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Abstract

We extend tree-based methods to the predic-
tion of structured outputs using a kerneliza-
tion of the algorithm that allows one to grow
trees as soon as a kernel can be defined on the
output space. The resulting algorithm, called
output kernel trees (OK3), generalizes classi-
fication and regression trees as well as tree-
based ensemble methods in a principled way.
It inherits several features of these methods
such as interpretability, robustness to irrel-
evant variables, and input scalability. When
only the Gram matrix over the outputs of the
learning sample is given, it learns the output
kernel as a function of inputs. We show that
the proposed algorithm works well on an im-
age reconstruction task and on a biological
network inference problem.

1. Introduction

Extending statistical learning to structured output
space is now surging as a new theoretical and practical
challenge. In computational biology, natural language
processing or more generally in pattern recognition,
structured data such as strings, trees, graphs abound
and require new tools to be mined relevantly. An ele-
gant way to handle structured data is to make use of
kernel methods that encapsulate the knowledge about
the structure of a space of interest into the definition
of a kernel. Already successful for structured inputs,
original kernel-based methods have recently been pro-
posed to address the structured output problem (We-
ston et al., 2002; Cortes et al., 2005; Tsochantaridis
et al., 2005; Taskar et al., 2005; Weston et al., 2005).
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In this paper, we start from a different family of
models, namely tree-based models.Tree-based meth-
ods have proved to be useful when interpretability is
required or when features need to be selected. If en-
hanced by ensemble methods, they present high per-
formances and are considered as a general and power-
ful tool as soon as the attribute vector representation is
appropriate. In this context, we propose a straightfor-
ward extension of multiple output regression trees us-
ing the kernel trick, noticing the fact that the variance-
based score function used for evaluating splits requires
only scalar product computations. Provided that we
have defined a kernel on the output space, it thus be-
comes possible to build a tree that maps subregions of
input space defined by hyperplanes parallel to axis into
hyperspheres defined in the feature space correspond-
ing to the output kernel. The algorithm can also be
used from a Gram matrix only to learn an approxi-
mation of the underlying kernel as a function of the
inputs. This new extension of trees which we called
Output Kernel Trees (OK3) can also benefit from en-
semble methods because of the linearity of the ensem-
ble combination operator.

Section 2 presents the kernelization of tree-based
methods and its properties. Section 3 describes and
comments numerical experiments on two problems: a
pattern completion task (Weston et al., 2002) and a
graph inference problem (Vert & Yamanishi, 2004).
Section 4 provides some perspectives.

2. Output kernel trees

The general problem of supervised learning may be
formulated as follows: from a learning sample LS =
{(xwyz)h =1,... ,NLS} with z; € X and y; € Y, find
a function f : X — Y that minimizes the expecta-
tion of some loss function over the joint distribution of
input/output pairs:

By {0(f(2), )} (1)
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2.1. Standard regression trees

Standard regression trees (Breiman et al., 1984) pro-
pose a solution to this problem when the output space

is the real axis, Y = IR, and the loss functions ¢ is the

square error, £(f(z),y) = (f(z) —y)2.

The general idea of regression trees is to recursively
split the learning sample with binary tests based on
the input variables, trying at each split to reduce as
much as possible the variance of the output in the left
and right subsamples of learning cases corresponding
to that split. The splitting of a node is stopped when
the output is constant in this node or some stopping
criterion is met (e.g., the size of the local subsample
goes below some threshold or the split is deemed non
significant according to some statistical test).

More precisely, a score measure is defined to evaluate
and select splits, which is written:

N, N,
Score(T, S) = var{y|S} — Flvar{ywl} - eraur{yb}}7

where T is the split to evaluate, S is the local learning
sample of size N at the node to split, S; and S, are
its left and right successors of size N; and N, respec-
tively, and var{y|S} denotes the empirical variance of
the output y in the subset S computed as:

1 & 1 &
var{y|S} = N z:(yZ - N Zyi)? (2)

Once the tree is grown, each leaf L is labeled with a
prediction g, computed as:

1
I = NiLzy“
i=

where Ny, is the number of learning cases that reach
this leaf. These predictions minimize the mean square
error when the tree is used to predict the outputs of
learning sample cases.

