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Abstract:  This paper describes the on-going work done by 
Hydro-Québec to optimize the settings of automatic devices 
installed in its main power plants to maintain secure operation under 
extreme contingencies.  The automatic generator tripping and load 
shedding system (RPTC) described in this paper is installed at the 
Churchill Falls hydroelectric power plant (5500 MW) in Labrador.  
Data mining techniques like decision trees (DT) and regression trees 
(RT) have been used.  Real time snapshots of the Hydro-Québec 
power system collected over a 5 year period have been used to 
generate large amounts of results by transient stability simulations.  
The processing of these data has been done using software 
developed by the University of Liege.  This approach gives the most 
relevant parameters and finds optimal settings for the RPTC system, 
minimizing the number of tripped generator units while maintaining 
the same performance in terms of security coverage.  New operation 
rules can thus be established. 

 

1 INTRODUCTION 

 
Operating criteria at Hydro-Québec[1] ensure that the 

transmission network can support normal contingencies 
(Table 1) without interruption of electricity and without any 
assistance of Special Protection Systems (SPS).  This set of 
contingencies is used to determine the secure power transfer 
limits.  They comply with the Northeast Power Coordinating 
Council (NPCC) criteria. 

  
In addition to these requirements, Hydro-Québec has 

judged that it is also important for the system to be stable 
after certain extreme contingencies (Table 1)[2].  The system 
stability is maintained by a scheme of generator tripping and 
load shedding, called RPTC, such that transfer limits are not 
affected.  Figure 1 and Figure 2 give an overview of the basic 
structure and the general operation of the RPTC system.  
Figure 1 illustrates RPTC systems distributed in fifteen 735 

                                                           
   
 
 
 
 
 
 
 
 
 
 

kV substations of the Hydro-Québec system.  The 
subsystems in a same corridor (or main axis) are combined 
into an independent group.  There are a total o
shown in dark shaded areas in Figure 1.  Each group of 
RPTC systems performs, associated with independent Special 
Protection Systems, the generation tripping scheme at one 
particular generation site while the remote load shedding 
function is centralized.  Figure 2 displays the functional 
diagram of RPTC.  The RPTC system detects the loss of lines 
(LOD) or the bypass of series compensation banks (SCB) on 
the transmission network.  According to the severity and 
location of the extreme contingencies, the Contingency 
Classification Unit (CCU) sends the information initiating the 
generation tripping, the remote load shedding and the 
tripping of shunt reactors if required. 

 

Table 1: Normal contingencies and extreme contingencies

Three phase fault with normal clearing 
Single line to ground fault with delayed clearing
Breaker fault with normal clearing 
Loss of a bipolar dc line 
Loss of double-circuit line 
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Loss of any element without fault 
Single line to ground fault with loss of two series or parallel 
735 kV line 
Loss of all 735 kV lines emanating from a substation 
Loss of all lines in a corridor 
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Loss of two parallel 735 kV lines and bypass of all series 
capacitors on the remaining line in the same corridor

 
The tuning of this Special Protection System (SPS) is 

complex: the proper level of generation tripping and load 
shedding must be programmed. There are many 
configurations to cover and the number of contingencies is 
large. Conventionally, the settings of these RPTC systems 
were calculated using deterministic techniques, which only 
cover the worst-case scenarios.  Thus, these settings may not 
be optimized with respect to the number of units to be 
tripped.  A probabilistic approach applied to this type of 
study seems to be particularly interesting.  

 
The study described in this paper covers the RPTC system 

installed at the Churchill Falls hydroelectric power plant 
(5500 MW) in Labrador.  The purpose of this study is to 
optimize the settings of generation tripping on a particular 
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event.  In order to extract useful information from the 
database and to cover a sufficiently diverse set of situations, a 
large amount of data cases were retrieved from the database 
where real time power system snapshots are stored.  Various 
network states were simulated using the power system 
analysis software developed by the Hydro-Québec Research 
Institute (IREQ).  These cases represent actual operating 
states collected over a 5-year period.  By using the data 
mining technique [3]-[6], the most relevant parameters for 
this automatic device will be identified and effective settings 
will be determined. 

 
Figure 1: RPTC system 

 

2 DETAILED DESCRIPTION OF RPTC AT 
CHURCHILL FALLS 

 
The event used for this study is detected by the RPTC at 

the Churchill Falls and is particularly severe for the network.  
The following describes the disturbances: 
 

o Single line to ground fault at the Churchill Falls 
substation; 

o Tripping of two parallel lines between the Churchill 
Falls and Montagnais substations; 

o Bypass of the series compensation bank of the 
remaining line in the same corridor. 

