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Stabilization of periodic orbits in a wedge billiard
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Abstract— This paper introduces a stabilization problem for
an elementary impact control system in the plane. The rich
dynamical properties of the wedge billiard, combined to the
relevance of the associated stabilization problem for feedback
control issues in legged robotics make it a valuable benchmark
for energy-based stabilization of impact control systems.
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I. I NTRODUCTION

This paper is concerned with the stabilization of periodic
orbits in the “wedge billiard” (or “planar juggler”) illustrated
in Figure 1.
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Fig. 1. The wedge billiard

A point mass (ball) moves in the plane under the action
of a constant gravitational field. The ball undergoes elastic
collisions with two intersecting edges, an idealization of the
juggler’s two arms. In the absence of control, the two edges
form a fixed angleθ with the direction of gravity. Depending
on the angleθ, this conservative system exhibits a variety of
dynamical phenomena, including an abundance of unstable
periodic orbits. Rotational actuation of the edges around their
fixed intersection point is used to stabilize one particular orbit
of the uncontrolled system.

We view the wedge billiard stabilization as an interest-
ing example for theoretical investigations of impact control
problems encountered in legged robotics. The dynamics and
control study of such mechanisms is rendered difficult by
the inherently underactuated and intermittent nature of their
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control. Starting with the pioneering work of Raibert and
coworkers [12], the robotics community has nevertheless
made dramatic advances over the last 15 years in building
legged robots. Much of this research has focused on mech-
anisms that can sustain stable locomotion in the absence
of actuation. Less research has been devoted to the “active
control” of these mechanisms, that is the design of control
laws that stabilize an otherwise unstable motion, with the
notable exception of the work of Buehler, Koditschek and
coworkers who pioneered the active stabilization of juggling
machines [4, 13, 14, 5] . Buehler’s planar juggler model is
in fact the wedge billiard studied in the present paper for
the particular angleθ = 90 deg. The mirror law algorithm
proposed in [4] has been tested experimentally with much
success. In spite of its simplicity, a rigorous theoretical
analysis of its stabilizing properties has apparently been
elusive and originally motivated the present work. The design
of stabilizing feedback laws for Buehler planar juggler has
also been considered by Lynch [9] and by Brogliato and
coworkers [19].

The stabilization problem considered in this paper is the
simplest impact control problem beyond its one-dimensional
version: the celebrated bouncing ball or line-juggler model,
extensively studied in the literature (see for instance [7,
19, 3, 2]). Considering the two-dimensional wedge billiard
introduces few additional complexity in the model but raises
stabilization questions that are more directly connected to the
theoretical issues encountered in legged robotics and rhyth-
mic tasks control. Most notably, the presence of a variety of
unstableperiodic orbits in the uncontrolled model and the
fact that the stabilization of one particular periodic orbit can
be viewed as a preliminary step towards the stabilization of
a juggling “pattern”, i.e. several balls stabilized on the same
periodic orbit with a certain phase shift between them.

The stabilization of periodic orbits through impact control
is naturally rephrased as the fixed point discrete-time sta-
bilization of the corresponding Poincaré map. Stabilization
of the planar juggler therefore leads to the stabilization of
a three-dimensional discrete-time nonlinear system. The re-
sulting model is nevertheless nonlinear and non-affine in the
control, making it desirable (if not mandatory) to exploit the
underlying conservative mechanical structure of the system
in the design of stabilizing laws that have large basins of
attraction and are robust to model uncertainties. Energy-
based or dissipativity-based methods for the stabilization of
mechanical systems has been a very active research area over
the last decade [18, 16, 1, 11]. It is of interest to extend the
applicability of these designs in the present context.
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From an implementation viewpoint, the stabilization of
the discrete-time Poincaré map is only a preliminary step in
the impact control stabilization problem. It indeed provides
a discrete-time feedback law that prescribes the values of
the control variables (edge angular position and velocity) at
impact times based on the state of the ball at impact times.
But the discrete control law must eventually be converted
into a continuous-time control law for the actuated edges
such as to make them produce the right discrete control
values at impact times. Likewise, various continuous-time
measurements can be integrated to produce a faithful re-
construction of the discrete states. These implementation
issues are of importance for the robustness of the control
law. They also raise important open questions such as the
minimal feedback information required to stabilize a given
periodic orbit. Of particular relevance for legged locomotion
is the possibility to achieve stabilization in the absence of
any feedback measurement (open-loop control) or by using
the impact times as sole feedback information (rhythmic
feedback).