This algorithm can be extended in a straightfoward
way to the case of multiple numerical outputs, i.e. Y =
IR", with the loss function £(f(z),y) = ||f(z) — yl|?,
where || - || denotes the Euclidean norm in IR™. In this
case, the empirical variance computed by (2) and the
predictions at leaf nodes are simply replaced respec-
tively by:

1Y 1Y
var{y|S} ﬁZHyi*NZ%W (3)
=1 =1

1 &
i o= —S . 4
yL N, ;yz ( )

The latter is the center of mass in the leaf and the
former is the average in S of the squared Euclidean
distance of output vectors to the center of mass.

2.2. Kernelizing the output

Noticing that variance (3) only requires computations
involving scalar products between outputs, one can ap-
ply directly the kernel trick to the score function and
thus derive a direct way to handle more complex out-
put sets or spaces. More precisely, let us define a map-
ping ¢ : Y — H that projects each output y into a vec-
tor of some Hilbert space H and then use the variance
(3) in this feature space to grow the tree. This reduces
to the supervised learning problem defined earlier with
a loss function equal to:

U(f(@),y) = lo(f () — o). ()

In this case, variance var{¢(y)|S} can be written:

N N
1 1
N > (bi), (i) — el > (bwi), b(y;))
i=1 i,j=1
where ||.|| and (-,-) resp. denotes the norm and the
inner product in H.

Defining now k : ¥ x Y — IR as a (positive semi-
definite) kernel over the output space, which induces
some feature map ¢ into some (possibly infinite-
dimensional) Hilbert space H such that

k(y,y') = (o(y), o(¥)),

the variance on the output vector in H becomes:

N N
var{o()[S) = 5 D" k(i w) — 13 D by us).

i=1 ij=1
which plugs directly into the score computations, and
thereby extends tree induction to a very large class
of complex output spaces over which various kernels
have already been defined. We will call this kernel
formulation of the tree growing algorithm OK3, for
Output Kernel Trees.

Notice that multiple output regression trees and classi-
fication trees are particular cases of OK3. Indeed, the
first one consists of using a linear kernel between out-
puts while using the Dirac kernel, k(y,y’) = 1(y = ¢'),
with a qualitative output yields standard classification
trees with the Gini entropy.

Notice also that in terms of the kernel, the loss function
that the resulting trees try to minimize can be written:

U f(z),y) = k(f(2), f(2)) + Kk(y,y) — 2k(f(z),y), (6)

which shows that choosing a kernel among outputs ac-
tually amounts at choosing a loss function.
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2.3. Making a prediction

In the output feature space, the prediction (4) associ-
ated to a leaf node L becomes:

éL = NLL ZL; ¢(yz')~ (7)

Usually, however, we are interested in making predic-
tions in )). One prediction of interest is thus the out-
put in ) whose feature vector is (;AS L, i.e. the pre-image
G = ¢'(¢1). However, we do not want to make the
assumption that we have access to the feature space
and furthermore, there may not be a point gy in Y
such that ¢(gr) = ér. In such cases, an approximate
pre-image may be obtained from the kernel only by

Nr
1
~ . . N 12
g = argmin [|o(y) E;‘b(y’)”
9 -
= argmink(y,y) — — kivlvg
g min k(y', /) NL,Z wi,), (8)

which is the output that when mapped in the feature
space is the closest to the center of mass in the leaf.
In practice, the computation of the argmin in (8) is
tractable only for very specific choices of )V and ker-
nel k. For example, with a linear kernel in IR"™, the
computation of (8) leads to the prediction (4).

The pre-image problem is common to all methods
learning from kernelized outputs (see Section 2.8).
Several techniques have been proposed to approximate
(8) (see, e.g., Scholkopf & Smola, 2002; Ralaivola &
d’Alché-Bue, 2003). The approximation we propose is
inspired from the simple approximation used in (We-
ston et al., 2002) which replaces the argmin, cy over
Y by an argmin,/crg over outputs that appear in the
learning sample only. Taking into account the tree
structure, we further restrict this search to those out-
puts that appear in the leaf reached by the test exam-
ple, which further reduces the computational burden.

It is important, however, to notice that during tree
growing there is no need to compute pre-images. Also,
the loss of a prediction on a test case (z,y) may be
obtained without computing pre-images, by using (6)
and exploiting (7) and the kernel formulation of scalar
products to express k(f(x), f(z)) from the learning
sample values k(y;,y;) only. Thus cross-validation
(e.g. in the context of pruning, or meta-parameter tun-
ing) can also be done without computing pre-images.

