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Abstract. We propose a Newton-like iteration that evolves on the set of fixed dimensional
subspaces of Rn and converges locally cubically to the invariant subspaces of a symmetric matrix.
This iteration is compared in terms of numerical cost and global behavior with three other methods
that display the same property of cubic convergence. Moreover, we consider heuristics that greatly
improve the global behavior of the iterations.
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1. Introduction. The problem of computing a p-dimensional eigenspace (i.e.,
invariant subspace) of an n×n matrix A = AT is ubiquitous in applied mathematics,
with applications in control theory, pattern recognition, data compression and coding,
antenna array processing, and a multitude of other domains.

Several methods for subspace estimation were proposed in the late seventies and
early eighties. Demmel [Dem87] provides a joint analysis of three of the early meth-
ods that refine initial estimates of arbitrary p-dimensional eigenspaces of a (possibly
nonsymmetric) n × n data matrix A. The early methods depend on the various nu-
merical solutions of a common Riccati equation. These methods converge at best
quadratically (Chatelin’s Newton-based method [Cha84]) even when A is symmetric
and involve the solution of a Sylvester equation at each iteration step. Moreover, the
iterations defined depend on a choice of normalization condition used to generate the
Riccati equation as well as the present iterative estimate of the eigenspace. More
recently, iterations have been proposed that operate “intrinsically” on the Grassmann
manifold, the set of p-planes in Rn. Watkins and Elsner [WE91] have studied a multi-
shifted QR algorithm that, as we will show, conceals a Grassmannian generalization of
the Rayleigh quotient iteration (RQI). Edelman, Arias, and Smith [EAS98] derived a
Newton iteration directly on the Grassmann manifold to find critical points of a gener-
alized Rayleigh quotient. A practical implementation of this method was investigated
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by Lundström and Eldén [LE02]. In a recent paper [AMSV02], the authors proposed
a generalization of the RQI posed directly on the Grassmann manifold where scalar
shifts are replaced by a matrix shift. All these algorithms are intrinsically defined
on the Grassmann manifold (i.e., the next iterate only depends on A and the current
iterate) and converge locally cubically to the isolated p-dimensional eigenspaces of
A = AT .

In the present paper, we compare the three recently proposed cubically convergent
iterations [WE91, EAS98, LE02, AMSV02] and propose a fourth cubically convergent
method inspired by the multihomogeneous Newton methods considered by Dedieu and
Shub [DS00]. The first goal of this paper is to compare the four iterations in terms
of numerical cost and global behavior. The global behavior of these iterations is of
particular interest as existing analytical results focus on the local convergence rates.
In the case where p = 1 and only a single eigenvector is computed the three recently
proposed methods degenerate to the same iteration, the classical RQI, for which the
global behavior is well understood [PK69, Par80, BS89, PS95]. In contrast, almost
no global analysis has been undertaken for the various iterations when p > 1. In this
paper, we show that although the local performance of the methods is comparable,
the global performance differs appreciably. In particular, we study for each method
how the shape of the basin of attraction of an eigenspace deteriorates when some
eigenvalues of A are clustered.

The second goal of this paper is to propose modifications to the methods that
improve the global performance of the iterations without compromising the local per-
formance. The purpose of the modifications is to ensure that each given eigenspace
is surrounded by a large basin of attraction. This guarantees that the iteration con-
verges to the targeted eigenspace even when started rather far away from it. For the
Grassmannian RQI of [AMSV02] we propose a simple threshold on the distance be-
tween successive iterates that improves the shape of the basins of attraction. For the
two Newton-based methods, we introduce a deformation parameter τ that achieves
a continuous transition between the original iteration and a gradient flow with large
basins of attraction. This deformation technique is related to line search methods and
trust region methods in optimization. We propose a simple choice for τ that dramat-
ically enlarges the basins of attraction around the attractors while preserving cubic
convergence. In the case of the new Newton-like iteration proposed in this paper, the
resulting algorithm (Algorithm 5.2) displays an excellent global behavior, combined
with a cubic rate of convergence and a numerical cost of O(np2) flops per iteration
when A is suitably condensed.

This paper is organized as follows. After a short review of subspaces, eigenspaces
and their representations (section 2), we state four cubically convergent iterative al-
gorithms for eigenspace computation (section 3). These iterations are compared in
terms of numerical cost and global behavior in section 4. In section 5, we propose ways
of improving the global behavior of the iterations. The main results are summarized
in the concluding section 6.

2. Subspaces and eigenspaces. In the present section, we introduce concepts
and notation pertaining to subspaces and eigenspaces.

Unless otherwise stated, all scalars, vectors, and matrices are real. The superscript
T denotes the transpose. Following conventions in [HM94], we use Grass(p, n) to
denote the Grassmann manifold of the p-dimensional subspaces of Rn, RP

n−1 =
Grass(1, n) to denote the real projective space, and ST(p, n) to denote the noncompact
Stiefel manifold, i.e., the set of n × p matrices with full rank. The columns space of
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Y ∈ ST(p, n) is denoted by span(Y ). The “span” mapping is an application on
ST(p, n) onto Grass(p, n) that is nowhere invertible. Given a matrix Y in ST(p, n),
the set of matrix representations of the subspace span(Y ) is

span−1(span(Y )) = Y GLp := {YM : M ∈ GLp},

where GLp denotes the set of p×p invertible matrices. This identifies Grass(p, n) with
ST(p, n)/GLp := {Y GLp : Y ∈ ST(p, n)}. More details on the Grassmann manifold
and matrix representations can be found in [FGP94, AMS02, Abs03].

Let A be an n × n matrix. Let X be a p-dimensional subspace of Rn and let
Q = [X|X⊥] be an orthogonal n× n matrix such that X spans X . Then QTAQ may
be partitioned in the form QTAQ =

(
A11 A12

A21 A22

)
where A11 ∈ Rp×p. The subspace X

is an eigenspace (i.e., invariant subspace) of A if and only if A21 = 0. By spectrum
of X , we mean the set of eigenvalues of A11. The external gap of the eigenspace
X of A is the shortest distance between the eigenvalues of A11 and the eigenvalues
of A22. The internal gap of X is the shortest distance between two eigenvalues of
A11. We say that X is a nondefective eigenspace of A if A11 is nondefective. The
eigenspace X is termed spectral [RR02] if A11 and A22 have no eigenvalue in common
(i.e., nonvanishing external gap). When A = AT , an eigenspace is spectral if and
only if it is isolated, i.e., there exists a ball in Grass(p, n) centered on V that does not
contain any eigenspace of A other than V. The span of a full-rank n × p matrix Y
is an eigenspace of A if and only if there exists a matrix L such that AY = Y L, in
which case Y is called an eigenbasis and L the corresponding eigenblock [JS01].

From now on, we assume that A = AT unless otherwise specified.

3. Four iterations for eigenspace computation. In this section, we define
four iterations that evolve on the Grassmann manifold of p-planes in Rn and converge
locally cubically to the spectral eigenspaces of a symmetric n× n matrix A.

3.1. Shifted inverse iterations. Inverse iteration is a widely used method
for computing eigenvectors of A corresponding to selected eigenvalues for which an
approximation is available [Ips97]. Let λ̂ be an approximation to an eigenvalue of A.
Inverse iteration generates a sequence of vectors xk starting from an initial vector x0

by solving the systems of linear equations

(A− λ̂I)z = xk(3.1)

and usually normalizing the result xk+1 := z/‖z‖. From a theoretical point of view,
the norm of xk is irrelevant: the iteration (3.1) induces an iteration on the projective
space, i.e., the set of one-dimensional subspaces of Rn. Except in some nongeneric
cases, the iteration converges to an eigenvector of A with an eigenvalue closest to λ̂,
and the rate of convergence is linear. However, a higher rate of convergence can be
achieved by adapting λ̂ “online” using the information given by the current iterate
xk. For A = AT , the choice of the feedback law λ̂ := ρ(xk), where ρ denotes the
Rayleigh quotient

ρ(y) :=
yTAy

yT y
,(3.2)

yields the well-known RQI

(A− ρ(xk)I)z = xk, xk+1 = z/‖z‖.(3.3)
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The fact that ρ provides a quadratic approximation of an eigenvalue around the
corresponding eigenvector explains why the rate of convergence is lifted from linear
to cubic [Par80, AMSV02].