Billiards have always been important objects in the study
of dynamical systems. Beyond its relevance for robotic
applications, the (uncontrolled) wedge billiard is a rich
dynamical model leading to stabilization problems of various
complexity. The wedge billiard was first studied in [8] for its
relationship to self-gravitating systems in one dimension (the
motion of N parallel sheets with uniform mass density). It
was realized in this work and subsequent studies [17, 10] that
the wedge billiard displays a variety of dynamical phenomena
as a function of the angleθ. For θ < 45◦, the phase space
exhibits stable and chaotic behavior associated with periodic
orbits of any period. Forθ > 45◦, the motion appears
completely chaotic. The valueθ = 45◦ is very special and
leads to a completely integrable system with a two-parameter
family of unstable periodic orbits. The stabilization results
of the present paper focus on this particular case which
is simpler than the general case but illustrates most of the
relevant issues of the problem.

The paper is organized as follows. In Section 2, we derive a
dynamical model of the controlled wedge billiard. In Section
3, we study the periodic orbits of the uncontrolled square
wedge billiard, that is the particular caseθ = 45◦. Stabiliza-
tion control laws for this square billiard are then proposed in
Section 4, using momentum control only, and in Section 5,
using position control only. The mirror-law implementation
of the proposed control laws is briefly discussed in Section
6.

II. T HE CONTROLLED WEDGE BILLIARD MODEL

Periodic orbits of the four-dimensional wedge billiard
dynamics will be studied via the three-dimensional discrete
(Poincaŕe) map relating the state from one impact to the
next one. The discrete-state vector, notedx[k], will consist of
continuous-time variablesx(t) evaluated at impact timet[k].
Because the continuous-time variables can be discontinuous
at impact times, we use the notationx−(t[k]) for pre-impact
values andx+(t[k]) for post-impact values. As a convention,

the discrete-time state will denote post-impact values, that is
x[k] = x+(t[k]).
Let (er, en) an orthonormal frame attached to the fixed point
O with er aligned with the impacted edge. Letr denote the
position of the ball (unit mass point) andv = vrer + vnen

its velocity. The total energy of the ball is

E =
1
2

(
v2

r + v2
n

)− < r, g > (1)

Following [8], we use the state variablesVr = vr

cos θ , Vn =
vn

sin θ andE, the discrete state vector being

x[k] =




V +
r (t[k])

V +
n (t[k])

E+(t[k])




In the absence of control, each edge forms an angleθ with the
vertical, i.e. the direction of the constant gravitational field
g. The discrete control vectoru[k] consists of the angular
deviationµ(t[k]) of the impacted edge at impact timet[k]
and its angular velocitẏµ(t[k]). It is assumed that the edge
is not affected by the impacts, i.e.µ̇−(t[k]) = µ̇+(t[k]).
The discrete wedge-billiard map is the composition of a
(parabolic) flight map and an impact rule.
The flight map integrates the continuous-time equation of
motion between two successive impact times, yielding

x−(t[k]) = F1(x[k − 1], µ[k − 1], µ[k]) (2)

The impact map expresses post-impact variables as a (static)
map of pre-impact variables and control in the form

x[k] = F2(x−(t[k]), u[k]) (3)

We first review the derivation of the uncontrolled billiard
map ([8]). The flight map is then entirely determined by the
wedge geometry, that is by the parameterα = tan θ. As
shown in appendix, the flight map takes the analytical form
F1

V −
n (t[k + 1]) = −Vn[k]

V −
r (t[k + 1]) = Vr[k]− 2|Vn[k]|

(E−(t[k + 1]) = E[k])

when the impactsk andk + 1 occur on the same edge, and
the analytical formF2

V −
n (t[k + 1])2 = 4E[k] +

2(1− α2)

