Stabilization of periodic orbits in a wedge billiard
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Abstract—This paper introduces a stabilization problem for  control. Starting with the pioneering work of Raibert and
an elementary impact control system in the plane. The rich coworkers [12], the robotics community has nevertheless
dynamical properties of the wedge billiard, combined to the 546 dramatic advances over the last 15 years in building
relevan_ce of the associated s_tablllzathn problem for feedback | d robots. Much of thi h has f d h-
control issues in legged robotics make it a valuable benchmark egge robots. Muc 0_ IS researc a§ oc.use on mec
for energy-based stabilization of impact control systems. anisms that can sustain stable locomotion in the absence
of actuation. Less research has been devoted to the “active
- control” of these mechanisms, that is the design of control
gling. laws that stabilize an otherwise unstable motion, with the

notable exception of the work of Buehler, Koditschek and
|. INTRODUCTION coworkers who pioneered the active stabilization of juggling

This paper is concerned with the stabilization of periodienachines [4, 13, 14, 5] . Buehler's planar juggler model is
orbits in the “wedge billiard” (or “planar juggler”) illustrated in fact the wedge billiard studied in the present paper for
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in Figure 1. the particular anglé = 90 deg. The mirror law algorithm
proposed in [4] has been tested experimentally with much
l g success. In spite of its simplicity, a rigorous theoretical
e e, analysis of its stabilizing properties has apparently been
| ’”\/‘ elusive and originally motivated the present work. The design

! of stabilizing feedback laws for Buehler planar juggler has

also been considered by Lynch [9] and by Brogliato and
| coworkers [19].

[ The stabilization problem considered in this paper is the

simplest impact control problem beyond its one-dimensional

Fig. 1. The wedge billiard version: the celebrated bouncing ball or line-juggler model,

extensively studied in the literature (see for instance [7,

, , .19, 3, 2]). Considering the two-dimensional wedge billiard
A point mass (ball) moves in the plane under the actiofqqyces few additional complexity in the model but raises

of a constant gravitational field. The ball undergoes elastigjjiation questions that are more directly connected to the
collisions with two intersecting edges, an idealization of the, o etical issues encountered in legged robotics and rhyth-
Juggler’s_ two arms. m the ab;enc_e of contrQI, the two ?dgqﬁic tasks control. Most notably, the presence of a variety of
form a fixed anglé with the direction of gravity. Depending | ns¢apleperiodic orbits in the uncontrolled model and the
on the angl®, this conservative system exhibits a variety Ok, . that the stabilization of one particular periodic orbit can

dynamical phenomena, including an abundance of unstai@ \jiewed as a preliminary step towards the stabilization of

periodic orbits. Rotational actuation of the edges around theérjuggling “oattern”, i.e. several balls stabilized on the same

fixed intersection point is used to stabilize one particular OrbEeriodic orbit with a certain phase shift between them.

of the uncontrolled system. The stabilization of periodic orbits through impact control

We view the wedge billiard stabilization as an interestig a4 rally rephrased as the fixed point discrete-time sta-

ing example for theore;ical investigatiqns of impact C,Omrobilization of the corresponding Poinéamap. Stabilization
problems encountered in legged robotics. The dynamics agdl he planar juggler therefore leads to the stabilization of

cont_rol study of such mechanlsm_s IS re_:ndered difficult b}_ﬁ three-dimensional discrete-time nonlinear system. The re-
the inherently underactuated and intermittent nature of thell,iing model is nevertheless nonlinear and non-affine in the
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From an implementation viewpoint, the stabilization ofthe discrete-time state will denote post-impact values, that is
the discrete-time Poincamap is only a preliminary step in z[k] = 2™ (¢[k]).
the impact control stabilization problem. It indeed provideset (e,, ¢,,) an orthonormal frame attached to the fixed point
a discrete-time feedback law that prescribes the values ©f with e, aligned with the impacted edge. Letdenote the
the control variables (edge angular position and velocity) agosition of the ball (unit mass point) and= v,e, + v,e,,
impact times based on the state of the ball at impact timeis velocity. The total energy of the ball is
But the discrete control law must eventually be converted 1
into a continuous-time control law for the actuated edges E=-(w+vl)—<rg> (¢D)]
such as to make them produce the right discrete control 2 B
values at impact times. Likewise, various continuous-timé&ollowing [8], we use the state variablés = 2=, V,, =
measurements can be integrated to produce a faithful reg=; and E, the discrete state vector being
construction of the discrete states. These implementation

