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Abstract—This paper deals with an improved use of phasor 

measurements. In particular, the paper focuses on the 
development of a technique for estimation of generator rotor 
angle and speed, based on phasor measurement units, for 
transient stability assessment and control in real-time. Two multi-
layered feed-forward artificial neural networks are used for this 
purpose. One for the estimation of rotor angle and another for the 
estimation of rotor speed. The validation has been made by 
simulation in a power system because techniques for the direct 
measurement were not available. Results obtained with the help 
of a simple one machine to infinite bus system are presented and 
compared against those obtained using analytical formulas 
derived from the generator classical model.  
 

Index Terms—Artificial Neural Networks, Phasor 
Measurement Units, Security Assessment, Transient stability, 
Estimation. 

I.  INTRODUCTION 
ower system security assessment consists of evaluating the 
ability of the system to face various disturbances and of 

proposing appropriate remedial actions able to counter its 
main weaknesses, whenever deemed necessary [1]. Power 
system security covers a wide range of aspects, usually 
subdivided into static and dynamic phenomena. Power system 
stability currently refers to the “dynamic” part of security. The 
rotor angle and speed of the synchronous generator are the 
most important reference quantities in power system dynamic 
security assessment and control. As economic considerations 
continue to demand the operation of power systems closer to 
their stability limits, there is an increasing need for reliable 
and accurate means to determine limiting operating conditions. 
There are obvious differences between the real-time stability 
prediction problem and offline stability assessment. In 
conventional offline transient stability assessments, the critical 
clearing time (CCT) is to be found; in the prediction problem, 
the CCT is not of interest. Instead, one can monitor the 
progress of the transient in real-time thanks to the technique of 
phasor measurements [2].  

The current and potential applications of Phasor 
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Measurement Units (PMUs) have been well documented in 
[2,3,4]. An emerging application of this technology is to track 
the state of the system immediately following a transient event 
to select an appropriate remedial control action. One such real-
time control strategy is already being implemented at Florida-
Georgia interface [5] and others are currently under 
development [6,7]. A possible use of PMU measurements can 
be made to predict a developing transient and initiating 
important relays, or other control actions such as generation 
tripping [8], load shedding [9], and FACTS devices [7,10]. 

A fuzzy hyper-rectangular composite neural network, which 
utilizes real-time phasor angle measurements to provide fast 
transient stability prediction, is presented in [3,11]. In [12] two 
methods for solving the real-time prediction problem are 
presented, solving the model forward in time in order to 
predict future behavior and solving the model faster than real- 
time if computational resources permit. 

Both methodologies [11,12] rely on so called classical 
generator model to infer rotor angles from phasor 
measurements and numerical computation of the rotor speeds. 
The discussion attached to [12] raised very important issue of 
accurate synthesis of rotor angles from phasor measurements 
obtained by a PMU placed at extra high voltage (EHV) side of 
step-up transformer.  

In this paper, the use of artificial neural networks (ANN) to 
estimate rotor angles and speeds based on real-time phasor 
measurements, is presented. First the technology of phasor 
measurements and reasons to estimate rotor angles and speeds, 
are introduced. Then we present the development of the neural 
networks for angle and speed estimation. Simulation results, 
obtained using simple one machine to infinite bus system, are 
shown to illustrate the validity of the proposed methodology. 

II.  WHY TO ESTIMATE ROTOR ANGLES AND SPEEDS FROM 
PHASOR MEASUREMENTS 

PMUs are power system devices that provide measurements 
of real-time phasors of bus voltage and line currents. A 
number of PMUs are already installed in several utilities 
around the world for various applications such as monitoring, 
control, protection, and state estimation. The capabilities of a 
PMU are illustrated in Fig. 1. The measurement set is 
composed of  the bus  voltage  magnitude BV  and angle Bθ , 
as well as the line and injection currents magnitude and angles 
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Fig. 1 Phasor  measurements from a PMU 

 
The important engineering observations are: 

• The rotor angles and speeds of the synchronous 
generators are the most important quantities in power 
system transient stability assessment and control. 

• PMU measured quantities are electrical variables that 
may experience fast changes unlike rotor angle which is 
a mechanical variable. PMU measured quantities can 
experience discontinuity under switching in the 
electrical network. 