In the present paper, we consider two ways of generalizing the RQI to the Grass-
mann manifold of p-planes in Rn. The first possibility is to use multiple scalar shifts,
where the shifts are the Ritz values computed from the current subspace.

Algorithm 3.1 (RSQR). Iterate the mapping Grass(p, n)�Y �→ Y+∈Grass(p, n)
defined by

1. Pick an orthonormal n× p matrix Y that spans Y.
2. Solve for Z ∈ Rn×p the equation

(A− ρ1I) . . . (A− ρpI)Z = Y,(3.4)

where ρ1, . . . , ρp are the eigenvalues of Y TAY repeated according to their multiplicity.
3. Define Y+ as the span of Z.
We call this iteration RSQR because of its link with the generalized Rayleigh-

shifted QR algorithm studied in [WE91]. It comes as a corollary from the results
of [WE91] that RSQR converges locally cubically to the spectral eigenspaces of A =
AT , as we now explain.

The RQI algorithm is related to the Rayleigh-shifted QR algorithm, as shown
e.g., in the enlightening paper by Watkins [Wat82]. The QR algorithm on the matrix
A with Rayleigh quotient shift can be written as a QR decomposition

(A− σkI)Qk = Qk+1Rk+1,(3.5)

where σk is the lower right element of Ak = QT
kAQk. Taking the inverse transpose

of (3.5) yields, assuming A = AT ,

(A− σkI)
−1Qk = Qk+1R

−T
k+1,(3.6)

where R−T
k+1 is now a lower triangular matrix. The last column of (3.6) yields

(A− σkI)
−1xk = r−1

k+1xk+1,

where xk denotes the last column of Qk and rk denotes the lower right element of Rk.
This is RQI (3.3). In [WE91], Watkins and Elsner study a generalized Rayleigh-
quotient shift strategy for the QR algorithm. It consists in replacing (A − σkI) by
P(A), where P(λ) is the characteristic polynomial of the p× p lower right submatrix
of QT

kAQk. In this case, (3.5) becomes

P(A)Qk = Qk+1Rk+1(3.7)

or equivalently, taking the inverse transpose,

P(A)−1Qk = Qk+1R
−T
k+1

whose last p columns yield

P(A)−1Xk = Xk+1Lk+1.

Here Xk denotes the last p columns of Qk and P(A) := (A − ρ1I) . . . (A − ρpI),
where ρ1, . . . , ρp denote the eigenvalues of XT

k AXk. This iteration maps the span of
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Xk to the span of Xk+1, and this is the above-defined RSQR (Algorithm 3.1). The
developments in [WE91] show that this iteration converges locally cubically to the
spectral eigenspaces of A. That is, for each spectral eigenspace V of A, there exist a
scalar c and a neighborhood B such that dist(Y+,V) ≤ cdist(Y,V)3 for all Y in B.
The distance between two subspaces can be, e.g., defined by the projection 2-norm
distp2(Y,V) = ‖PY−PV‖2, where PY and PV denote the orthogonal projectors onto Y
and V, respectively [GV96]. Any compatible definition, such as the geodesic distance
on the Grassmann manifold, can be used [EAS98].

Another Grassmannian generalization of the RQI, which uses a matrix shift in-
stead of multiple scalar shifts, has been proposed in [AMSV02]. This iteration has
been called Grassmann-RQI (GRQI).1

Algorithm 3.2 (GRQI). Iterate the mapping Grass(p, n)�Y �→ Y+∈Grass(p, n)
defined by

1. Pick a basis Y ∈ Rn×p that spans Y.
2. Solve

T Y Z := AZ − Z (Y TY )−1Y TAY︸ ︷︷ ︸
RA(Y )

= Y(3.8)

for Z ∈ Rn×p.
3. Define Yk+1 as the span of Z.
The matrix RA(Y ) can be interpreted as a block shift that reduces to the scalar

Rayleigh quotient (3.2) in the case p = 1. The computations in Algorithm 3.2 are done
in terms of n× p matrices, but they induce an iteration on the Grassmann manifold.
That is, Yk+1 does not depend on the choice of the representative Y of Yk chosen
in (3.8). The GRQI method converges locally cubically to the spectral eigenspaces of
A [Smi97, AMSV02].

Like the classical RQI mapping, which is ill-defined by (3.3) when ρ(x) is an
eigenvalue of A, the two iterations RSQR (Algorithm 3.1) and GRQI (Algorithm 3.2)
are defined almost everywhere on Grass(p, n), i.e., there are points of singularity. In
order to characterize these singularities, we introduce notations that will be used
throughout the text. Let X denote an n × p orthonormal matrix (i.e., XTX = I)
that spans the current iterate, and let [X|X⊥] be an orthogonal n×n matrix. Define
A11 := XTAX, A12 := XTAX⊥, A21 := XT

⊥AX, A22 := XT
⊥AX⊥. Let ρ1, . . . , ρp

denote the eigenvalues of A11 enumerated with their multiplicity. Then the RSQR
and GRQI methods map the span of X to the span of an n× p matrix

X+ = ZM,(3.9)

where M is any invertible p× p matrix chosen so that XT
+X+ = I, and Z verifies

RSQR : (A− ρ1I) . . . (A− ρpI)Z = X,(3.10)

GRQI : AZ − ZA11 = X.(3.11)

In RSQR, the matrices (A − ρiI) are invertible if and only if the ρi’s are not
eigenvalues of A, in which case Z is well defined by the RSQR equation (3.10) and is
full rank. In GRQI, a Sylvester equation (3.11) has to be solved. The solution Z exists
and is unique if and only if the spectra of A and of A11 are disjoint. Indeed, rotating

1During the final preparation of this manuscript, the authors became aware of an independent
derivation of the GRQI method in [Smi97].
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X �→ XQ so that A11 = diag(ρ1, . . . , ρp) decouples the Sylvester equation (3.11) into
p linear systems of equations

(A− ρi)zi = xi,

where xi and zi denote the ith column of the rotated X and Z, respectively. So, the
conditions for existence and uniqueness of Z are the same in both inverse iterations.
An additional subtlety of GRQI is that the computed Z may a priori be rank deficient.
However, numerical experiments suggest that if Z is the unique solution of the GRQI
equation (3.11), then it is full rank (see [AH02] for details).

If the span of X is close to V, then the eigenvalues of A11 are close to the eigen-
values of A|V , which are obviously eigenvalues of A. Therefore, (3.10) and (3.11) are
intrinsically ill-conditioned when the span of X is close to an eigenspace Y. This
ill-conditioning is essential for the fast convergence of the shifted iterations and does
not mean that the span of the computed Z is ill-conditioned as a function of X. This
fact was already emphasized in the case p = 1 by Peters and Wilkinson [PW79]. The
proof of cubic convergence of RSQR and GRQI shows that the span of Z is well condi-
tioned when the span of X is “sufficiently close” to the target eigenspace V. We shall
see later (section 4.2) that the notion of “sufficiently close” depends on the structure
of A.

3.2. Newton iterations. It comes as a direct consequence from the definitions
in section 2 that the p-dimensional eigenbases of A are the full-rank n × p solutions
of the matrix equation

F (Y ) := ΠY⊥AY = 0,(3.12)

where ΠY⊥ := I − Y (Y TY )−1Y T is the orthogonal projector onto the orthogonal
complement of span(Y ). This formulation of eigenbasis computation as a zero finding
problem calls for the utilization of the Newton iteration (see, e.g., [DS83, NW99]) in
the Euclidean space Rn×p, which consists in solving the Newton equation

F (Y ) + DF (Y )[∆] = 0,(3.13)

where DF (Y )[∆] denotes the directional derivative of F at Y in the direction of ∆,
and performing the update

Y+ = Y + ∆.(3.14)

However, the solutions of (3.12) are not isolated in Rn×p, namely, if Y is a solution,
then all the elements of the equivalence class Y GLp are solutions, too. In fact, since
F is homogeneous of degree one, i.e., F (YM) = F (Y )M , the solution of the Newton
equation (3.13), when unique, is ∆ = −Y . So any point Y is mapped to Y+ = 0. This
is clearly a solution of F (Y ) = 0, but it spans the trivial zero-dimensional subspace.