issues are of importance for the robustness of the control V,f;(t[k])
law. They also raise important open questions such as the wlk] = V,Zr(t[k])
minimal feedback information required to stabilize a given ET(t[k])

periodic orbit. Of particular relevance for legged locomotion,, ihe absence of control. each edge forms an afglith the

is the possibility to achieve stabilization in the absence Qjertical, i.e. the direction of the constant gravitational field
any feedback measurement (open-loop control) or by using The giscrete control vecta[k] consists of the angular
the impact times as sole feedback information (rhythm'ﬁeviationu(t[k]) of the impacted edge at impact timé]

feedback). _ . . and its angular velocity:(t[k]). It is assumed that the edge
Billiards have always been important objects in the studig not affected by the impacts, i.6: (t[k]) = i (¢[k]).

of dynamical systems. Beyond its relevance for robotighe discrete wedge-billiard map is the composition of a

applications, the (uncontrolled) wedge billiard is a ”Ch(parabolic) flight map and an impact rule.

dynamical model leading to stabilization problems of variougpe flight map integrates the continuous-time equation of

relationship to self-gravitating systems in one dimension (the

motion of N parallel sheets with uniform mass density). It x~ (t[k]) = Fi(x[k — 1], ulk — 1], plk]) 2

was realized in this work and subsequent studies [17, 10] that ) ) _
the wedge billiard displays a variety of dynamical phenomenhh€ impact map expresses post-impact variables as a (static)
as a function of the anglé. For 6 < 45°, the phase space Map of pre-impact variables and control in the form

exhibits stable and chaotic behavior associated with periodic _ _

orbits of any period. Ford > 45°, the motion appears olk] = Fa(a™ (¢[k]), ulk]) (3)
completely chaotic. The value = 45° is very special and
leads to a completely integrable system with a two-parametgje first review the derivation of the uncontrolled billiard
family of unstable periodic orbits. The stabilization resultsya, ([8]). The flight map is then entirely determined by the
of the present paper focus on this particular case whiGleqge geometry, that is by the parameter= tan6. As

is simpler than the general case but illustrates most of thgown in appendix, the flight map takes the analytical form
relevant issues of the problem.

JT
The paper is organized as follows. In Section 2, we derive a1
dynamical model of the controlled wedge billiard. In Section V., (tk+1]) = =V,[K]
3, we study the periodic orbits of the uncontrolled square Vo (t[k + 1)) V. [k] — 2|V, [K]|
wedge billiard, that is the particular cage= 45°. Stabiliza- (E-(tk+1)) = E[k])
tion control laws for this square billiard are then proposed in
Section 4, using momentum control only, and in Section Syhen the impact& andk 4 1 occur on the same edge, and
using position control only. The mirror-law implementationthe analytical form?;
of the proposed control laws is briefly discussed in Section

6. Vi (tlk+1))° = 4B[K + % ([VaK]| = V2 [k]) =V ]
Ve (tle+1]) = [Valk]] = Vi[k] = [V, (t[k + 1])] Q)
Il. THE CONTROLLED WEDGE BILLIARD MODEL (E~(tfk+1) = E[k])

Periodic orbits of the four-dimensional wedge biIIiardWhen the impacts& andk + 1 occur on two different edges
dynamics will be studied via the three-dimensional discret&ahe mapF |ps applied as long as the condition ges.
1

(Poincag) map relating the state from one impact to the
next one. The discrete-state vector, natgl, will consist of 29y[k+1] = 2E[k]—V.2[k] sin® 60— (V, [k]— 2|V, [k]])? cos® 6 > 0
continuous-time variables(t) evaluated at impact timgk].

