∂x
f +

∂W1

∂x
p+

1

µ

∂W2

∂ζ
q +

(

∂W2

∂x
+ µ

∂W2

∂ζ

∂z̄

∂x

)

(f + p)

≤ [‖x‖ ‖ζ‖]
[

−1 M2 + µ
2
M3

M2 + µ
2
M3 − 1

µ
+M2 + µM3

] [

‖x‖
‖ζ‖

]

This proves that, for µ sufficiently small, V̇ is negative definite for all (x, ζ) ∈
N . Therefore, the equilibrium (x, ζ) = (0, 0) of the system (B.1.5) is asymp-

totically stable and the set Cx × Cζ is in its region of attraction.

2

B.2 Proof of Theorem 4.35

We first consider the case when the matrix A0 is Lyapunov stable, that is when

the system (A,B,C) is weakly minimum phase. Let As = diag{Ah, Ac} where
Ah is Hurwitz, while all the eigenvalues of Ac are on the imaginary axis, so that

Ac = −ATc . Let (ξc ξh)
T and (Bc Bh)

T be the corresponding decompositions
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of the state ξ0 and of the matrix B, respectively. The Lyapunov function

Wc =
1
2
ξTc ξc is constant along the trajectories of ξ̇c = Acξc. This suggests that

the subsystem

ξ̇c = Acξc +Bcu0,

be stabilized with the damping control of Section 3.5.2, that is with u0 =

K0(a)ξc = − 1
a
BT
c
∂W
∂ξc

= − 1
a
BT
c ξc. With this feedback, the derivative of Wc =

1
2
ξTc ξc is nonpositive

Ẇc = −
1

a
ξTc BcB

T
c ξc ≤ 0 (B.2.1)

and asymptotic stability is guaranteed because (BT
c , Ac) is observable. The

observability follows from our assumption that (Ac, Bc) is stabilizable and the

fact that −AT
c = Ac. Hence, if A0 is Lyapunov stable, the low-gain feedback

matrix K0(a) is simply diag{0,− 1
a
BT
c }. For a fixed T > 0, (B.2.1) and the

observability of (BT
c , Ac) imply that, along the trajectories of the closed-loop

system, Wc(ξc(t+T ))−Wc(ξc(t)) ≤ −β
a
Wc(ξc(t)), where β > 0 is independent

of a. We conclude that, for a large enough,

‖e(As+BsK0(a))t‖ ≤ γ1e
−β

a
t (B.2.2)

To prove that γ1 is independent of a, let P > 0 satisfy PAh + AThP = −I
and note that the derivative of the Lyapunov function W = kWc + ξTh Pξh is

Ẇ = −k
a
ξTc BcB

T
c ξc − ξTh ξh − 2ξTh PBh(

1

a
BT
c ξc)

Completing the squares, we show that Ẇ is negative semidefinite if k >

‖PBh‖2. The observability of the pair (BT
c , Ac) and the fact that W is in-

dependent of a, yield an estimate ‖ξs(t)‖ ≤ γ1‖ξs(0)‖ for some constant γ1
independent of a. This proves (4.5.19) and (4.5.20).

In the case when A0 is unstable due to repeated eigenvalues on the imag-

inary axis, we apply a preliminary feedback u = 1
a
Ks + v to stabilize the

ξs-subsystem, which yields

(

ξ̇u
ξ̇s

)

=

(

Au
1
a
BuKs + AJ

0 As +
1
a
BsKs

)(

ξu
ξs

)

+

(

Bu

Bs

)

v (B.2.3)

The matrix As +
1
a
BsKs is Hurwitz for all a > 0 and a change of coordinates

of the form ξ̃u = ξu + Tξs exists that diagonalizes (B.2.3) as





˙̃ξu
ξ̇s



 =

(

Au 0
0 As +

1
a
BsKs

)(

ξ̃u
ξs

)

+

(

B̃u

Bs

)

v (B.2.4)
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A construction of a low-gain Ku(a) such that Au+ B̃uKu(a) is Hurwitz for all

a > 0 and

‖Ku(a)ξ̃u(t)‖ = ‖Ku(a)e
(Au+B̃uKu(a))tξ̃u(0)‖ ≤

γ1
a
e−σ(a)t‖ξ̃u(0)‖ (B.2.5)

is available from [68]. With the feedback v = Ku(a)ξ̃u, the solution ξs(t) of

(B.2.4) satisfies

ξs(t) = e(As+
1
a
BsKs)tξ0 +

∫ t

0
e(As+

1
a
BsKs)(t−τ)BsKu(a)ξ̃u(τ)dτ

Using (B.2.2) and (B.2.5), we have for all t ≥ 0

‖ξs(t)‖ ≤ γe−
β

a
s‖ξs(0)‖+ γ1

a
‖ξ̃u(0)‖

∫∞
0 e−

β

a
τdτ

≤ γ‖ξs(0)‖+ γ ′‖ξ̃u(0)‖ ≤ γ2‖ξ0(0)‖

for some constants γ, γ ′, and γ2 independent of a. We conclude that the state

ξs does not peak and that the low-gain feedback K0(a)ξ0 = 1
a
Ksξs +Ku(a)ξ̃u

satisfies (4.5.19). 2
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[57] P.V. Kokotović, H.K. Khalil, J. O’Reilly, Singular Perturbations Methods

in Control: Analysis and Design. Academic Press, New York, 1986.
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proach to the feedback control of flexible joint robots,” IEEE Journal of

Robotics and Automation, vol. RA-3, pp. 291-300, 1987.