A remedy consists in constraining ∆ to belong to the horizontal space

HY := {∆ ∈ R
n×p : Y T∆ = 0},(3.15)

orthogonal to the equivalence class Y GLp. With this constraint on ∆, the solutions
∆ of F (Y + ∆) = 0 become isolated. However, the Newton equation (3.13) has,
in general, no solution ∆ in HY , so the Newton equation (3.13) must be relaxed.
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We will consider two approaches. The first one consists in projecting the Newton
equation (3.13) onto HY

ΠY⊥(F (Y ) + DF (Y )[∆]) = 0, Y T∆ = 0.(3.16)

The second approach consists in solving the Newton equation (3.13) in the least
squares sense, that is,

∆ = arg min
Y T ∆=0

‖F (Y ) + DF (Y )[∆]‖2.(3.17)

In the remainder of the present section, we develop the ideas (3.16) and (3.17) and
show how they relate to methods proposed in the literature.

Define a map JY : HY → HY by projecting the Fréchet derivative of F in a
direction ∆ ∈ HY back onto HY ,

JY : HY → HY : ∆ �→ ΠY⊥DF (Y )[∆] = ΠAΠ∆ − ∆(Y TY )−1Y TAY,(3.18)

where Π is a shorthand notation for ΠY⊥ . Using this notation, (3.16) may be written

JY [∆] = −F (Y ).(3.19)

The Newton–Grassman (NG) algorithm is formally stated as follows.
Algorithm 3.3 (NG). Iterate the mapping Grass(p, n) � Y �→ Y+ ∈ Grass(p, n)

defined by
1. Pick a basis Y ∈ Rn×p that spans Y and solve the equation

ΠAΠ∆ − ∆(Y TY )−1Y TAY = −ΠAY(3.20)

under the constraint Y T∆ = 0, where Π := I − Y (Y TY )−1Y T .
2. Perform the update

Y+ = span(Y + ∆).(3.21)

One checks that Y+ does not depend on the Y chosen in step 1. Indeed, if Y yields
the solution ∆ of (3.20), then YM produces the solution ∆M for any M ∈ GLp, and
span(Y + ∆) = span((Y + ∆)M).

Algorithm NG admits the following geometric interpretation, valid for arbitrary
A. The Grassmann manifold, endowed with the essentially unique Riemannian metric
invariant by the action of the group of rotations, is a Riemannian manifold. In [Smi94],
Smith proposes a Newton iteration on abstract Riemannian manifolds. This iteration,
applied on the Grassmann manifold in order to solve (3.12), yields the search direc-
tion ∆ given by (3.20), where ∆ is interpreted as an element of the tangent space
TY Grass(p, n); see [AMS02] for details. The update (3.21) is a simplification of the
Riemannian updating procedure

Y+ = ExpY∆(3.22)

consisting in following geodesics on the Grassmann manifold. Assuming A = AT ,
Algorithm NG—but with geodesic update (3.22) instead of (3.21)—is also obtained
by applying the Riemannian Newton method on Grass(p, n) for finding a stationary
point of a generalized Rayleigh quotient [EAS98].

Algorithm NG was previously proposed for the case A = AT in [LST98], where
quadratic convergence (at least) was proven. In [AMS02], it is shown that for
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arbitrary A, NG with either geodesic update (3.22) or projected update (3.21) con-
verges locally quadratically to the spectral p-dimensional eigenspaces of A. When
A = AT (which is assumed to hold in the present paper) the rate of convergence of
NG is shown to be cubic.

Now we turn to the least squares approach (3.17). As shown in the appendix, the
solution ∆ of the minimization problem (3.17) verifies

JT ◦ J [∆] + ΠAY (Y TY )−1Y TATΠ∆ = −JT [F (Y )],(3.23)

where JT denotes the adjoint of the operator J (3.18) defined with respect to the
inner product 〈Ω1,Ω2〉X = trace((XTX)−1ΩT

1 Ω2). Assuming A = AT , the operator
J is self-adjoint and we obtain the following algorithm.

Algorithm 3.4 (NH). Iterate the mapping Grass(p, n) � Y �→ Y+ ∈ Grass(p, n)
defined by

1. Pick a basis Y ∈ Rn×p that spans Y and solve the equation

(3.24) ΠA2Π∆ − 2ΠAΠ∆(Y TY )−1Y TAY + ∆(Y TY )−1Y TAY (Y TY )−1Y TAY

= −ΠAΠAY + ΠAY (Y TY )−1Y TAY

for the unknown ∆ under the constraint Y T∆ = 0.
2. Perform the update

Y+ = span(Y + ∆).(3.25)

Here again, it is checked that Y+ does not depend on the Y chosen in step 1.
This least squares approach can be interpreted as a matrix generalization of the
homogeneous Newton method proposed by Dedieu and Shub [DS00].

Algorithm NH converges locally cubically to the spectral eigenspaces of A. This
property can be deduced from the corresponding property in NG. Applying the oper-
ator J on the NG equation (3.19) yields

JT ◦ J [∆] = −JT [F (Y )](3.26)

which only differs from the NH equation (3.23) by the term ΠAY (Y TY )−1Y TATΠ∆.
Since ΠAY is zero at the solution and smooth, the operators in the left-hand side
of (3.26) and (3.19) differ only at the second order. Since the right-hand side is of
first order, the discrepancy between the solutions ∆ of the NH equation (3.24) and
the NG equation (3.20) is cubic, whence cubic convergence of NG is preserved in NH.

Like the inverse iterations (section 3.1), the two Newton methods NG (Algo-
rithm 3.3) and NH (Algorithm 3.4) have points of singularity. Let us rewrite the key
equations in a slightly more compact form, using the notations of section 3.1. The
two Newton iterations map the span of an orthonormal X to the span of

X+ = (X + ∆)M = (X + X⊥H)M,(3.27)

where M is chosen to orthonormalize X+ (M can, e.g., be obtained by a QR factor-
ization), and ∆ or H verify

NG : ΠAΠ∆ − ∆A11 = −ΠAX, XT∆ = 0,(3.28)

or A22H −HA11 = −A21.(3.29)

NH : ΠA2Π∆ − 2ΠAΠ∆A11 + ∆A2
11 = −ΠAΠAX + ΠAXA11, XT∆ = 0,(3.30)

or (A21A12 + A22A22)H − 2A22HA11 + HA2
11 = −A22A21 + A21A11.(3.31)
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The inverse iterations (RSQR and GRQI) and the Newton iterations (NG and
NH) are built on very different principles. In the inverse iterations, a new basis Z
appears directly as the solution of a linear system of equations that becomes more and
more ill-conditioned (i.e., almost singular) as the iterate X approaches an eigenspace.
In the Newton methods, a correction ∆, verifying the horizontality constraints, is
computed and added to the current iterate X. It is thus not surprising that the two
approaches involve different singularities. In NG (3.29), H exists and is unique if
and only if the spectra of A22 and A11 are disjoint. Note the difference from inverse
iterations: the matrix A is replaced by the projected matrix A22. In NH (3.31), H
exists and is unique if and only if the eigenvalues of the quadratic eigenvalue problem
(A21A12 +A22A22 − 2A22λ+ λ2I)x ≡ (A21A12 + (A22 − λI)2)x = 0 are distinct from
the eigenvalues of A11; see (4.6). When the span of X is close to V, the residual
matrix A21 has small norm, and the Sylvester operator on the left-hand side of (3.29)
and (3.31) is well-conditioned. Indeed, the eigenvalues of A22 are close to those of
A|V⊥ , the eigenvalues of A11 are close to those of AV , and the spectra of A|V⊥ and
AV are separated since, by hypothesis, V is a spectral eigenspace.

4. Comparison of methods. In the previous section, we have formulated four
iterations—two shifted inverse iterations (RSQR and GRQI) and two Newton meth-
ods (NG and NH)—that evolve on the Grassmann manifold of p-planes in Rn and
converge locally cubically to the spectral p-dimensional eigenspaces of a symmetric
n× n matrix A. Surprisingly, and in spite of different underlying approaches, RSQR
and GRQI coincide with NG in the particular case p = 1, as pointed out by several
authors [Shu86, Smi94, ADM+02, MA03]. When p > 1, however, the four methods
differ.

In the present section, we compare the iterations in terms of numerical cost and
global behavior. Low numerical cost and large basins of attraction are two desirable
features for methods that compute invariant subspaces from a first estimate.