(1 + α2)2
(|Vn[k]| − Vr[k])2−V 2

n [k]

V −
r (t[k + 1]) = |Vn[k]| − Vr[k]− |V −

n (t[k + 1])| (4)

(E−(t[k + 1]) = E[k])

when the impactsk andk + 1 occur on two different edges.
The mapF1 is applied as long as the condition

2gy[k+1] = 2E[k]−V 2
n [k] sin2 θ−(Vr[k]−2|Vn[k]|)2 cos2 θ ≥ 0

is fulfilled. Otherwise, the mapF2 is applied. This condition
restricts the ball to impact above the intersection of the edges.
The impact ruleI adopted in this paper simply assumes
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that the tangential velocity is conserved and that the normal
velocity is reversed :

V +
r (t[k]) = V −

r (t[k])
V +

n (t[k]) = −V −
n (t[k]) (5)

Collisions are thus perfectly elastic (leaving the energy
conserved in the absence of control). The uncontrolled
wedge billiard map is the composition of the flight maps
F1,F2 and of the impact ruleI.

We now examine how control of the edges modifies
the flight map and the impact rule. The angular momentum
control µ̇[k] has no effect on the wedge geometry. As a
consequence, it leaves the flight map unchanged and only
modifies the impact rule as

V +
n (t[k]) = −V −

n (t[k]) +
2
α

R(t[k])µ̇(t[k]) (6)

with R(t[k]) = r(t[k])
cos θ obtained from the energy equation (1).

In contrast, the angular position controlµ(t[k]) does
not affect the impact rule but modifies the flight map. To
avoid the complication of computing a new flight map,
we introduce a simplification that leaves the flight map
unchanged and captures the effect of the angular position
control in a modified impact map. This simplification rests
on the small control assumption

|µ| << θ

and neglects the displacement of the impact point due to
the angular deviationµ[k]. As illustrated on Figure 2, this
simplification amounts to assume that the impacts still occur
on the uncontrolled wedge but that the angular controlµ[k]
rotates the normal and tangential directions of the impacted
edge by an angleµ[k].
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Fig. 2. The controlled wedge billiard (left) and a simplified model when
µ is small (right)

With this simplification, the flight mapsF1,F2 remain the
flight maps of the uncontrolled billiard whereas the impact
rule I becomes

M(µ)

(
V +

r (t[k])
V +

n (t[k])

)
=

(
1 0
0 −1

)
M(µ)

(
V −

r (t[k])
V −

n (t[k])

)
+

(
0

2
α

R(t[k])

)
µ̇(t[k]) (7)

with M(µ) denoting the matrix

M(µ) =
(

cos µ α sin µ

− sin µ
α cos µ

)

Note that (7) reduces to (6) whenµ = 0.
Our simplified model neglects the displacement of the impact
point due to the angular deviationµ but retains its “deflect-
ing” effect on the velocity variables. Composing the flight
mapsF1,F2 and the impact rule (7), one obtains the discrete
controlled billiard map

(
Vr[k + 1]
Vn[k + 1]

)
= J(µ)

(
Vr[k]− 2|Vn[k]|

−Vn[k]

)

+
2
α

( −R[k + 1]α sin µ
R[k + 1] cos µ

)
µ̇[k + 1] (8)

for impactsk andk + 1 on the same edge, and the discrete
controlled billiard mapB

(
Vr[k + 1]
Vn[k + 1]

)
= J(µ)

( |Vn[k]| − Vr[k]− f1[k]
f1[k]sign(Vn[k])

)

+
2
α

( −R[k + 1]α sin µ
R[k + 1] cos µ

)
µ̇[k + 1] (9)

for impactsk andk + 1 on different edges, with

J(µ) = M(−µ)
(

1 0
0 −1

)
M(µ)

=
(

cos 2µ α sin 2µ
sin 2µ

α − cos 2µ

)

and

f1[k] =

√
4E[k] + 2

1− α2

(1 + α2)2
(|Vn[k]| − Vr[k])2 − V 2

n [k]

The energy update is

E[k + 1] = E[k] +
1
2

α2

1 + α2

(
Vn[k + 1]2 − V −

n [k + 1]2
)
+

1
2

1
1 + α2

(
Vr[k + 1]2 − V −

r [k + 1]2
)

The analytical model (8)-(9) is exact whenµ = 0 and is a
good approximation of the controlled billiard under the small
control assumption|µ| << θ.
This simplified model is suitable for the analysis and design
of stabilizing control laws of various periodic orbits of the
uncontrolled billiard.
This will be illustrated in the next section for the special case
α = 1 (or θ = 45◦).