Because the continuous-time variables can be discontinuogdulfilled. Otherwise, the magF; is applied. This condition

at impact times, we use the notation (¢[k]) for pre-impact restricts the ball to impact above the intersection of the edges.
values andr ™ (¢[k]) for post-impact values. As a convention,The impact ruleZ adopted in this paper simply assumes



that the tangential velocity is conserved and that the normblote that (7) reduces to (6) when= 0.

velocity is reversed : Our simplified model neglects the displacement of the impact
VER) = V(K] point due to the angular deviatign but retains its “deflect-
r oy 5) ing” effect on the velocity variables. Composing the flight
VAR = =V lk) © / e e disen

mapsFi, F» and the impact rule (7), one obtains the discrete
Collisions are thus perfectly elastic (leaving the energgontrolled billiard map

conserved in the absence of control). The uncontrolled
wedge billiard map is the composition of the flight maps < “//T[[iiﬂ ) = J(u) ( Vr[k]_;f[%"[k” >

Fi1,Fo and of the impact rul€.
2 —R[k + 1]asin .
We now examine how control of the edges modifies +- [ } )l +1] (8)
) ) o R[k + 1] cos p
the flight map and the impact rule. The angular momentum _
control /i[k] has no effect on the wedge geometry. As 4or impactsk andk + 1 on the same edge, and the discrete
consequence, it leaves the flight map unchanged and orfigntrolled billiard map3

modifies the impact rule as ( Vilk +1] ) . < VK| = Vilk] — fu[H] )
ViHGIR) = ~Vi (1K) + S ROBDACER) — (6) Valk 1 Silklsign(Valk])
2 ( — asin .
with R(¢[k]) = “ULD obtained from the energy equation (1). +- ( g[[;]:i 11}] cos uu ) filk +1] 9)

cos 6 o
In contrast, the angular position contrgl(¢[k]) does for impactsk andk + 1 on different edges, with
not affect the impact rule but modifies the flight map. To

avoid the complication of computing a new flight map, J(p) = M(—p) ( (1) —01 )M(M)
we introduce a simplification that leaves the flight map .
unchanged and captures the effect of the angular position = < Cs?fgzlf‘ asin 2y )
control in a modified impact map. This simplification rests & Tcos2u
on the small control assumption and

<< — a2

" filk] = \/4E[k]+21a22(an[k]l — Vi [k))* = V2[K]

and neglects the displacement of the impact point due to (1+a?)

the angular deviationu[k]. As illustrated on Figure 2, this 114 energy update is
simplification amounts to assume that the impacts still occur

on the uncontrolled wedge but that the angular contfél 1=E 1 o’ 112 - v- 112
rotates the normal and tangential directions of the impacteg[k 1] = Bk + 21+ o? (V”[k A=Vl 1] ) +
edge by an angle|k]. 1 1
- - 2y - 2
21+a2(mk+1} V. [k +1))

The analytical model (8)-(9) is exact when= 0 and is a
good approximation of the controlled billiard under the small
control assumptiofu| << 6.

This simplified model is suitable for the analysis and design
of stabilizing control laws of various periodic orbits of the
uncontrolled billiard.

This will be illustrated in the next section for the special case

Fig. 2. The controlled wedge billiard (left) and a simplified model wheny, = 1 (or 0= 450)_
w is small (right)

With this simplification, the flight maps,, 7, remain the lIl. THE SQUARE WEDGE BILLIARD
flight maps of the uncontrolled billiard whereas the impact The squared = 1) elastic wedge billiard is a very special
rule 7 becomes case of the general wedge billiard. Its analysis is of interest
M( )( VT (t[k]) ) B ( 1 0 )M( ( V.~ (t[k]) ) both because of its simplicity and because it possesses a two-
" = 1 ) + . L . .
Vi (¢[k]) 0 parameter family of periodic orbits. As will be shown, all
( 0 > A(tk)) 7) these orbits are open-loop unstable, making the stabilization
S R(t[K]) non trivial even though stabilization will be achieved with
arbitrarily small control.
The reason why the analysis of the square wedge billiard
M(p) = < cosp  asinpu ) is considerably simplified is that in the absence of control,
H —2RE cosp the 2 DOF motion decouples into two 1 DOF independent

[e%

with M (u) denoting the matrix



. Period-two orbit

motions : in the (fixed) framée, , e,) attached to the wedge, N\

the dynamics of the mass point= z,e; + z2e, satisfies /o
V2

fo= 5

() = 0=af({t)=—-z;(t),i=1,2
which directly yields the discrete map
Vilki +1] = Vi[ki]
tlk; +1] = tlk]+ %VZ[/Q}

of an elastic bouncing ball or impact oscillator. Each solution.