4.1. Practical implementation. Comparing the implementation of the four
different techniques depends to a large extent on the structure of the matrix A. If
we assume first that A is dense, then all four methods have a comparable complex-
ity, namely O(pn3), which mainly accounts for the p matrix factorizations that each
requires. The RSQR solves

RSQR : (A− ρ1I) · · · (A− ρpI)Z = X,(4.1)

which involves p symmetric matrices (A−ρiI). In the case of the three other methods,
the first thing to do is to reduce A11 to a diagonal form. This is cheap since A11 is a
p× p matrix and p is in practical applications typically much smaller than n. More-
over, the diagonalization always exists since A11 is symmetric. This diagonalization
decouples (3.11), (3.28), or (3.30) into p independent systems of linear equations of
the form

GRQI : (A− ρiI)z = x,(4.2)

NG : Π(A− ρiI)Πδ = −ΠAx, XT δ = 0(4.3)

or (A22 − ρI)h = −A21e,(4.4)

NH : Π(A− ρiI)
2Πδ = −g, XT δ = 0(4.5)

or ((A21A12 + A22A22) − 2ρA22 + ρ2I)h = −(A22A21 −A21A11)e,(4.6)

where e ∈ Rp is the eigenvector defined by A11e = ρie and x := Xe, z := Ze, δ := ∆e,
h := He.
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Clearly O(pn3) seems excessive since most eigenvalue solvers require only O(n3)
floating point operations (i.e., flops). A significant improvement is obtained by pro-
ceeding in three phases as follows: (i) reduce the matrix A to a tridiagonal form in
O(n3) flops, (ii) compute an eigenspace of the tridiagonal matrix, (iii) compute the
corresponding eigenspace of the original A in O(n2p) flops. We now focus on the sec-
ond phase and assume that A is already in tridiagonal form. For RSQR the solution
of (4.1) requires now O(np2) flops, while for GRQI (4.2) this is O(np); the subse-
quent reorthogonalization of Z requires O(np2) for both methods. For the Newton
updates NG and NH, we use an idea from [PW79] which shows that the direction of
the solution z of (4.2) is also given by the direction of x + δ where

[
A− ρiI x

xT 0

] [
δ
m

]
=

[
−Ax

0

]
.

In a similar fashion, one can rewrite the Newton methods NG and NH as (n+p)×(n+p)
symmetric problems:

[
A− ρiI X
XT 0

] [
δ
m

]
=

[
−Ax

0

]
(4.7)

and [
(A− ρiI)

2 X
XT 0

] [
δ
m

]
=

[
−g
0

]
,(4.8)

respectively, rather than solving the dense problems (4.4) and (4.6). When (A −
ρiI) is tridiagonal, (4.7) and (4.8) can be solved in O(np2) flops each. The LDLT

decomposition of (A−ρiI) and the QR decomposition of (A−ρiI) both require O(n)
flops. The above problems are then replaced by

[
LDLT X
XT 0

] [
δ
m

]
=

[
−Ax

0

]
(4.9)

and [
RTR X
XT 0

] [
δ
m

]
=

[
−g
0

]
,(4.10)

respectively, where L has only two diagonals and R only three. Solving the sys-
tems (4.9) and (4.10) (possibly with iterative refinement to ensure stability) requires
O(np2) flops each. For a tridiagonal matrix A, the complexity for all four methods
is thus O(np2) in addition to the cost of phases (i) and (iii). We point out, however,
that there exist very efficient numerical methods for computing all the eigenvectors of
tridiagonal matrices such that the computed eigenvectors are orthogonal to working
precision [DP03]. Moreover, the Multiple Relatively Robust Representations algo-
rithm announced in [DP03] would compute p eigenvectors of a tridiagonal matrix
with lower order of complexity, O(np), than the one reported above.

If the matrix A is sparse or banded, say with bandwidth 2q+1, then the numerical
cost per iterate of GRQI, NG, or NH is O(nq2p) + O(np2) assuming p, q << n.
If the bandwidth is sufficiently narrow, namely, q2 ≈ p, then the numerical cost
remains O(np2). For RSQR, assuming that the linear system (4.1) is solved by Gauss
elimination and back-substitution, the numerical cost per iterate is O(nq2p)+O(nqp2);
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hence the complexity of the algorithm essentially increases by a factor q at most as
long as q ≤ p. Another possibility, explained in section 3.1, is to implement RSQR as a
multishift QR algorithm [BD89]. Chasing a p×p bulge down a tridiagonal matrix can
be done with approximately n Householder reflections of dimension p×p and applying
those to X will yield the solution Z of (32). The numerical cost is thus O(np2), but
this implicit method has to be implemented with care [BBM02a, BBM02b] in order
to work properly.

Finally, if the matrix A is very large but sparse, one could consider alternative
sparse matrix techniques such as reordering methods that reduce the bandwidth of A
or even iterative methods. If an approximate solution is sought using an iterative
solver, a stopping criterion has also to be chosen for the inner iteration. Computing
the first iterates with high precision may be unnecessary [EW96]. Iterative solvers
are considered for the case p = 1 in [SE02], including a comparison between the RQI
equation (4.2) and the Newton equation (4.3).

4.2. Basins of attraction. The four subspace methods under investigation in
this paper, i.e., the two inverse iterations RSQR (Algorithm 3.1) and GRQI (Algo-
rithm 3.2) and the two Newton methods NG (Algorithm 3.3) and NH (Algorithm 3.4),
display local cubic convergence to the spectral eigenspaces of the symmetric matrix A.
By “local convergence,” it is meant that around each p-dimensional eigenspace V,
there exists a ball B in the Grassmann manifold Grass(p, n) such that the iteration
converges to V for all initial point in B. But nothing has been said yet about the size
of these balls. This is, however, an important issue, since a large ball means that the
iteration will converge to the target eigenspace even if the initial estimate is not very
precise.

It has been shown for previously available methods that the basins of attraction
are prone to deteriorate when some eigenvalues are clustered. Batterson and Smil-
lie [BS89] have drawn the basins of attraction of the RQI for n = 3 and have shown
that they deteriorate when two eigenvalues are clustered. The bounds involved in the
convergence results of the methods analyzed in [Dem87] blow up when the external
gap vanishes.

In the present section, we illustrate properties of the basins of attraction on three
examples. The first two examples are low-dimensional problems (n = 3 and p = 1, 2)
for which faithful two-dimensional pictures of the basins of attraction can be drawn
(the dimension of Grass(1, 3) and Grass(2, 3) is two). The third example is a higher-
dimensional case. In these examples, the matrices A are chosen to illustrate the
influence of the eigenvalue gaps on the basins of attraction.

In order to graphically represent basins of attraction, we take advantage of the
following facts. Let FA denote one of the four iteration mappings mentioned above.
The mappings are invariant by orthogonal changes of coordinates, i.e., QFA(Y) =
FQAQT (QY) for all Q orthogonal. Therefore, we work without loss of generality in a
coordinate system in which A is diagonal. Moreover, once A is diagonal, the mappings
are invariant by multiplication by a sign matrix. To show this, note that sign matrices
are orthogonal, replace Q above by a sign matrix S and use the relation SAS = A.
Consequently, it is sufficient to represent the basins of attraction in the first orthant.
The other orthants are deduced by symmetry. Note also that the matrices A, −A,
and A− σI yield the same sequences of iterates for all σ.

Example 1 (Dependence on external gap). We consider the case n = 3 and
p = 1 (iterates are one-dimensional subspaces of R3). Then the two inverse iterations
(RSQR and GRQI) reduce to the RQI, which is equivalent to NG (see, e.g., [Smi94]).
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1 1.8

2

gamma = 0.2, p = 1, span(X
k+1

) = span Z

1 1.99

2

gamma = 0.01, p = 1, span(X
k+1

) = span Z

Fig. 4.1. Basins of attraction for RSQR, GRQI, and NG (n = 3, p = 1). The three vertices
correspond to the three eigenspaces. A similar figure appears in [BS89]. This figure also applies to
NG with n = 3, p = 2 (see Example 2 in section 4.2).

Figure 4.1 represents the basins of attraction of the RQI for A = diag(1, 2 − γ, 2).
On the left-hand side of the figure γ = .2, and on the right-hand side γ is reduced
to 0.01 in order to illustrate the effect of a small eigenvalue gap. Figure 4.1 should
be read as follows. Displayed is the simplex {x ∈ Rn : x1 + x2 + x3 = 1, xi > 0}.
The iterates—one-dimensional subspaces of R3—are represented by their intersections
with the simplex. The three vertices correspond to the three eigendirections of A, and
the corresponding eigenvalues are indicated. The three colors indicate the three basins
of attraction. It is seen that the basin of attraction of the upper vertex shrinks as
its external gap is reduced. The basins of attraction of NH are qualitatively similar
to the RQI-NG case. In conclusion, this simple example shows the dependence on
external gap in all methods.