2.4. Ensembles of output kernelized trees

While useful for their interpretability, single trees are
usually not competitive with other methods in terms

of accuracy, essentially because of their high variance.
Thus, in the context of classification and regression
problems, ensemble methods have been proposed to re-
duce variance and improve accuracy. In general, these
methods grow an ensemble of diverse trees instead of a
single one and then combine in some fashion the pre-
dictions of these trees to yield a final prediction.

Among these methods, those which only rely on score
computations to grow the trees and which (in the con-
text of regression) combine predictions by simply av-
eraging them, can be directly extended to OK3.

As a matter of fact, the average prediction of an en-
semble of trees 7, which is an average of sums like (7),
may be written as a weighted sum of output feature
space vectors from the learning sample, i.e.:

Nrs

o7 (z) = Z kr(zi,2)(yi)- 9)

Indeed, for a single tree ¢ (7) may be rewritten as

Nrs

d(x) = Z ki(wi, 2)o(yi),

where k;(z,2') = N; ' if 2 and 2’ reach the same leaf
L in t and 0 otherwise; hence the average prediction
of an ensemble of trees 7 = {t1,...,tp} is given by
(9) with

M
kr(z, x/) =M Z ke, (x,x').
i=1

Notice that k7 is non-negative and normalized over
the learning sample (}_, kr(x;, ) = 1). It is positive
only for pairs of inputs which reach at least in one of
the trees the same leaf, and it is actually a (positive
semi-definite) kernel over the input space inferred in a
supervised way by tree growing (Geurts et al., 2006).

An ensemble prediction can thus be obtained by an
approximate pre-image in the following way:

Nrs

g7 (x) =arg min [|¢(y') — > k(s 2)é(y)|l”
i=1

Nps
= ink(y',y)-2)  kr(z,x)k(y,y').(10
g min K4,/ )-2Y K (s, k(3 ') (10)

i=1

Like for single trees, we will further simplify (10) by
an arg min over the y; in the learning sample such that
k7 (x;,x) is non zero.

In our experiments, we will compare OK3 with single
trees and OK3 ensembles grown with the randomiza-
tion of bagging and extra-trees. Bagging grows each
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tree from a bootstrap sample of the original learn-
ing sample (Breiman, 1996) while locally maximizing
scores to choose splits. The extra-trees, on the other
hand, are grown from the complete learning sample
while randomizing the choice of the split at each node.
We refer the interested reader to (Geurts et al., 2006)
for the exact description of this algorithm and its com-
parison with other ensemble methods.

2.5. Attribute selection and ranking

An interesting feature of tree-based methods is that
they can be exploited to rank attributes according to
their importance for predicting the output value. This
feature is especially interesting with ensemble methods
which are not interpretable by themselves.

In the context of OK3, we propose to compute the im-
portance of an attribute by computing for each split
(in a tree, or in an ensemble of trees) where the at-
tribute is used the total reduction of variance brought
by the split, which is actually N.Score(S,T), and by
summing these reductions. Thus, attributes that do
not appear in a tree have an importance of zero, and
those that are selected close to the root nodes of the
trees typically receive high scores. Since the variance
reduction can be computed in terms of kernel values
only, this computation again does not require to refer
to the output spaces ) or H.

2.6. Supervised kernel learning

Let us assume that the outputs corresponding to learn-
ing sample cases are not available, and that only the
values of the kernel between these (hypothetical) out-
puts are given, in the form of a Ny g X Ny g gram matrix
K with K, ; = k(y;,y;). Since the construction of a
tree only requires the output kernel matrix, we can
still grow a tree or an ensemble from such data. Fur-
thermore, from these latter we can make predictions
about kernel values between the unknown outputs that
would correspond to any two points of the input space.