III. T HE SQUARE WEDGE BILLIARD

The square (α = 1) elastic wedge billiard is a very special
case of the general wedge billiard. Its analysis is of interest
both because of its simplicity and because it possesses a two-
parameter family of periodic orbits. As will be shown, all
these orbits are open-loop unstable, making the stabilization
non trivial even though stabilization will be achieved with
arbitrarily small control.
The reason why the analysis of the square wedge billiard
is considerably simplified is that in the absence of control,
the 2 DOF motion decouples into two 1 DOF independent
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motions : in the (fixed) frame(e1, e2) attached to the wedge,
the dynamics of the mass pointx = x1e1 + x2e2 satisfies

ẍi = −
√

2
2

g

xi(t) = 0 ⇒ x+
i (t) = −x−i (t), i = 1, 2

which directly yields the discrete map

Vi[ki + 1] = Vi[ki]

t[ki + 1] = t[ki] +
2
g
Vi[ki]

of an elastic bouncing ball or impact oscillator. Each solution
of the impact oscillator is periodic of periodTi = 2

√
2vi

n

g

where vi
n denotes the (constant) impact velocity|Ẋi|. The

periodic orbits of the square wedge billiard satisfy
T1 = qT2, q ∈ IN . In the rest of the paper, we only consider
the caseq = 1. Such periodic orbits correspond to alternating
impacts on the two billiard edges. They are therefore fixed
points of the mapBl, l ≥ 1, wherel is the total number of
impacts during one period.
The simplification of the mapB when α = 1 comes from
the property

|Vn[k+2]| = f1[k+1] =
√

4E[k + 1]− Vn[k + 1]2 = |Vn[k]|
which renders the mapB linear in the coordinatesZ[k] =
(Vr[k], |Vn[k]|, |Vn[k − 1]|)

Z[k + 1] = B̃Z[k]

with

B̃ =



−1 1 −1
0 0 1
0 1 0




Fixed points of the map̃B are of the formZ̄ = (0, V̄n, V̄n).
They characterize a one-parameter family of periodic orbits,
parametrized by their total energyE = V̄ 2

n

2 .
All these period-one orbits are unstable becauseB̃ has an
eigenvalue of (algebraic) multiplicity 2 on the unit circle.

Fixed points of the map̃B2 are of the formZ̄ = (V̄r, V̄n, V̄n).
They characterize a two-parameter family of periodic orbits
parametrized by their total energyE = V̄ 2

n

2 and the difference
V̄n − V̄r. All these period-2 orbits are also unstable.

The factor Vn−Vr

g has the convenient interpretation of
a phase shiftφ[k] = t[k] − t[k − 1] between the two
impact oscillators defining the billiard motion. This is a
consequence of the formula

Vr[k]− |Vn[k − 1]| = −g(t[k]− t[k − 1]) = −gφ[k] (10)

The phase variableφ[k] thus satisfies

φ[k + 2] = φ[k] +
2
g

(|Vn[k]| − |Vn[k − 1]|) (11)

and can be substituted to the variableVr in the mapB̃2.
An illustration of the period-two orbits of the square wedge
is given on Figure 3 for a given total energyE = V̄ 2

n

2 .
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Fig. 3. An illustration of the period-one and period-two orbits of the square
wedge billiard.

In the next two sections, it is implicitly assumed that impacts
alternate on both billiard edges. This assumption is only
made for simplicity and will be removed in the final version
of the paper.