Example 2 (Dependence on internal gap in GRQI). We now investigate
the case n = 3, p = 2 (iterates are 2-planes in R3) using the same two matrices A as
above. Let us first consider the case of RSQR. Its basins of attraction are shown on
Figure 4.2, where 2-planes are represented by the intersection of their normal vector
with the simplex. The three vertices correspond to the three two-dimensional eigen-
spaces of A. For example, the upper vertex corresponds to the minor eigenspace. On
the right-hand plot of Figure 4.2 and the ones that follow, the eigenspace represented
by the lower left vertex has a small internal gap and a large external gap, while the
two other vertices correspond to eigenspaces with a large internal gap and a small
external gap. Figure 4.2 shows that the basins of attraction for RSQR collapse when
the external gap is small. On this low-dimensional example, a small internal gap does
not affect the basin of attraction.

The basins of attraction of GRQI are shown on Figure 4.3, with the same con-
ventions as for the RSQR plot. One notices a peak growing towards the eigenspace
with small internal gap. The tip of the peak is very close to the eigenspace, but this
can hardly be seen on the figure because the peak is very narrow. This shows that
for GRQI the basins of attraction may deteriorate around the eigenspaces with small
internal gap. We will explain this feature analytically in section 4.3.
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1 1.8

2
p = 2, generalized Rayleigh−shifted QR

1 1.99

2
p = 2, generalized Rayleigh−shifted QR

Fig. 4.2. Basins of attraction for RSQR (case p = 2, n = 3). The elements of Grass(2, 3) (i.e.,
2-planes in R3) are represented by the intersection of their normal vector with the simplex.

1 1.8

2

gamma = 0.2, p = 2, span(X
k+1

) = span Z

1 1.99

2

gamma = 0.01, p = 2, span(X
k+1

) = span Z

Fig. 4.3. Basins of attraction for GRQI (case p = 2, n = 3).

The Newton iteration NG displays the following duality property : If X k is a
sequence of iterates generated by NG, then X k

⊥ also forms a sequence of iterates of NG.
To see this, let H verify the NG equation (3.29), note that X⊥ −XHT is orthogonal
to X +X⊥H, and (−HT ) verifies A11(−HT )− (−HT )A22 = −A12, which is just the
NG at the iterate X⊥. By this duality property, the orthogonal complements of the
iterates of NG (p = 2, n = 3) are one-dimensional iterates of NG (p = 1, n = 3).
Representing 2-planes by the intersection of their normal vector with the simplex, the
picture for NG in the case p = 2, n = 3 is the same as for the case p = 1, n = 3
illustrated on Figure 4.1.

The basins of attraction of the Newton iteration NH are shown in Figure 4.4,
with the conventions explained above. The basins of attraction do not collapse in this
low-dimensional example. One however should not conclude that everything goes well
in higher dimensions, as we will show shortly.
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1 1.8

2
p = 2, NH with tau=0

1 1.99

2
p = 2, NH with tau=0

Fig. 4.4. Basins of attraction for NH (case p = 2, n = 3). For the basins of attraction of NG
(p = 2, n = 3), see Figure 4.1.

In conclusion, this second example illustrates that the four methods are different
when p > 1. It also reveals a dependence on internal gap occurring in GRQI.

Example 3 (Higher-dimensional case). The principal interest of the low-
dimensional example studied above lies in the two-dimensional representation of the
basins of attraction. We now consider an example in Grass(3, 7), with dim Grass(3, 7)
= 12, in order to further investigate the influence of the eigenvalue gaps on the basins
of attraction. We use the matrix

A = diag(1, 2, 2 + γ, 2 + 2γ, 3, 4, 5),

where γ is a small number (we choose γ = 10−2). We select three different eigenspaces
in order to illustrate the influence of internal and external gaps. In each case, we pick
104 initial points randomly at three given distances of the targeted eigenspace and we
count how often the sequence of iterates fails to converge to the target. We declare
that the sequence converges if dist(X k,Vtarget) < 10−6 with k = 100, where dist
denotes the largest principal angle between the two arguments. The condition is
usually already verified for very small k (see Figure 4.5), but if the iteration is started
close to the boundary of the basin of attraction then the condition may be verified
after arbitrarily many steps.

Here are the results of our experiments:

(i) Convergence to the eigenspace Vleli with eigenvalues 1, 3, and 4. This eigen-
space has a large external gap and a large internal gap. The ratios of sequences that
failed to converge to the targeted eigenspace are shown in Figure 4.5(a). As predicted
by the theory, the four methods (RSQR, GRQI, NG, and NH) invariably converge
to the targeted eigenspace when the initial error is small. When the initial error is
large, the methods sometimes fail, and RSQR fails much more often than the other
methods.

(ii) Convergence to Vlesi with eigenvalues 2, 2 + γ, and 2 + 2γ (Figure 4.5(b)).
This illustrates the influence of a small internal gap. All methods except GRQI have
a large basin of attraction around Vlesi. This confirms the information obtained in the
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Fig. 4.5. Ratio of sequences that failed to converge to the targeted eigenspace in Example 3
(section 4). “Init. err” gives the value of the largest principal angle between the initial subspace and
the targeted eigenspace. Each ratio has been estimated using 104 randomly chosen starting points
in each case. The absence of bar means that the sequence converged for all trials. We declare that a
sequence converges if the largest principal angle between the 100th iterate and the target is smaller
than 10−6. The numbers between parentheses indicate the maximal number of iterates (evaluated
on the 104 trials) necessary for the convergence condition to be satisfied.

lower-dimensional case that the basins of attraction of eigenspaces with small internal
gap are collapsed in GRQI (see the peak observed for GRQI in Figure 4.3).

In a different experiment not reported on the figure, we also considered initial
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points situated at the distance 2
3
π
2 of Vlesi. At such a distance, Vlesi is seldom the

closest eigenspace, so convergence to Vlesi is not expected. And indeed, the iterates
of GRQI, NG, and NH seldom converged to Vlesi (probability of convergence around
0.02). However, the iterates of RSQR did very often converge to Vlesi, with probability
0.95. This means that the basin of attraction of Vlesi has a very large area under
RSQR. It suggests that the eigenspaces with clustered eigenvalues have an oversized
basin of attraction under RSQR, to the detriment of the other basins of attraction.

(iii) Convergence to Vseli with eigenvalues 2, 3, and 4 (Figure 4.5(c)). This
eigenspace has a large internal gap but a small external gap. The number of failures
of RSQR is about 10 times worse than for the other methods, and all the methods
sometimes fail to converge to Vseli unless they are started very close to it. This means
that the basin of attraction of Vseli is small for each method. Therefore, one usually
tries to avoid small external gaps by enlarging the targeted eigenspace to include
whole clusters of eigenvalues. However, this approach requires a priori information on
the eigenvalues. In section 5 we will propose modified Newton methods that display
large basins of attraction around eigenspaces like Vseli.

4.3. Dependence on eigenvalue gaps. The numerical experiments reported
in the previous section have led to the following observations. For the four methods
under investigation, collapsed basins of attraction are observed around eigenspaces
with small external eigenvalue gap. The basins of attraction of GRQI also deteriorate
when the internal gap between eigenvalues is small. Under RSQR, the eigenspaces
corresponding to clusters of eigenvalues have a particularly large basin of attraction.
In the present section, we justify these observations analytically. As an aside, we
obtain an alternative proof of cubic convergence for the Newton methods.

RSQR. For simplicity of the argument, consider A = diag(1, 1 + γ, 2) with γ
small. Let V be an eigenspace of A with small external gap, e.g., V = span(e2, e3)
corresponding to the eigenvalues 1 + γ and 2. We now exhibit a subspace X 0 close to
V that is mapped by RSQR to a subspace close to span(e1, e2). Let X 0 = span(e2 +
αe1, e3 + βe1) with |α|, |β| << 1. Then X 0 is close to V. The Ritz values of (A,X 0)
are ρ1 = 1 + γ − α2γ + O(α4) + O(α2β2) and ρ2 = 2 − β2 + O(β4) + O(α2β2), and
one obtains for the new iterate computed by RSQR from X 0

X 1 = span

⎛
⎝(A− ρ1I)

−1(A− ρ2I)
−1

⎡
⎣α β

1 0
0 1

⎤
⎦
⎞
⎠ � span

⎡
⎣−α3 1

1 0
0 γ/β3

⎤
⎦ .