Indeed, let us first consider a single tree and two in-
puts z; and xo reaching leaves L; and Lo respec-
tively. If we knew the outputs over the learning sam-
ple, these leaves would point respectively to the sub-
samples of outputs {yi,..., y}le} and {y?,... ,y?\,LQ}
and if, moreover, we knew the feature map ¢, we could
compute from this information the predictions in H for
1 and x2, and their inner product by:

NLl NL2

];}(‘Tl,.ZQ NLINLz Z Z >

i=1 j=1

Since the latter expression refers only to inner products

it can be computed directly from the Gram matrix by

1
N, Ny, Z_: Z k(i y;)-

The general formulation of this, for an ensemble of
trees 7, writes nicely as a convolution of the Gram
matrix K by the tree-kernel k7 :

];3(1?1, £E2)

Nps Nrs

Z Z kT 1'%331 kT(‘Tj7x2)Klj (11)

=1 j=1

1‘17.’)32

Obviously this approximate kernel will be positive
semi-definite as soon as the given Gram matrix is so.
Hence, OK3 also provides a means to generalize arbi-
trary kernels as a function of attributes defined over
some input space. Our second experiment below will
show that the problem of supervised graph inference
may be formulated like this. This provides also a way
to solve the kernel completion task defined in (Tsuda
et al., 2003). With respect to the transductive ap-
proach of (Tsuda et al., 2003) however, we build a
model in the form of a function ET and do not exploit
inputs of the test samples. Although this will not be
illustrated here, we mention that this feature could
also be useful to approximate a kernel whose practical
evaluation is computationally intensive.

2.7. Implementation issues

In the case of the formulation (3), it is possible to
compute incrementally the score for all possible splits
based on a numerical input variable and hence the de-
termination of the best split among N was in the order
of O(N) for a subset of size N. With OK3, this incre-
mental update is still possible but requires now O(N)
operations, leading to a quadratic complexity of the
determination of the best split at a tree node. This
is unavoidable in the general case. However, if there
exists an output feature space of lower dimension d in
correspondence with the kernel, it may be more advan-
tageous to use multiple output regression trees in this
space for computational efficiency reasons, the latter
method being of order O(N.d). Both approaches will
nevertheless output exactly the same tree.

In the general case, there is also an additional bur-
den for the computation of a prediction with respect
to standard trees. The computation of the pre-image,
as well as the computation of a kernel prediction, is in
the order of O(N?) for a single tree and quadratic in
the support of k7 (x,.) for an ensemble. In the case of
single trees, however, it is possible to pre-compute pre-
dictions at all tree leaves so as to avoid this quadratic
effect at test time. Since ensemble methods are usually
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used with unpruned trees, we can also expect in prac-
tice that the size of the support k7 (z,.) will be almost
independent of the learning sample size and thus that
the test complexity will remain far below its worst case
value of O(N?%g).

2.8. Related algorithms

OK3 is related to a couple of works in the tree world.
To the best of our knowledge, multiple output regres-
sion trees date back to (Segal, 1992) which has pro-
posed to replace variance (2) by an average Maha-
lanobis distance to the center of mass. This is strictly
equivalent in using OK3 with a kernel k(y;,y;) =
yiV_lij where V' is a covariance matrix and reduces
to multiple output regression trees when V is the iden-
tity matrix. Our work is also closely related to the
predictive clustering trees (PCT) proposed by Blockeel
et al. (1998) and applied, e.g., for hierarchical classifi-
cation (Todorovski et al., 2002) and ranking (Blockeel
et al., 2002). PCT generalize classification and regres-
sion trees by replacing the notion of variance by the
general form: + Zf\il d(yi,p)? where d is some arbi-
trary distance metric and p, called the prototype, is
the point that minimizes the latter expression accord-
ing to p. When d is the euclidian distance in the out-
put feature space, PCT will produce the same trees as
OK3 would. The main difference however is that PCT
requires to compute explicitly a prototype p.

Besides trees, several researchers have focused recently
on the problem of complex output prediction with ker-
nel methods. Weston et al. (2002) define a kernel on
the output and try to find a prediction that minimizes
(1) with the loss function (5) associated with the ker-
nel. Their method, called kernel dependency estima-
tion (KDE), first applies kernel PCA on the output
kernel to reduce the dimensionality of the output fea-
ture space and then fit a kernel ridge regression model
for each output direction. In (Cortes et al., 2005), a
new formulation of KDE is proposed that does not re-
quire anymore the prior dimensionality reduction and,
like OK3, works (implicitly) in the full output feature
space. Compared to our method, the use of kernel
ridge regression allows to take advantage of a kernel
on the input space which may improve accuracy, at
the expense however of interpretability and computa-
tional complexity.