• Wrong or noisy rotor angles and speeds may result in 
wrong transient stability prediction and wrong 
determination of control actions. 

The simplest way to compute rotor angles from phasor 
measurements is to rely on the classical generator model and 
relate phasors to reactances (step-up transformer, generator) to 
get rotor angles [11,12],  

 

tIttVt IjXVE θθδ ∠−∠=∠ '' ,      (1) 
 

where 'E  is the constant voltage, tV  is generator terminal 
voltage, 'X  transient reactance, and tI  generator terminal 
current. Having calculated rotor angles at different time 
instants the rotor speed can be approximated as, 
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All these provided that MV (medium voltage) generator 
voltage and current phasors are available. In more general 
situations phasor measurements are not taken directly from 
generator buses. In this case, for algebraic relation of 
measured voltages mV  and the generator (internal) voltages 
and currents, the reduced admittance matrix busY  can be solved 
for the generator internal voltages, 
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where mV  are the measured voltages, gV  are the generator 

internal voltages and gI  are the generator internal currents. 
 A simple manipulation gives, 
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This can be solved for the generator voltages by least 
squares. An important observation is that the simple relations 
(1,2,3,4) require a priori knowledge of system parameters or 
reduced admittance matrix whose entries may experience 
changes due to factors influencing it and reliable system 
parameter identification may be required. In addition, 
extremely rapid acquisition of breakers status, that is topology 
changes, is required (incidence matrices are necessary for 
building admittance matrix). 

Of course, one can rely on more detailed generator model 
aiming to improved accuracy but this would require a proper 
machine parameter identification. 

One more problem may arise and obstacle phasor 
measurements from providing a real picture of rotor angles; 
the lack of direct measurements of the plant auxiliaries. 

To make better use of PMUs it is necessary to cope with the 
aspects identified above.  

PMUs are mainly placed at EHV network buses. For the 
purpose of the methodology considered in this paper we 
suppose that a PMU is located at EHV side of step-up 
transformer. One reason is the facts mentioned above, and the 
second one is that the direct measurements of selected states 
are faster than extracting the same states from the system state 
estimator. 

The rotor angle is a nonlinear function of the machine 
terminal variables and the main idea is to employ a pattern 
recognition scheme to map the patterns of inputs (terminal 
variables measured by a PMU) to the required rotor angle. 
This mapping can be represented by  
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where { } [ ]Tvkkkkkk t1tI1tVtItVu )...(),(),(),(),( θ−−= at any 
instant  k  , and n  depends on the number of input variables 
as well as number of previous measurements used. 

To realize the mapping of the machine terminal variables 
measured by a PMU to the rotor angle we use the multi-layer 
feed-forward ANN. Multi-layer feed-forward ANNs with back 
propagation supervised learning have several advantages over 
conventional computing methods. Those advantages are 
robustness to input and system noise, learning from examples, 
ability to memorize, handling situations of incomplete 
information and corrupted data, and performing in real-time. 

III.  ARTIFICIAL NEURAL NETWORKS 
An ANN is characterized by its architecture, training or 

learning algorithms and activation functions. The architecture 
describes the connections between the neurons. It consists of 
an input layer, an output layer and generally, one or more 
hidden layers in-between. Fig. 2 illustrates one of the 
commonly used networks, namely, the layered feed-forward 
ANN with one hidden layer. The layers in these networks are 
interconnected by communication links that are associated 
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with weights that dictate the effect on the information passing 
through them. These weights are determined by the learning 
algorithm.  
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Fig. 2 A typical layered feed-forward neural network with one hidden 
layer. 

 

The output of node j  in the hidden layer is given by 
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and the output of  the network by 
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where jiw  are the weights connecting the inputs to node j  in 

the hidden layer, jb  is the bias to the node, and iwo  are the 

weights from the hidden to the output layer. 
Depending on the learning algorithm the ANNs can be 

categorized as: 
• Fixed Weight ANNs: these do not need any kind of 

learning. 
• Unsupervised ANNs: These networks are trained 

(weights are adjusted) based on input data only. The 
networks learn to adapt using experience gained from 
previous input. 

• Supervised ANNs: These are the most commonly 
used ANNs. In these networks, the system makes use 
of both input and output data. The weights and biases 
are updated for every set of input/output data. The 
Multi-Layer Perceptron (MLP) falls into this 
category. 