If γ << β3, then X 1 is close to span(e1, e2). In other words, given a X 0 that is close
to V but does not contain e3, if the cluster is sufficiently tight, then X 1 is close to
the eigenspace corresponding to the cluster. This shows that the basin of attraction
of span(e1, e2) contains points close to V.

The behavior we have just observed can be interpreted as a “cooperation” between
clustered eigenvalues. If a Ritz value is a good shift for one eigenvalue in a cluster,
it is also a good shift for all the eigenvalues in the cluster. Moreover, Ritz values
of a randomly chosen subspace are more likely to be close to a cluster than to an
isolated eigenvalue. This explains the oversized basins of attraction observed around
eigenspaces with clustered eigenvalues.

GRQI. For GRQI, both a small external gap and a small internal gap may affect
the quality of the basin of attraction of V, as we now show.
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GRQI maps the basis Y = V + V⊥K to the Z = V Z1 + V⊥Z2, where

Λ1Z1 + Z1(Ip + KTK)−1(Λ1 + KTΛ2K) = Ip,(4.11)

Λ2Z2 + Z2(Ip + KTK)−1(Λ1 + KTΛ2K) = K;(4.12)

see [AMSV02, Abs03]. Define K+ = Z2Z
−1
1 so that the span of Z is the same as the

span of V + V⊥K+.
Let us first consider equation (4.12). This is a Sylvester equation. It is well-

conditioned when K is small, therefore Z2 = O(K) due to the right-hand side. If the
external gap of V is small, i.e., gap[Λ1,Λ2] is small, then the Sylvester operator is
arbitrarily ill-conditioned for small K, so Z2 and K+ may be large.

Now consider equation (4.11). This Sylvester equation is ill-conditioned when
K is small. Since Λ1 is diagonal, the lines of (4.11) are decoupled. Without loss of
generality, let us consider the first line. Put Z1 = ( ζ11ζ21

ζ12
ζ22

), Λ1 = (σ Σ ), E = Λ1−(Ip+

KTK)−1(Λ1 + KTΛ2K) = (E11

E21

E12

E22
). The first line of (4.11) yields (see [AMSV02])

ζ11 = [E11 − E12(σIp − Σ + E22)
−1E21]

−1,(4.13)

ζ12 = −ζ11E12(σIp − Σ + E22)
−1.(4.14)

One obtains that Z−1
1 = O(E) = O(K2) and concludes that K+ = O(K3), so the

algorithm converges locally cubically [AMSV02]. However, if σ is close to an eigenvalue
of Σ (i.e., if the internal gap is small), then (σI − Σ −E22)

−1 is large for some small
E (i.e., small K). This suggests that if the internal gap is small, there are some small
Ks for which Z−1

1 is large, whence K+ is large.

Newton methods. We show here that NG converges locally cubically to V
and that the basin of attraction collapses when the external gap is small, but not
when the internal gap is small. A similar development for NH leads to the same
conclusions.

Let V be an orthonormal basis of the eigenspace V such that V TAV = Λ1 is
diagonal, and let V⊥ be an orthonormal basis of V⊥ such that V T

⊥ AV⊥ = Λ2 is
diagonal. The external gap of V is gap[Λ1,Λ2]. After some manipulations, one obtains
that under NG (Algorithm 3.3 with projective update), the span of V +V⊥K is mapped
to the span of V + V⊥K+, where K+ verifies

K+ = (K + (I + KKT )−1(L−K))(I −KT (I + KKT )−1(L−K))−1,(4.15)

in which L solves

(4.16) (Λ2 + KΛ1K
T )(I + KKT )−1 L− L (I + KTK)−1(Λ1 + KTΛ2K)

= [KΛ1K
T (I + KKT )−1 + Λ2((I + KKT )−1 − I)]K

−K[(I + KKT )−1KTΛ2K + ((I + KTK)−1 − I)Λ1].

One deduces from (4.16) that L = O(K3) and then K+ = O(K3), which means that
the Newton iteration NG converges cubically; the reader is referred to [AMS02] for
a detailed proof of cubic convergence. If the gap[Λ1,Λ2] is small, then the Sylvester
operator on the left-hand side of (4.16) becomes arbitrarily ill-conditioned for small
K’s (remember that the eigenvalues of a Sylvester operator are the differences between
the eigenvalues of the two matrices involved in the equation [Ste73]), whence K+ can
be large even if K is small. This reasoning suggests that if the external gap of V
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is small, then some initial points close to V do not yield convergence to V. On the
other hand, the conditioning of the Sylvester operator in (4.16) is not affected by the
internal gap of V.

5. Improving the basins of attraction. Large basins of attraction are de-
sirable as they ensure that the iteration will converge to the targeted eigenspace
even if the initial subspace is a relatively poor estimate. The analysis in section 4
has shown that a small external gap, and in the case of GRQI a small internal
gap, produces a degradation of the basins of attraction of the iterations defined in
section 3. For this reason, we now discuss ways of improving the shape of the basins
of attraction.

5.1. GRQI with limited variations. By experimenting with GRQI, we no-
ticed that the sequences of iterates that diverge from the target eigenspace start with
a big jump, i.e., the distance between the initial and second iterates is large. In an
attempt to prevent this behavior, we apply a threshold value on the distance between
two successive iterates.

This can be implemented in the following way. Let X be the current iterate and
let X be an orthonormal n × p matrix that spans X . Let θmax be a threshold value
on the principal angles between X and X+. Compute Z, the solution of the GRQI
equation (3.11). Orthonormalize Z, e.g., by a Gram–Schmidt process. Then, by the
CS decomposition theorem [PW94, GV96], there exist orthogonal matrices U1 and V1

and an orthonormal matrix Y with Y TX = 0 such that

ZV1 = XU1C + Y S,

where C = diag(cos(θ1), . . . , cos(θp)), S = diag(sin(θ1), . . . , sin(θp)), with 0 ≤ θ1 ≤
· · · ≤ θp ≤ π

2 . The θi’s are the principal angles between span(X) and span(Z),
and the columns of XU1 and ZV1 are the corresponding principal vectors. Define
θnewi = min{θi, θmax}. Then define Cnew = diag(cos(θnew1 ), . . . , cos(θnewp )), Snew =
diag(sin(θnew1 ), . . . , sin(θnewp )), and let the new iterate X+ be the span of Znew =
XU1C

new + Y Snew.

The matrix Znew is obtained from the original Z in O(np2) flops by computing the
singular value decomposition XTZ = U1CV T

1 , then S = sin(arccosC), and solving
Y S = ZV1 − XU1C. In fact, only the last columns of U1, S, and Y corresponding
to the θi’s larger than the threshold θmax have to be computed; the other columns of
ZV1 are unmodified in Znew.

We chose θmax = π
10 in numerical experiments. The basins of attraction of this

modified GRQI are displayed on Figure 5.1 for the low-dimensional case (n = 3,
p = 2) investigated in the previous section (Example 2). Compare Figure 4.3 (GRQI)
and Figure 5.1: the peak has been removed. Experimental results for the higher-
dimensional case (Example 3 in the previous section) are displayed on Figure 4.5 (see
columns labelled “GRQIlim”). They illustrate that this heuristic effectively suppresses
the problem of dependence on the internal gap.

Another (arguably more natural) modification of GRQI consists in taking X+ on
the Grassmann geodesic [EAS98, AMS02] between X and span(Z) with θp(X ,X+) =
θmax. This amounts to defining θnewi = λθi with λ = θmax

θp
. However, the previously

described technique works slightly better in experiments.



88 P.-A. ABSIL, R. SEPULCHRE, P. VAN DOOREN, AND R. MAHONY

1 1.8

2
gamma = 0.2, p = 2, GRQI with maxvar=.5*pi/5

1 1.99

2
gamma = 0.01, p = 2, GRQI with maxvar=.5*pi/5

Fig. 5.1. Basins of attraction for GRQI with limited steps (section 5.1) in the case p = 2,
n = 3. Compare with the original GRQI (Figure 4.3).