The approaches adopted in (Tsochantaridis et al.,
2005; Weston et al., 2005; Taskar et al., 2005) exploit a
kernel on input-output pairs with large-margin meth-
ods. Unlike OK3 and KDE, this leads to a combined
feature space representation of inputs and outputs, es-
pecially appropriate when these two are interdepen-

dent. These methods are thus able to solve more com-
plex structured input/output problems. The price to
pay however is an increase of computing time, partially
due to the requirement of pre-image computations dur-
ing the training stage.

Our method is also related to kernel k-means (Dhillon
et al., 2004). Both methods try to minimize the same
loss function and are based on the same kernel trick,
i.e., the computation of the average distance to the
center of mass from kernel evaluations only. The main
difference is obviously that kernel k-means minimizes
this criterion in an unsupervised way while our algo-
rithm does it in a supervised way from input variables.

3. Experiments

To highlight the generality of the approach, we first
consider a problem of structured ouput prediction and
then a supervised kernel learning task.

3.1. Image reconstruction

To give a first illustration of the method, we repro-
duce the image reconstruction experiment of (Weston
et al., 2002). The problem is to predict the bottom
half of an image representing a handwritten digit from
its top half. The dataset we use is a subset of 1000
images from the USPS handwritten 16x16 pixel digit
database!. We took the first 100 examples of each digit
in the order of the original dataset. Each variable is
scaled between -1 and +1. The first 8 lines (128 in-
put variables) were used as input and the last 8 lines
as output. As output kernel, we used a radial basis-
function (RBF) kernel k(y, y') = exp(—||ly — y'||*/20?)
with ¢ = 7.07112. As in (Weston et al., 2002), we
compare algorithms with 5-fold cross-validation?.

We compare three families of algorithms: k-NN, KDE
(Weston et al., 2002), and OK3*. For the k-NN, we
found the nearest neighbors using a RBF kernel on
the input and computed the prediction as the closest
output in the learning sample to the center of mass
among the neighbors. For KDE, we tried both lin-
ear and RBF kernels on the inputs. The parameters
of these methods were selected by another run of 5-

Ythe ZIP code dataset from http://www-stat-class.

stanford.edu/~tibs/ElemStatLearn/data.html

2Since we could not find the exact setting of (Weston
et al., 2002), this value was chosen so that the range of our
errors were comparable to theirs.

3To ease the reproduction of our results, the folds were
class-stratified and selected in the order of the 1000 images.

1For k-NN and KDE, we use the Matlab implementa-
tion of these methods in the spider library (http://www.
kyb.tuebingen.mpg.de/bs/people/spider/). For OK3,
we used our own implementation in C.
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Table 1. Comparison of different methods on the image re-

construction task (RBF loss)

Method

Nrs =200

Nps = 800

Baseline

Best achievable

1.0945 £ 0.0125
0.4701 £ 0.0064

1.0853 £ 0.0227
0.3584 £+ 0.0118

k-NN 0.8587 £ 0.0172  0.7501 £ 0.0316
KDE linear 0.8630 £ 0.0030  0.7990 £ 0.0215
KDE RBF 0.7892 + 0.0066  0.6778 £ 0.0264

OK3+Single trees

OK3+Bagging

OK3+Extra-trees

1.0399 £ 0.0150
0.8643 £ 0.0096
0.8169 £ 0.0109

0.9013 £ 0.0232
0.7337 £ 0.0263
0.6949 + 0.0261

OK3+ET
KDE RBF

(b)

Figure 1. (a) Examples of predictions and (b) attribute im-
portance measurement on the image reconstruction task

fold cross-validation internal to the previous run®. For
OK3, we compared single (unpruned®) trees, bagging,
and extra-trees. We used ensembles of 100 trees and
the default setting of extra-trees (Geurts et al., 2006).

For each method, we computed the average loss cor-
responding to the RBF kernel (i.e., £(y,y') = 2(1 —
exp(—|ly—1v'||?/20?)), which is the loss that KDE and
OKa3 explicitly seek to minimize. Results are gathered
in Table 1. The two columns correspond respectively
to the case where we used learning folds of size 200
(and testing folds of size 800) or learning folds of size
800 (and testing folds of size 200). The first line cor-
responds to the baseline error, obtained by a model
which outputs the lower part of the learning image
which is closest to the average output feature vector
in the learning sample. All methods return outputs
from the learning sample for their predictions, which
imposes a lower bound on the loss over a test sample.
This lower bound of error is achieved when the output
prediction is selected as the lower part of all learning
images which is the closest to the lower part of the
test image according to the output RBF kernel, and is
shown on the second line of the table.