The activation function relates the output of a neuron to its 
input based on the neuron’s input activity level. Some of the 
commonly used functions include: the threshold, piece-wise 
linear, sigmoid, tangent hyperbolic, and the Gaussian function 
[13]. The learning process of the MLP network involves using 
the input-output data to determine the weights and biases. One 
of the techniques used to obtain these parameters is the back- 
 

propagation algorithm [13,14]. In this method, the weights and 
biases are adjusted iteratively to achieve a minimum mean 
square error between the network output and target value.  

MLPs are the most widely used ANNs in applications. They 
have been used mainly for pattern recognition, control, 
classification, etc. The steps for engineering applications are: 

• Step 1: Input selection – Feature extraction: this is 
the first step in any pattern recognition problem. It 
has a direct effect on the performance and size of the 
ANN. 

• Step 2: Training data: The training data are 
obviously crucial. 

• Step 3: Selection of ANN: Size – How many inputs, 
hidden neurons, hidden layers, etc? 

• Step 4: Training  of ANN 
• Step 5: Tests 

There are two different ways in which this algorithm can 
be implemented: incremental mode and batch mode. In the 
incremental mode the weights and biases are updated after 
each input is applied to the network. In the batch mode the 
weights and biases of the network are updated only after the 
entire training set has been applied to the network. The 
batch mode is used in this paper. 

IV.  DEVELOPMENT OF THE NEURAL NETWORKS FOR ROTOR 
ANGLE AND SPEED ESTIMATION 

The purpose of the ANNs is to estimate the rotor angle and 
speed of a synchronous machine using voltage and current 
measurements, which are obtained by PMUs. We have trained 
two different neural networks: one to estimate the rotor angle 
(ANN1) and another to estimate the rotor speed (ANN2). 

A.  Input selection 
The inputs to the neural network ANN1 are the voltage, 

current, angle of voltage and angle of current at the EHV bus, 
at time instants t , 1t −  and 2t − , totaling 12 inputs. The 
output of the neural network model consists of one neuron 
representing the rotor angle for a specific operating condition, 
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where )(tv  and )(ti  are the positive sequence terminal 
voltage and current at the time t , )( 1tv − , )2( −tv , )( 1ti −  
and )( 2ti −  are the voltage and current at the time 1t −  and 

2t − , vθ  and iθ  are the voltage and current angles at the 
same time instants.  

On the other hand, for ANN2 we use the same inputs as 
with ANN1, with three inputs added, the rotor angle obtained 
from the output of ANN1 at time instants t , 1t −  and 2t − . 
For this reason the number of inputs for ANN2 is 15. The 
output of the ANN2 consists of one neuron representing the 
rotor speed as illustrated in Fig. 3. 
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Fig. 3 Arrangement of the ANNs for angle and speed estimation 

B.  Selection of ANN 
The ANNs used are of the multi-layer feed-forward type, 

with one hidden layer. Fig. 4 represents the multi-layer feed-
forward network used for the purpose of this paper.  
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Fig. 4 Proposed layered feed-forward ANN model for rotor angle estimation 
 

The number of units in the hidden layer is determined 
experimentally, from  studying the  network  behavior  during 
the  training  process taking into consideration some factors 
like convergence rate, error criteria, etc. In this regard, 
different configurations were tested and the best suitable 
configuration was selected based on the accuracy level 
required. The number of hidden units for the ANN1 is 40 and 
the number of hidden units for ANN2 is 35. Tangent 
hyperbolic activation function is used for these units, while 
linear activation function is used for output neurons for borh of 
ANNs . The neural networks were trained off-line. 

V.  SIMULATION RESULTS 
Configuration of a single machine to infinite bus power 

system is given in Fig. 5 where a synchronous machine is 
connected to the infinite bus through two parallel transmission 
lines. This system is very helpful in understanding transient 
stability basic effects and concepts [15,16].  

A.  Simulations, training, and testing 
The Neural Network Toolbox from MATLAB [14] 

software  tool  was  used  to create,  train and test the  neural 
networks. The training algorithm used is the Levenberg-
Marquard algorithm because it provides fast convergence [14]. 
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Fig. 5 One Machine to Infinite Bus system 

 

The initial weights as well as the initial biases employed 
random values between 0-1. The inputs and targets are 
normalized so that they have values between –1 and 1. A 
power system may be subjected to different kind of 
disturbances. It is impossible to use all the responses of the 
teaching system under different disturbances as the training 
set. The contingencies represented are three-phase short circuit 
at beginning of the line L2 or at the end of the same line near 
to infinite bus. 