IV. ENERGY-BASED STABILIZATION OF THE SQUARE

BILLIARD

A very simple control strategy for the square billiard is
to imposeµ ≡ 0 and to use angular momentum feedback
control of each edge. Addinġµ-control to the mapB̃2 and
using the coordinates(φ[k], Vn[k], Vn[k−1]) yields the model

φ[k + 2] = φ[k] + 2
g (|Vn[k]| − |Vn[k − 1]|)

Vn[k + 2] = Vn[k] + 2R[k + 2]µ̇[k + 2]
Vn[k + 1] = Vn[k − 1] + 2R[k + 1]µ̇[k + 1]

(12)

The equilibrium characterized by|Vn| = V̄n > 0, 0 < φ =
φ̄ < 2V̄n

g is made asymptotically stable with the feedback
control law

µ̇[k + 2] = −kP

R̄
(Vn[k]− V̄n)− gkI

R̄
(φ[k]− φ̄)

µ̇[k + 1] = −kP

R̄
(Vn[k − 1] + V̄n)

(13)

Exponential stability of the Jacobian linearization is ensured
with mild conditions0 < kP < 1 and 0 < kI <

1−kp

2 on
the (adimensional) design parameterskP andkI .

The feedback control (13) has the standard structure of
a proportional-integral control. With the interpretation of
the wedge billiard as two coupled impact oscillators, the
proportional feedback assigns the energy of each oscillator
to a common energy level̄V 2

n whereas the integral term
regulates the phase difference between the two oscillators.

The simple structure of the control law (13) leads itself
to many variants that will be further analyzed in the final
version of the paper. Of particular interest are its low-gain
property and its rhythmic nature.

The low-gain property of the control law is that the
size of the basin of attraction and the gain margin of the
controller are increased as the control parameterskP andkI

are lowered. As a consequence, the basin of attraction of the
desired equilibrium can be made large and an arbitrarily low
bound can be imposed on the magnitude of the control|µ̇|.
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The rhythmic nature of the control law (13) is due to the
time equation

t[k + 2]− t[k] =
2
g
|Vn[k]|

showing that the control law (13) can be rewritten as a
function that uses the sequence of impact timest[k] as sole
feedback information.

V. ENERGY-PRESERVING STABILIZATION OF THE SQUARE

BILLIARD

In the absence of angular momentum control (µ̇ = 0), the
controlled elastic wedge is conservative, the energy being
conserved both during flight and through impacts. At fixed
energyE, the square billiard has a one-parameter family of
period-two orbits that are the fixed points of the mapB̃2.

We consider the problem of stabilizing one of these
orbits using angular control actuation of one edge only. The
controlled Poincaŕe map on the actuated edge then writes as :
(

Vn[k + 2]
Vr[k + 2]

)
= M(2µ)

(
Vn[k]

Vr[k]− 2|Vn[k]|+ 2
√

4E − V 2
n [k]

)

(14)
Except for the valuēVr = 0 at which the linearized system is
not stabilizable, local asymptotic stability of the equilibrium
characterized bȳVn =

√
2E, −√2E ≤ Vr = V̄r ≤

√
2E is

achieved with the linear low-gain feedback

µ[k+2] = −εsign(V̄r)((Vn[k]−V̄n)−εsign(V̄n)(Vr[k]−V̄r)), ε > 0
(15)

whereε > 0 is a small control parameter. Lowering the gain
ε > 0 results in a larger basin of attraction. Furthermore,
the control law (15) can be saturated at an arbitrarily small
constant magnitudēµ > 0 to validate the small angle
assumption of the controlled model.

The square billiard model stabilized with angular control
only is an elementary example of a conservative mechanical
system which exhibits an asymptotically stable steady motion
even though it lacks dissipation. Such mechanical systems are
typically associated with nonholonomic constraints. Authors
have previously observed that this situation also arises in
piecewise holonomicsystems, that is, mechanical systems
that are smooth and holonomic except at discrete instants of
impacts [15, 6]. As noted in these references, such systems
can be thought of as nonholonomically constrained in their
overall motion in the sense that their configuration space is
greater than the instantaneous dimension of their velocity
space.

VI. M IRROR LAW IMPLEMENTATION

To be implemented in a mechanical setup, the discrete-time
control laws designed for the discrete-time impact model
must be converted into continuous-time reference trajectories
for the actuated edges.