We observe from the results given in Table 1 that, for
both learning sample sizes, all methods are better than
the baseline, but remain quite sub-optimal with re-
spect to the best achievable. Among tree-based meth-

°k was selected in {1,5,10,15,20}, o of the RBF kernel in
{22.3607, 7.0711, 2.2361, 0.7071, 0.2236, 0.0707, 0.0224;,
and the regularization parameter of KDE in {10747 1077,
1072, 1074, 10°, 10%}

5Pruning did not improve in this case.

ods, single trees are only slightly better than the mean
prediction, while bagging and extra-trees both signif-
icantly improve with a clear advantage to the latter.
The best results are obtained by KDE with the RBF
kernel, i.e. while using the same kernel on the input
space as the one targeted over the output space. It is
interesting to note that OK3 with extra-trees, while
it has to learn its kernel from the sample, is able to
reach almost as good results. Figure 1(a) gives some
examples of predictions returned by KDE+RBF and
OK3+Extra-trees with Npg = 800. Note that OK3
results were obtained by limiting the search of pre-
images to the outputs in the leaves of interest. This
approximation had no effect on accuracy but signifi-
cantly decreased computing times for testing (up to a
factor 15 with Extra-trees and Npg = 800).

As a further illustration of OK3 features, Figure 1(b)
plots the importance of each input pixel in a model
derived with extra-trees from the learning sample of
all 1000 images. Useless (zero importance) pixel values
are drawn in black and the most important ones are
drawn in white. This shows that most information is
concentrated in the lower part of the input images, i.e.
where they should align with the output image.

3.2. Supervised graph inference

Definition of the task. Let G = (V, E) be a graph
with vertices V and edges £ C V x V. We suppose
that each vertex is described by some features in some
input space X, and denote by z(v) this information.
Let V! C V and let E' = {(v,v') € EJv,v" € V'};
thus G = (V' E’) is a subgraph of G. We sup-
pose that the graph is undirected, i.e. (v,v') € E =
(v',v) € E. The goal of supervised graph inference is
then to determine from the knowledge of G’ a func-
tion e(z(v),z(v")) : V x V — {0,1}, ideally such that
e(z(v),z(v")) = 1 < (v,0v') € E. To our knowledge
this task was first introduced by Vert and Yamanishi
(2004) in the context of biological networks but can be
instantiated in various application domains.

To solve this problem with OK3, we first have to de-
fine an output kernel k(v,v’) between vertices such
that adjacent vertices lead to high values of k and
non-adjacent ones lead to smaller ones. Then, OK3
can be applied on the known subgraph, by using the
set of vertices V' described by their inputs and the
gram matrix k(v,v’). It will build a tree-based model
allowing to predict, according to Eqn. (11), the kernel
of two arbitrary vertices as a function of their inputs.
Thresholding the value of the learned kernel allows
then to infer edges over unseen vertices.
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Figure 2. Top, ROC curves of OK3 with single (ST),
bagged (TB) and extra-trees (ET), bottom, ROC curves
using different sets of features with ET

Enzyme network inference. We reproduce the ex-
periments from (Yamanishi et al., 2005) which aim at
reconstructing the yeast enzyme network, where each
vertex corresponds to an enzyme and edges connect
enzymes which catalyze two successive reactions in a
biochemical pathway. The “golden standard” network
used in (Yamanishi et al., 2005)7 was retrieved from
the KEGG/PATHWAY database. It is composed of
668 enzymes connected by 2782 edges. Each enzyme
is described by three sets of attributes: (1) Gene ex-
pression data: 157 numerical attributes measuring ex-
pressions in different microarray experiments of the
gene coding for the enzyme; (2)Localization data: 23
boolean attributes coding the presence/absence of the
enzyme in various intracellular locations; (3) Phyloge-
netic profile: 145 boolean variables coding the pres-
ence/absence of an orthologuous protein across 145
organisms. To represent the graph structure we use
a diffusion kernel (Kondor & Lafferty, 2002), yielding
a Gram matrix K = exp(—0L), (where L = D — A
is the Laplacian, D the diagonal matrix of node con-
nectivities, and A the adjacency matrix). We evaluate
our algorithm by 10-fold cross-validation: on each run,
we compute the Gram matrix on 9 folds, apply OK3
and then compute from the resulting model all ker-
nel predictions that involve at least one enzyme from