[105] H.J. Sussmann, P.V. Kokotović, “The peaking phenomenon and the
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Attractivity, 41
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top-down, 280

Augmented cascades, 208

Available storage, 28

Backstepping, 231

exact, 234, 235

robust, 234

Ball-and-beam system, 214

Benchmark system, 174

Cancellation design, 109

Cascade system, 125

Certainty equivalence, 221, 224

Circle criterion, 56, 77

Conditional

stability, 45

attractivity, 45

asymptotic stability, 45

Configuration matrix, 280

Control Lyapunov function (CLF),
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Cost functional, 91

Cross-term, 183

computation, 194, 214

differentiability, 188, 192

existence, 183

geometric interpretation, 199

relaxed, 204

Damping control, 110

Detectability in the cost, 94

Disk margin

linear, 76

nonlinear, 86

Dissipativity, 27

Domination

function, 104

redesign, 103

Dynamic reduction, 247

Fast unmodeled dynamics, 85

Feedback

linearizable systems, 118

linearization, 118

passivation, 59, 139, 141

passivity, 59, 65

Feedforward systems, 255

Forwarding

assumption, 253

procedure, 256

relaxed, 271

with saturation, 274

Function

class K, K∞, 23

class KL, 24

Gain margin

linear, 73

nonlinear, 86

Geometric properties, 291
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Global asymptotic stability (GAS),

41

Global stability (GS), 41

Hamilton-Jacobi-Bellman equation,
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High-gain design, 239

Ill-possedness, 32

Input Feedforward Passivity (IFP),

36

Input to State Stability (ISS), 134

Input Uncertainties, 83

Interconnection

factorization of, 125, 168

feedback, 32

growth restriction, 129

parallel, 32

Interlaced system, 281

Invariance Principle, 43

Invariant set, 42

Inverse optimality, 107

Kalman-Yakubovich-Popov Lemma,

58

Lie derivative, 23

Linear feedback passivity, 61

Linear growth condition, 177

Linear Quadratic Regulator (LQR)

problem, 93

Lipschitz control property, 115

Local exponential stability (LES),
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Lyapunov

direct method, 42

stability, 41

Lyapunov functions

composite, 174, 178

growth restricted, 177

ISS, 134

parametric, 214

polynomial growth of, 130

with cross-term, 183

Mass-spring-damper system, 30

Minimum phase, 64

Nested

high-gain design, 244

saturation design, 268

submanifolds, 265, 266

Nonpeaking

cascade, 163

design, 160

systems (linear), 155, 158

Nonresonance condition, 182

Normal form

linear, 60

nonlinear, 287

Nyquist

criterion, 73

curve, 72

Optimal

stabilizing control, 91

globally stabilizing control, 99

value function, 91

Optimality

and passivity, 95,99

disk margin, 99

sector margin, 102

structural conditions, 96, 106

with domination, 103

Output Feedback Passivity (OFP),

36, 66

Parametric

Lyapunov functions, 215

uncertainties, 84, 214
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Parameter

projection, 223

update law, 222

Partial-state feedback design, 124

Passivity, 27

excess of, 36

feedback, 59

input feedforward, 36

local, 29

nonlinear excess/shortage, 39

output feedback, 36

shortage of, 36

Peaking

phenomenon, 153

states, 156, 161

systems, 155, 158

nonpeaking cascade, 163

Phase margin, 74

Pre- and Post-multiplication, 34

Positively invariant sets, 43

Proper systems, 283

Region of attraction, 41, 127

Relative degree

global, 284

linear, 283

MIMO, 285

nonlinear, 284

Relaxed

change of coordinates, 201

cross-term, 204

forwarding, 271

Right

invertibility, 290

inverse systems, 291

RLC circuit, 30

Saturation

design, 264

function, 21

level, 21, 274

Sector

margin, linear, 73

margin, nonlinear, 86

nonlinearity, 37

Semiglobal

backstepping, 244

stability, 127, 244

Single link manipulator, 87

Singular perturbation form, 90

Small control property, 114

Smooth functions, 23

Sontag’s formula, 113

Stability margins

of forwarding designs, 252

of nonlinear systems, 86

of partial-state feedback, 135

Storage function, 27

Strict-feedback system (form), 236

Strict-feedforward system (form), 249,

264

Strictly proper systems, 283

Supply rate, 27

Sylvester equation, 182

TORA

model, 145

partial-state feedback design, 148

passivation design, 146, 149, 151

system, 124

Variational equation, 188

VTOL aircraft, 246

Weak minimum phase, 64

Zero Input Detectability (ZID), 52

Zero State Detectability (ZSD), 48

Zero State Observability (ZSO), 48