All the three-phase faults were applied at 0.1 sec. The faults 
were released either by self-clearance or tripping the faulted 
line. This is common practice in stability studies. All the 
disturbances were applied to different generation levels [1100, 
850, 600, 500, and 300 MW]. The training data uses 180 
patterns, each containing 80 input-output pairs (in average). 
Total number of input-output pairs is equal to 14400. To test 
the neural networks 60 unseen patterns are used. Generation of 
the data for training and testing is summarized in Table I. For 
each short-circuit and generation level, 3 out of 9 patterns are 
with fault duration randomly chosen from interval [0.05,CCT-
0.01] ms, 3 from interval [CCT-0.01,CCT+0.01] ms, and 3  
from  interval  [CCT+0.01,0.35] ms.  
 

TABLE I 
GENERATION OF TRAINING AND TESTING DATA 

 

 Training Testing 
Self-clearing fault Tripping the line Self-clearing fault Tripping the line Gen. 

Level 
(MW) 

Beg.  
Of L2 

End of 
L2 

Beg. 
Of L2 

End of 
L2 

Beg. Of 
L2 

End of 
L2 

Beg. 
Of L2 

End of 
L2 

1100 9 9 9 9 3 3 3 3 
850 9 9 9 9 3 3 3 3 
600 9 9 9 9 3 3 3 3 
500 9 9 9 9 3 3 3 3 
300 9 9 9 9 3 3 3 3 

 

Testing patterns consist of one pattern from all three, above 
mentioned, intervals that are not used in training. All real-time 
environments exhibit some level of noise from 
instrumentation. The effects of noise on the response of the 
system are assessed by randomly perturbing the inputs 
(additive noise uniformly distributed in the range [-0.02,0.02]) 
to the neural networks. The noise is added to voltage and 
current magnitude, only. First the ANN1 is trained and tested, 
according to the procedure descried above, then the same 
training and testing patterns are used with the ANN2. 

To generate the ANNs training and validation data sets, the 
MATLAB/ SIMULINK software tool [14,17] is used. Also, 
using this simulation tool the values of voltage and current 
phasors to compute the rotor angle and speed using the 
generator classical model, were obtained. The sampling 
interval in the simulations is taken equal to 20 ms (every cycle 
of fundamental frequency, this is reasonable value in view of 



 5

the fact that modern PMUs are capable to provide the 
measurements every 1-5 cycles [10]). In our simulations a 
detailed (seventh-order) model of the generator, is used.  

B.  Results 
As a measure of performance, the root mean square error 

defined as 

∑ −=
p

2
pp ot

p
1RMSE )( ,                          (9) 

 

is determined for each of two ANNs after 1000 iterations of 
the training rule. In (9), p  represents the number of input-
output training pairs, pt  is the target output for the thp −  

training, po  is the output of the ANN. The RMSEs for 

training and testing are given in Table II. For the comparison, 
the RMSEs obtained using the classical generator model for all 
three presented cases are given in Table III (in equation (9) 
target output is replaced by exact angle and speed values and 
the output of the ANN with the values obtained using the 
classical generator model). 
 

TABLE II 
ROOT  MEAN SQUARE  ERROR  AFTER 1000 ITERATIONS 

 
ANN Training error Testing error 

ANN1 0.0020 (rad.) 0.0092 (rad.) 
ANN2 0.0004 (rad./s) 0.0024 (rad./s) 

 
TABLE III 

ROOT  MEAN SQUARE  ERROR  FOR THE CLASSICAL GENERATOR MODEL 
 

 Stable  Unstable Critically stable 
Angle (rad) 0.1307 0.1607 0.1803 

Speed (rad/s) 0.6004 0.9576 0.6988 
 

Results obtained for three cases (stable, critically stable, 
and unstable) are presented and compared against the 
computation of the variables based on the classical generator 
model. Only the results obtained in the simulations that include 
the noise in the input variables are included in this paper. All 
three presented cases correspond to the faults at the beginning 
of the line L2 released by opening the faulted line. CCT is 
equal to 0.292 seconds for this particular fault.  If the fault 
duration is less than the CCT, the system response is stable. 
The evolution of rotor angles and speeds (exact, estimated, 
and obtained based on classical generator model) are 
illustrated in Fig. 6 and 7. As the exact values of the rotor 
angles and speeds are considered those extracted directly from 
the simulation model. 