. ) . o . 230 rI1|g. 3. Anillustration of the period-one and period-two orbits of the square
of the impact oscillator is periodic of periodl; = =5+  wedge billiard.

where v/, denotes the (constant) impact velocjty;|. The
periodic orbits of the square wedge billiard satisfy

Ty = qT», q € IN. In the rest of the paper, we only considerln the next two sections, it is implicitly assumed that impacts
the case; = 1. Such periodic orbits correspond to alternatingflternate on both billiard edges. This assumption is only
impacts on the two billiard edges. They are therefore fixetade for simplicity and will be removed in the final version

points of the mag3!, 1 > 1, wherel is the total number of of the paper.

impacts during one period.

The simplification of the ma@ whena = 1 comes from
the property

Vi [k+2]| = filk+1] = VAE[k + 1] — V. [k + 1]2 = |V, [K]|

IV. ENERGY-BASED STABILIZATION OF THE SQUARE
BILLIARD

A very simple control strategy for the square billiard is
which renders the mags linear in the coordinate/[k] = to imposeu = 0 and to use angular momentum feedback
(Vi [E], [Va B [ Valk = 1)) control of each edge. Adding-control to the maph? and

. using the coordinate®[k], V., [k], V,.[k—1]) yields the model

with ¢k +2] = o[kl + 2 ([Valk]| - [Valk —1]|)
i (—1 1 —1) Volk+2] = V[]+2R[k:+2] [k +2] (12)
B 0 0 1 Volk+1] = Vu[k—1]4+2R[k+ 1]k + 1]
0 1 0

) _ The equilibrium characterized BY),| = Vo>0,0<¢=
Fixed points of the magB are of the formZ = (0,V,,,V,,). ¢ < 2Y. is made asymptotically stable with the feedback
They characterize a one-parameter fqrpily of periodic orbitsontrol law

parametrized by their total enerdy = —‘2" . k = ky <
- . - ,u[k 2] g(tn[k] in) R ((b[k] })

- _ 13

All these period-one orbits are unstable becalisdas an ok + 1] E2 (Vi k — 1] + V) (13)

eigenvalue of (algebraic) multiplicity 2 on the unit circle.
_ . . ~ L Exponential stability of the Jacobian Ilnearlzatlon |s ensured

Fixed points of the mag* are of the formZ = (V;, Vi,, V). with mild conditions0 < kp < 1 and0 < k; < =2 on

They characterize a two-parameter famlly of periodic orbitge (adimensional) design parametégs and k;.

parametrized by their total enerdy = - and the difference  The feedback control (13) has the standard structure of

Vi, — V.. All these period-2 orbits are also unstable. a proportional-integral control. With the interpretation of

the wedge billiard as two coupled impact oscillators, the
The factor Y2="= has the convenient interpretation ofproportional feedback assigns the energy of each oscillator

a phase shiftg[k] = t[k] — t[k — 1] between the two to a common energy leveV;? whereas the integral term
impact oscillators defining the billiard motion. This is aregulates the phase difference between the two oscillators.
consequence of the formula The simple structure of the control law (13) leads itself
. . to many variants that will be further analyzed in the final
Vilk] — |Vulk — 1]| = —g(t[k] — t[k — 1]) = —go[k] (10 ) : i : .
k] = [Val I 9(tlk] =4l ) 9olkl (10) version of the paper. Of particular interest are its low-gain
The phase variablé[k] thus satisfies property and its rhythmic nature.

9 The low-gain property of the control law is that the
ok +2] = ¢[k] + — (Vu[K][ — [Va[k = 1]))  (11) size of the basin of attraction and the gain margin of the
g _ controller are increased as the control paraméterand k;
and can be substituted to the varialbfein the mapBZ. are lowered. As a consequence, the basin of attraction of the
An illustration of the period-two orbits of the square wedgeiesired equilibrium can be made large and an arbitrarily low

V2

is given on Figure 3 for a given total energy= —3-. bound can be imposed on the magnitude of the conjrol



The rhythmic nature of the control law (13) is due to thewvhere 5(¢) is the angular deviation of the ball at time

time equation with respect to the equilibrium edge angle arlé| denotes

the state of the discrete-time impact system at impact
tk + 2] — t[k] = 2|V [%]| By definition, the impact will occur whenu(t) = 5(t),
g " producing the discrete-time control law

showing that the control law (13) can be rewritten as a Fo(z[n))

function that uses the sequence of impact tirtjé$ as sole pln+2) = 1— Fu(z[n])

feedback information.
and )

V. ENERGY-PRESERVING STABILIZATION OF THE SQUARE aln+2] = Fu(z[n])B™ (tn +2])

BILLIARD The mirror-law continuous-time implementation thus approx-
In the absence of angular momentum contfo(0), the  imates a discrete-time nominal desigh + 2] = F,(z[n])
controlled elastic wedge is conservative, the energy beinghd ji[n + 2] = F},(z[n]). The limited amplitude of¥, and
conserved both during flight and through impacts. At fixedhe gain margin of the (low-gain) nominal design make it

energyE, the square billiard has a one-parameter family ofobust to the proposed approximate implementation.
period-two orbits that are the fixed points of the map.