"http://web.kuicr.kyoto-u.ac.jp/~yoshi/ismb05/

the test fold.® A network can then be reconstructed
by connecting enzyme pairs with a kernel value above
a threshold. To evaluate the accuracy of such pre-
dictions, we analyze ROC curves obtained by varying
the threshold, the true positive rate being the propor-
tion of correctly predicted existing edges and the false
positive rate the proportion of non existing edges er-
roneously predicted. We (vertically) average the ROC
curves obtained on the different folds and also compute
(average) areas under the ROC curves (AUC values).

The top graph of Figure 2 compares OK3 with differ-
ent tree-based methods, while using all 325 attributes.
We observe that single trees are clearly outperformed
by bagging, itself clearly outperformed by extra-trees.
Comparing the AUC of 0.845 we get with extra-trees
to the best value of 0.804 obtained in (Yamanishi et al.,
2005) with the same inputs?, we conclude that our re-
sults are quite competitive.

Reproducing an experiment from (Yamanishi et al.,
2005), the bottom graph of Figure 2 shows the effect
of using different subsets of candidate attributes. The
phylogenetic profiles appear as the most informative
ones, while localization data alone does not bring much
information at all about enzyme relations. This is also
confirmed by attribute ranking, where we found that
the first five attributes correspond to phylogenetic fea-
tures, while the last 20 ones are almost all localization
variables. Comparing our ROC curve for phylogenetic
data only with the one in (Yamanishi et al., 2005), we
observe here a much higher AUC, which suggests that
OKa3 is well suited for handling discrete attributes.

Discussion. The algorithm proposed in (Yamanishi
et al., 2004) and (Vert & Yamanishi, 2004) determines
a mapping of inputs x(v) into a vector f(z(v)) of IRL,
such that vertices v,v’ of G’ known to be adjacent
are mapped to nearby vectors f(z(v)), f(z(v')), and
to use this mapping to predict unknown edges. In
(Yamanishi et al., 2004), the mapping f is learned as
the first few components obtained by kernel canonical
correlation analysis between a kernel on the inputs and
a diffusion kernel on the graph. In (Vert & Yamanishi,
2004), the mapping f is learned directly by minimizing
a functional expressing the fact that known connected
pairs should be close in the feature space.

OKa3 differs with their approaches in that it computes

the kernel approximation directly in the original at-

8These conditions, including the value of 8 = 1 chosen
for the kernel, are those of (Yamanishi et al., 2005), except
for the specific folds, which we could not find out.

9The best AUC obtained by Yamanishi et al. (2005) is
actually 0.836 but this value was obtained with some ad-
ditional chemical information that was not exploited here.



Kernelizing the Output of Tree-Based Methods

tribute space, i.e. without explicitly inferring the map-
ping f into a Euclidean space of prespecified dimen-
sionality, and without having to define a priori a kernel
over the input space. In general, the advantage of our
approach is that it is more straightforward, since to-
tally automatic, and that the flexibility of extra-tree
based kernel learning may improve accuracy.

4. Conclusion and perspectives

The kernelization of tree-based methods that we pro-
pose in this paper opens these methods to structured
output prediction and supervised kernel learning. It
allowed us to tackle two problems of different nature:
a pattern completion task and a graph inference prob-
lem. Its combination with ensemble methods can reach
high level performances while keeping the possibility
to rank and select features. The interpretability, non
parametric nature, and reasonable complexity of these
methods make them interesting alternatives to full
kernel-based methods, enriching the panel of methods
able to handle structured outputs.

Immediate future works will focus on the application
of the method on various tasks which will also raise the
question of the choice of an appropriate output kernel
for the problem at hand. While we restrained this
work on ensemble methods based on randomization,
the same kernel trick applies to boosting type ensem-
ble methods and deserves to be studied. On a broader
point of view, the structured output prediction prob-
lem addressed here is still at its infancy and suggest
new open questions such as the impact of the output
kernel together with the choice of input space on gen-
eralization ability. These questions are certainly worth
further investigations in general and in particular, in
the context of output kernelized trees.
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