5.2. Modified Newton methods.

Deformation parameter τ . As explained in section 3.2, the NG iteration at-
tempts to find a p-plane Y such that each basis Y of Y verifies

F (Y ) := ΠY⊥AY = 0,(5.1)

where ΠY⊥ := I−Y (Y TY )−1Y T . Equation (5.1) holds if and only if Y is an invariant
subspace of A.

Let us define a cost function

f(Y ) :=
1

2
trace((Y TY )−1F (Y )TF (Y )).(5.2)

It is easily checked that f(Y ) depends only on the span of Y , and not on the basis Y
itself [AMS02]. So, the cost function f defines a scalar field on the Grassmann mani-
fold. This scalar field is zero at the eigenspaces of A and strictly positive everywhere
else. An illustration of the level curves of f is shown on Figure 5.2. We stress that
f reaches its minimum value (zero) at all the eigenspaces of A, and not only at an
extremal eigenspace. This is a fundamental difference with the more familiar Rayleigh
quotient.

Section 4 has shown that the basins of attraction of the two Newton methods
(NG and NH) deteriorate in the presence of a small external gap. On the other hand,
Figure 5.2 suggests that the basins of attraction of the steepest descent flow of the
cost function f remain broad even when the eigenvalue gap shrinks. A numerical
simulation of the steepest descent flow of f in Example 3 of section 4 shows that the
distance between each eigenspace and the boundary of its basin of attraction is large
(greater than 1

3
π
2 ) in all cases.

This prompts us to follow the steepest descent of f when the solution is far away
from a solution and use the Newton method in the neighborhood of a solution. It is,
however, difficult to decide when the commutation between the two behaviors should
occur. If the Newton iteration takes over too soon, the basins of attraction may be
collapsed. If the transition occurs late in the iterative process, then more steps will be
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1 1.8

2

1 1.99

2

Fig. 5.2. Level curves of the cost function f defined in (5.2). The cost function vanishes at
the three eigenspaces (represented by the three vertices) and is strictly positive everywhere else. The
gradient descent flow for f consists in following the steepest descent path of these level curves.

necessary before obtaining a good approximation of the eigenspace. A remedy is to
implement a smooth transition between the two behaviors by means of a deformation
parameter, an idea which connects with trust region methods (see, e.g., [DS83] or
Chap. 11 in [NW99]). We now show how this deformation approach works out in our
case.

Let Y be a basis for the current subspace, let HY be the horizontal space defined
as in (3.15), and let J : HY → HY : ΠDF (Y )[∆] be as in (3.18). The derivative of
the cost function f in the direction of ∆, with Y T∆ = 0, is given by

Df(Y )[∆] = trace((Y TY )−1F (Y )TDF (Y )[∆])

= trace((Y TY )−1F (Y )TJ [∆])

= trace((Y TY )−1(JT [F (Y )])T∆)

= trace(∆TJT [F (Y )](Y TY )−1),

where JT denotes the adjoint of the operator J defined with respect to the inner
product 〈Ω1,Ω2〉Y = trace((Y TY )−1ΩT

1 Ω2). Then a formula in [AMS02] directly
yields

grad f(Y ) = JT [F (Y )].(5.3)

On the other hand, the NG equation (3.20) reads J [∆] = −F (Y ), or equivalently

JT ◦ J [∆] = −JT [F (Y )].

A continuous deformation between the gradient descent flow of f and the Newton
method NG is thus given by

(JT ◦ J + τ Id)[∆] = −JT [F (Y )].

If τ is small, then ∆ is close to the NG-vector given by the NG equation (3.28), and
the iteration is close to pure NG. If τ is large, then the direction of ∆ is close to
the negative gradient of f , and the iteration is similar to a Euler integration of the



90 P.-A. ABSIL, R. SEPULCHRE, P. VAN DOOREN, AND R. MAHONY

gradient descent flow of f . Because we assume A = AT , the operator J is self-adjoint
and the modified NG algorithm can be expressed as follows.

Algorithm 5.1 (NG-tau). Iterate the mapping Y �→ Y+ defined by
1. Pick an orthonormal basis Y that spans Y and solve the equation

ΠAΠAΠ∆ + ∆Y TAY Y TAY − 2ΠAΠ∆Y TAY + τ∆ = −(ΠAΠAY − ΠAY Y TAY ),

(5.4)

where Π := (I − Y Y T ), under the constraint Y T∆ = 0.
2. Perform the update Y+ = span(Y + ∆).
We now introduce a τ deformation parameter in the NH iteration such that the

limiting cases τ = 0 and τ = ∞ correspond to pure NH and gradient descent for f ,
respectively. This is easily done because the right-hand side of the NH equation (3.30)
is precisely − grad f (compare (3.23) and (5.3)).

Algorithm 5.2 (NH-tau). Iterate the mapping Y �→ Y+ defined by
1. Pick an orthonormal basis Y that spans Y and solve the equation

ΠA2Π∆ + ∆Y TAY Y TAY − 2ΠAΠ∆Y TAY + τ∆ = −(ΠAΠAY − ΠAY Y TAY ),

(5.5)

where Π := (I − Y Y T ), under the constraint Y T∆ = 0.
2. Perform the update Y+ = span(Y + ∆).
Note that the only difference between NG-tau and NH-tau is in the first term

of (5.4) and (5.5).

Practical implementation. The major computational work in NG-tau (Algo-
rithm 5.1) or NH-tau (Algorithm 5.2) is solving (5.4) or (5.5) for ∆. Like in the
case of the original NG and NH iterations (see section 4.1), the first thing to do is to
diagonalize the small p × p matrix A11 := Y TAY . This decouples (5.4) or (5.5) into
p individual systems of linear equations of the form

((ΠAΠ − ρiI)
2 − τI)δ = −g, Y T δ = 0,(5.6)

Π((A− ρiI)
2 − τI)Πδ = −g, Y T δ = 0(5.7)

for NG-tau and NH-tau, respectively. In the case of NH-tau (5.7), the projectors are
outside the matrix, which allows for the utilization of the techniques described in sec-
tion 4.1. It is possible to obtain the Cholesky decomposition of (A−ρi)

2−τI = RT
τ Rτ

from that of (A− ρi)
2 = RTR in O(n) flops when R has only three diagonals [Par80].

The algorithm NH-tau will thus again require O(np2) flops per iteration. In the case
of NG-tau, in the absence of an efficient algorithm for solving (5.6), the cost for pro-
ducing a new iterate involves O(n3) flops, even if A is tridiagonal. Thus, NH-tau has
a serious advantage over NG-tau in terms of numerical cost.

Choosing the deformation parameter. There exist many strategies for tun-
ing the τ parameter in order to improve the global behavior of the algorithm while
preserving the ultimate rate of convergence of the Newton method. In a line search
approach, one selects τ so that the direction of K remains in a sector around the
negative gradient of f and then perform a line search along the direction of the K
computed from (5.4). Equation (5.4) is also helpful in trust region methods. A large τ
corresponds to a small trust region, while τ = 0 corresponds to a trust region that
contains the exact next Newton iterate.
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1 1.8

2
p = 2, NG with tau parameter

1 1.99

2
p = 2, NG with tau parameter

Fig. 5.3. Attraction basins for NG with τ := f (5.4) in the case p = 2, n = 3. Compare with
original NG on Figure 4.1. Local cubic convergence is preserved.

Classical strategies for choosing τ involve several parameters that the user can
choose at his convenience [DS83, NW99]. In the present case, the very simple choice
τ := f preserves the local cubic convergence and considerably enlarges the basins of
attraction around the eigenspaces, both for NG-tau and NH-tau.

1 1.8

2
p = 2, NH with tau=f

1 1.99

2
p = 2, NH with tau=f

Fig. 5.4. Attraction basins for NH-tau with τ := f (5.4) in the case p = 2, n = 3.

Local cubic convergence of NG-tau and NH-tau with τ = f is direct: τ is quadratic
in the distance between the current iterate Y and the target eigenspace V, while
the right-hand side of (5.4) or (5.5) is linear in the distance. Consequently, the
perturbation on the solution K of (5.4) induced by τ = f is cubic.