An unstable system response (fault duration greater than the 
CCT) is illustrated in Fig. 8 and 9. When the fault duration is 
equal to the CCT system becomes critically stable. Fig. 10 and 
11 represent the variables evolution for this case.  

Observe from Fig. 6, 8 and 10 that much better tracking of 
the rotor angle was obtained by its estimation using the 
proposed methodology than if we rely on the classical 
generator model and simple algebraic relations (1,2). Presence 
of the noise in measured variables results in slightly harsh 
aspect  of  rotor angle calculated by (1). Rather harsh aspect  

in rotor  speed  is observable in all presented system responses 
if analytical formulas (1,2) derived from the classical 
generator  model  are used. The harsh aspects in rotor angle 
and speed are much less observable in the estimation  using the 
ANNs.  If  the  level of  accuracy,  in   transient   stability   

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.5

1

1.5

2

2.5

time (sec)

ro
to

r a
ng

le
 δ

 (r
ad

)

e xac t          
c lass ical mode l
ANN1           

 
 

Fig. 6 Rotor angle  (stable case) 
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Fig. 7 Rotor speed (stable case) 
 

0 0 . 1 0 . 2 0 .3 0 .4 0 . 5 0 . 6 0 .7
0 .5

1

1 .5

2

2 .5

3

3 .5

t im e  (s e c )

ro
to

r a
ng

le
 δ

 (r
ad

)

e x a c t           
c la s s ic a l  m o d e l
A N N 1            

 
 

Fig. 8 Rotor angle (unstable case) 
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Fig. 9 Rotor speed (unstable case) 
 

assessment  and   control,  is high  then  observed errors in the 
computation of the variables using (1,2) can result in wrong 
prediction  and  control  actions   determination. The results 
clearly indicate that the ANN-based approach to estimate rotor 
angles and speeds from phasor measurements, has potential to 
be useful in tracking transient behavior of a power system 
following a disturbance. 
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Fig. 10. Rotor angle (critically stable case) 
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Fig. 11 Rotor speed (critically stable case) 

C.  Remarks 
In this paper, an important question of improved use of the 

measurements available form PMUs for accurate and reliable 
dynamic security assessment and control is examined. The 
primary objective of the paper is to highlight potential of using 
ANNs for this purpose. 

Presented results are preliminary in view of the fact that 
some practical aspects are not considered. Although identified 
as a source of uncertainties the lack of direct measurements of 
plant auxiliaries is not considered. In addition, different 
measurement rates from PMUs should be examined (more than 
every cycle of fundamental frequency as used in this paper). 
Selection of input variables is not justified in this paper. 
Further work will be carried out on the selection of input 
variables, modeling of PMUs, and all the mentioned aspects 
not included in this paper. Despite of the high accuracy of 
available PMUs there is other equipment “in the loop”, such as 
voltage and current transformers, that may introduce errors 
and added noise in the simulations mimics these errors. 

VI.  CONCLUSIONS 
The use of the ANNs to estimate synchronous machine 

rotor angles and speeds from phasor measurements, is 
presented in this paper. The proposed approach includes two 
ANNs, one to estimate rotor angle and another, that include 
estimated angle as the input signal, to estimate rotor speed. 
Results obtained with help of a simple one machine to infinite 
bus system are presented and compared to those obtained 
using the classical generator model and simple algebraic 
relation of phasor measurements to rotor angles and speeds. 
Presented system responses (stable, critically stable, and 
unstable) indicate that the proposed approach outperforms the 
approach based on classical generator model. Ongoing process 
of restructuring electric power industry will increase need for 

reliable and accurate transient stability assessment and control. 
The use of ANNs for this purpose offers attractive way to cope 
with these new requirements. Further work will be carried out 
by using real PMUs coupled with a power system simulator, 
on investigating influence of plant auxiliaries, and estimating 
center of angles and speeds of a individual power plant 
comprising more generating units. Further work will be 
directed by aims defined within the EXaMINE project [7]. 
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