We consider the problem of stabilizing one of these
orbits using angular control actuation of one edge only. The The control law of Section 5 is now briefly illustrated by
controlled Poinca map on the actuated edge then writes asa simulation result. We choose to stabilize the periodic orbit

SIMULATION RESULTS

Vlk + 2] Viu[K] characterized by,,| = V11 m/s, V,, = —1.7m/s. The initial
( Volk + 2] ) = M(2p) ( Vi [k] — 2|V [k]| + 2¢/4E — V2[k] ) condition is chosen ag,[0] = —|V,,[0]| = —3.25 m/s ,which

(14) ° roughly corresponds to an initial vertical drop of the ball.
Except for the valué/. = 0 at which the linearized system is Figure 4 compares the time evolution of the discrete variables
not stabilizable, local asymptotic stability of the equilibriumV,, andV,. under the action of the energy-preserving control
characterized by, = V2FE, —v2E <V, =V, <+/2Fis (15). The control law is compared in two different models:

achieved with the linear low-gain feedback 1) approximate discrete map: this is the discrete map (14)
ulk+2] = —esign(V,.) (Vi [k] = Vi) —esign(Vy,) (Vi [k] = Vi), e > 0 used fo_r the derlvatlon. of the control |aV\.IS,.

(15) 2) exact discrete map: this is the “true” Poinganap of
wheree > 0 is a small control parameter. Lowering the gain the controlled wedge billiard, without the small angle
e > 0 results in a larger basin of attraction. Furthermore, approximation.
the control law (15) can be saturated at an arbitrarily small e
constant magnitudgz > 0 to validate the small angle I e S S
assumption of the controlled model.

The square billiard model stabilized with angular control
only is an elementary example of a conservative mechanical

system which exhibits an asymptotically stable steady motion i = S =
even though it lacks dissipation. Such mechanical systems are
typically associated with nonholonomic constraints. Authors e
have previously observed that this situation also arises in

piecewise holonomisystems, that is, mechanical systems ﬁf

that are smooth and holonomic except at discrete instants of

impacts [15, 6]. As noted in these references, such systems ° : g e ® &
can be thought of as nonholonomically constrained in their ~ Fig. 4. Time evolution of the discrete variablé$ and Vi,
overall motion in the sense that their configuration space fsigure 5 illustrates the trace of the trajectories.
greater than the instantaneous dimension of their velocity
space.

IV, (left arm)

0.6

Release point

VI. MIRROR LAW IMPLEMENTATION

To be implemented in a mechanical setup, the discrete-time
control laws designed for the discrete-time impact model
must be converted into continuous-time reference trajectories
for the actuated edges.

Assuming a real-time measurement of the ball position,
the mirror-law strategy proposed by Buehler and Koditschek
[4] is a clever way to do so and is easily adapted to the
present framework: after impagthas occurred at timgn],
the impacted edge is given the reference trajectory

p(t) = Fy(z[n])B(t) + Fu(xz[n]), tln] <t < tn+2] (16) Fig. 5. Trace of the trajectories




VII. CONCLUSION [14] , Further progress in robot juggling: The spatial

This paper has presented preliminary stabilization results ~ WO-juggle IEEE International Conference on Robotics
for periodic orbits of the controlled wedge billiard, a model _ @nd Automation (Atlanta, GA), 1993, pp. 3:919-924.
that generalizes the planar juggler model of Buehler arld>] A- Ruina, Nonholonomic aspects of piecewise holo-
Koditschek and that we view as an interesting benchmark ~NOMiC systemsreports on Matehmatical Physi2
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equivalent to the stabilization of two impact oscillators (or __ tve nonlinear contrgl Spinger-Verlag, 1997.
1D bouncing balls) with a prescribed phase shift, leadingt?] T- Szeredi and D.A. Gooding€lassical and quantum
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attraction. Physical Review E18 (1993), no. 5, 3518-3528.
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