The global behavior of NG-tau and NH-tau is illustrated on Figures 5.3 and 5.4
in our low-dimensional example utilized in section 4.2. Comparison with Figure 4.1
shows that the basins of attraction have been considerably enlarged around the three
eigenspaces. The improvement is even more spectacular in the larger dimensional
case (Example 3 in section 4.2); see Figure 4.5. Both NG-tau and NH-tau invari-
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ably converged to the targeted eigenspace. We had to choose the largest principal
angle between the first iterate and the target greater than 1

2.2
π
2 in order to observe

convergence to a wrong eigenspace.

Note that the balls centered on the eigenspaces of A overlap if their radius (mea-
sured in arc length on Grassmann [AMS02] or by means of the largest principal angle)
is larger than π/4. So there is a geometrical limitation on the size of the basins of
attraction. Our results show that in the NG-tau and NH-tau, the basins of attraction
are so large that the geometrical limit is almost reached.

6. Conclusion. We have compared four iterative methods, i.e., RSQR (Algo-
rithm 3.1), GRQI (Algorithm 3.2), NG (Algorithm 3.3), and NH (Algorithm 3.4),
that operate on the set of p-dimensional subspaces of Rn and refine initial estimates
of invariant subspaces of a symmetric n × n matrix A with cubic rate of conver-
gence. Methods RSQR and GRQI are formulated as shifted inverse iterations. The
former uses multiple scalar shifts while the latter involves a matrix shift. Algorithms
NG and NH are derived from a Newton argument. Algorithm RSQR can be traced
back to [PK69, PP73] and its proof of cubic local convergence is implicitly contained
in [WE91]. GRQI is studied in [Smi97, AMSV02]. NG appears in [LST98, EAS98,
LE02] and is connected to [Ste73, DMW83, Cha84, Dem87, Fat98, DF01]. Its lo-
cal rate of convergence is studied in [AMS02]; see also sections 3.2 and 4.3. To our
knowledge, NH was never mentioned before in the literature.

We have shown that although these four iterations converge locally cubically
to the spectral (i.e., isolated) eigenspaces of A, they appreciably differ in their global
behavior. The basin of attraction of an eigenspace V collapses when the eigenvalues of
A relative to V are not well separated from the other eigenvalues of A. Moreover, in the
case of GRQI, the basin of attraction of V also deteriorates if the eigenvalues relative
to V are clustered. This dependence on eigenvalue gaps means that the sequence of
iterates may diverge from V even if the initial point is a good approximation of V.

For three of the methods, we have proposed ways of improving the shape of the
basins of attraction. In the GRQI case, our numerical experiments suggest that a
simple heuristic imposing a limitation on the distance between successive iterates
removes the bad influence of clustered eigenvalues in the target eigenspace. In the
Newton case, we have introduced a deformation parameter that achieves a continuous
deformation between the pure Newton case (NG or NH) and the gradient descent flow
of a cost function. Our experiments show that a simple choice of the deformation pa-
rameter spectacularly improves the shape of the basins of attraction while preserving
the ultimate cubic convergence rate.

We also commented on the practical implementation of the various iterations.
With the exception of the deformed NG iteration, a new iterate of each method can
be computed in O(np2) flops when A has bandwidth 2q + 1 and q = O(p1/2). When
q = 1 there exist very efficient methods that compute all eigenvectors; see [DP03].
When A is sparse but not banded the computational cost of one iteration step will
depend on the type of sparsity, but the complexity is essentially that of p sparse solves
and therefore likely to be only linear in n.

In the Newton methods presented here, it is essential to compute the updates with
high accuracy in order to take advantage of the cubic rate of convergence. Another
approach consists in using acceleration techniques that exploit the useful information
given by the previous updates in order to improve the current approximate solution.
This allows for lower accuracy solves of the Newton equations, e.g., using iterative
solvers; see [FSV98, Kny01] for more details. In the p = 1 case, this approach yields
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e.g., the celebrated Jacobi–Davidson method [SV96] for which the use of iterative
solvers as inner solution process is well understood [Not02, Not03]. As an aside, the
Jacobi–Davidson method is equivalent to RQI with p = 1 when the Newton equations
are solved exactly (this rejoins our remark on the p = 1 case in section 4). In the
p > 1 case, we obtain a “block Jacobi–Davidson” that was touched upon in recent
references [LE02, Bra03].

Among the algorithms considered here, our study suggests the NH algorithm with
deformation parameter (Algorithm 5.2) as the method of choice for its remarkable
combination of advantages: excellent global behavior, cubic rate of convergence, and
low numerical cost O(np2) when A is suitably condensed.

Appendix. Derivation of Algorithm NH. In this section, we explain how the
NH equation, i.e., (3.23) or (3.24), is derived from the minimization problem (3.17).

Let F be defined as in (3.12), F (Y ) := ΠY⊥AY and let HY denote the horizontal
space (3.15), HY := {Y T∆ = 0}. Let J denote the operator DF (Y ) restricted to act
on HY ,

J[∆] = ΠAΠ∆ − ∆(Y TY )−1Y TAY − Y (Y TY )−1∆TAY = J [∆] − Y (Y TY )−1∆TAY,

where J denotes the operator ΠDF (Y ) defined in (3.18) restricted to act on HY . Let

mY (∆) :=
1

2
‖F (Y ) + J[∆]‖2 =

1

2
trace((Y TY )−1(F (Y ) + J[∆])T (F (Y ) + J[∆])),

where the (Y TY )−1 factor is introduced so that mYM (∆M) = mY (∆) for all M ∈
GLp (this allows us to take Y not necessarily orthonormal).

The minimization problem (3.17) is to compute ∆∗ = arg min∆∈HY
mY (∆). To

this end, define JT , the adjoint of J, by requiring that JT is on Rn×p into HY and
verifies trace((Y TY )−1ΩT J[∆]) = trace((Y TY )−1(JT [Ω])T∆) for all Ω ∈ Rn×p and
all ∆ ∈ HY . One obtains

J
T [Ω] = JT [ΠΩ] − ΠAY (Y TY )−1ΩTY

and

JT : HY → HY : ∆ �→ ΠATΠ∆ − ∆(Y TY )−1Y ATY T .

Then one readily obtains

DmY (∆)[∆̃] = trace((Y TY )−1(JT [F (Y )] + J
T ◦ J[∆])T ∆̃);

hence the solution ∆∗ of the minimization problem (3.17) verifies the normal equations
JT ◦ J[∆∗] = −JT [F (Y )] that is

JT ◦ J [∆∗] + ΠAY (Y TY )−1Y TAT∆∗ = −J [F (Y )].(6.1)

If A = AT , then J is self-adjoint and the latter equation develops into the NH equa-
tion (3.24).
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[FGP94] J. Ferrer, M. I. Garćıa, and F. Puerta, Differentiable families of subspaces, Linear
Algebra Appl., 199 (1994), pp. 229–252.

[FSV98] D. R. Fokkema, G. L. G. Sleijpen, and H. A. Van der Vorst, Accelerated inexact
Newton schemes for large systems of nonlinear equations, SIAM J. Sci. Comput.,
19 (1998), pp. 657–674.

[GV96] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., The Johns Hopkins
University Press, Baltimore, MD, 1996.

[HM94] U. Helmke and J. B. Moore, Optimization and Dynamical Systems, Springer-Verlag,
London, 1994.

[Ips97] I. C. F. Ipsen, Computing an eigenvector with inverse iteration, SIAM Rev., 39 (1997),
pp. 254–291.

[JS01] Z. Jia and G. W. Stewart, An analysis of the Rayleigh-Ritz method for approximating
eigenspaces, Math. Comp., 70 (2001), pp. 637–647.

[Kny01] A. V. Knyazev, Toward the optimal preconditioned eigensolver: locally optimal block
preconditioned conjugate gradient method, SIAM J. Sci. Comput., 23 (2001),
pp. 517–541.

[LE02] E. Lundström and L. Eldén, Adaptive eigenvalue computations using Newton’s
method on the Grassmann manifold, SIAM J. Matrix Anal. Appl., 23 (2002),
pp. 819–839.
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Adv. Appl. 134, Birkhäuser, Basel, 2002, pp. 337–383.

[SE02] V. Simoncini and L. Eldén, Inexact Rayleigh quotient-type methods for eigenvalue
computations, BIT, 42 (2002), pp. 159–182.

[Shu86] M. Shub, Some remarks on dynamical systems and numerical analysis, in Proceedings
VII ELAM, L. Lara-Carrero and J. Lewowicz, eds., Equinoccio, U. Simón Boĺıvar,
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