Assuming a real-time measurement of the ball position,
the mirror-law strategy proposed by Buehler and Koditschek
[4] is a clever way to do so and is easily adapted to the
present framework: after impactn has occurred at timet[n],
the impacted edge is given the reference trajectory

µ(t) = Fµ̇(x[n])β(t) + Fµ(x[n]), t[n] < t ≤ t[n + 2] (16)

where β(t) is the angular deviation of the ball at timet
with respect to the equilibrium edge angle andx[n] denotes
the state of the discrete-time impact system at impactn.
By definition, the impact will occur whenµ(t) = β(t),
producing the discrete-time control law

µ[n + 2] =
Fµ(x[n])

1− Fµ̇(x[n])

and
µ̇[n + 2] = Fµ̇(x[n])β̇−(t[n + 2])

The mirror-law continuous-time implementation thus approx-
imates a discrete-time nominal designµ[n + 2] = Fµ(x[n])
and µ̇[n + 2] = Fµ̇(x[n]). The limited amplitude ofFµ̇ and
the gain margin of the (low-gain) nominal design make it
robust to the proposed approximate implementation.

SIMULATION RESULTS

The control law of Section 5 is now briefly illustrated by
a simulation result. We choose to stabilize the periodic orbit
characterized by|V̄n| =

√
11 m/s, V̄r = −1.7m/s. The initial

condition is chosen asVr[0] = −|Vn[0]| = −3.25 m/s ,which
roughly corresponds to an initial vertical drop of the ball.
Figure 4 compares the time evolution of the discrete variables
Vn andVr under the action of the energy-preserving control
(15). The control law is compared in two different models:

1) approximate discrete map: this is the discrete map (14)
used for the derivation of the control laws.

2) exact discrete map: this is the “true” Poincaré map of
the controlled wedge billiard, without the small angle
approximation.

0 5 10 15 20 25
−3.5

−3

−2.5

−2

−1.5

−1

V
r
 (left arm)

0 5 10 15 20 25

3.25

3.3

3.35

|V
n
| (left arm)

Fig. 4. Time evolution of the discrete variablesVr andVn

Figure 5 illustrates the trace of the trajectories.

−0.3 −0.2 −0.1 0 0.1 0.2 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6
Release point

Fig. 5. Trace of the trajectories
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VII. C ONCLUSION

This paper has presented preliminary stabilization results
for periodic orbits of the controlled wedge billiard, a model
that generalizes the planar juggler model of Buehler and
Koditschek and that we view as an interesting benchmark
for impact control stabilization problems. The stabilization of
periodic orbits of the square wedge billiard has been shown
equivalent to the stabilization of two impact oscillators (or
1D bouncing balls) with a prescribed phase shift, leading
to simple and robust feedback laws with large basins of
attraction.
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APPENDIX

Flight mapF1

The flight timetc between two impacts on the same edge
is the (positive) solution of the equation :

∫ tc

0

Vn(τ)dτ = 0

which is found to be

tc =
2
g
Vn(0)

Integrating once Newton’s equations then yields

Vn(tc) = −Vn(0)
Vr(tc) = Vr(0)− 2Vn(0)

which is the flight mapF1.

Flight mapF2

The flight timetc is the (positive) solution of the equation :
∫ tc

0

Vn(τ)dτ + N(0) = 0 (17)

whereN(0) = n(0)
sin θ and n(.) is the component of the ball

position relative toen. The solution is :

tc = −Vn(0)
g

+
1
g

√
Vn(0)2 − 2gN(0)

Integrating once Newton’s equations gives at timetc :

Vn(tc) = Vn(0) + gtc (18)

=
√

Vn(0)2 − 2gN(0) (19)

Vr(tc) = Vr(0)− gtc (20)

Equation (4) is obtained by summing (18) and (20) while
Equation (4) is obtained from (19) and the energy relation:

−2gN(0) = 4E(0)− 2
1 + α2

(Vp(0)2 + α2Vq(0)2) (21)

where Vp and Vq are the tangential and normal (scaled)
components of the velocity in the frame attached to the edge
impacted at time0.