 
After detection of the event by the CCU system, generation 

tripping and load shedding are initiated.  To ensure network 

security and to avoid an unnecessary generation tripping, the 
number of generation units associated with the generation 
tripping scheme is adjusted to the loading and the 
configuration of the Churchill Falls – Arnaud corridor (North 
Shore indicated in Figure 1).  Table 2 presents the results 
(rules) of the conventional approach.  The margin represents 
the difference between the maximum power transfer 
considering normal contingencies and the measured power 
transfer.  The table gives the number of units to be tripped 
based on the margin.  For example, if the margin is 400 MW 
and less, then tripping of 8 units is required.  If the margin is 
above 2001 MW, then no unit tripping is required.

 

Figure 2: Functional diagram of RPTC 

 

Table 2:  Generator Unit Tripping Scheme 

Modulation: 3 links at the Churchill Falls 
Margin At Churchill Falls: Units to be tripped 

400 MW and less 8 
401 to 700 MW 7 
701 to 1000 MW 6 
1001 to 1200 MW 5 
1201 to 1400 MW 4 
1401 to 1600 MW 3 
1601 to 1800 MW 2 
1801 to 2000 MW 1 

2001 MW and more 0 
 

In this study, a method of analysis based on the 
probabilistic approach will permit: 
 

o To establish the coverage of the current rules;
o To establish the most sensitive variable

the network stability for this extreme event;
o To optimize the current rules; 
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o To suggest an algorithm to modulate the number of 
generation units to trip. 

 
The methodology used is as follows: 

 
o Extraction of 10 000 network cases spread over a 

period of 5 years; 
o Filtering of those cases to select only topologies 

with 3 links between Churchill Falls and 
Montagnais; 

o Creation of each case with a random fault duration 
and a random time of bypassing a capacitor; 

o Simulations to find the minimum number of units to 
be tripped to ensure system stability after this event; 

o Optimization of the number of units to be tripped 
with a decision tree. 

 

3 DATABASE GENERATION 

 

3.1 Methods for data base generation 
 

The statistical approach used in this work requires the 
processing of a very large quantity of results generated by 
numerous scenario simulations.  Each scenario is composed 
of a power flow snapshot of the network with the 
disturbances described in section 2.  The simulations have a 
10 second time frame and are performed on a PC network 
using a transient stability program (Hydro-Québec ST600 
program).  The approach has to generate pessimistic 
scenarios in order to cover adequately the critical situations 
where the RPTC automatic device operates with a good 
variance on the critical parameters and variables. 

 
Two approaches have been envisioned: 

 
o In the first approach, the generation of scenarios is 

done from a limited number of load flow base cases 
corresponding to real operating situations. These 
cases are then modified according to certain rules 
and the corresponding scenarios are simulated in 
order to create many critical situations for the RPTC 
system.  

o In the second approach, the scenarios are generated 
from snapshots of real operating cases taken 
periodically over a long period of time (years) and 
disturbances critical for the RPTC system are 
simulated. 

 
Particular care has to be taken in the generation process to 

avoid overrepresentation of non-relevant cases.  
 
The results from the first approach are biased due to the 

overrepresentation of critical situations with in fact very low 
probability.  This could be corrected only if probability data 
are available on disturbances and/or operating conditions.  

Therefore, the second approach, which has been retained in 
this work, seems more appropriate due to the fact that all 
operating cases used are real. 

  

3.2 Data generation program 
 

As shown in Figure 3, an extraction and a conversion of 
data is first accomplished.  The data conversion is needed to 
allow simulations of power system real snapshots stored in 
the control center database. 

 
For this task, CILEX [7] software is used.  This 

Québec in-house software is widely used to 
snapshots for planning and operation planning engineers.
 
 
 

 
 Power system snapshots, 1997-2001 

CILEX 
Extraction and Conversion

 
 10000 cases converted 

 
 4600 cases remaining 

pDATA
• Filter: load flow converge

3 lines at Churchill Falls
• Modify disturbance to incorporate

some probabilistic variables
• Determine the minimum number of 

generator units tripped for stability

 13000 stability simulations performed 
 236 pre-selected variables 
500 hours CPU time (650 MHz PC) 

Data Mining: 
• New rules for RPTC system
• Identify important variables

ST600 (stability) 

Figure 3: Data Generation Program 

 
A control software (pData) was developed to filter 

snapshot cases in order to keep just the relevant
(cleaning process).  For each filtered case, pData software 
builds the disturbance to be simulated as a function of the 
peculiarities of the studied case.  

 
 In this process, pData associates a random value to certain 

parameters of the disturbance in order to take into account the 
effects of these variations on the results.  These parameters 
are the fault clearing time corresponding to the line re
time (breaker operation) and the series compensation by
time.  

 
From transient stability simulations (Hydro-Québec ST600 

program), pData determines, for each case, the minimum 
number of units to be tripped by an iterative procedure while 
respecting security criteria. 

 
Finally, pData extracts results and saves some engineering 

pre-selected relevant parameters, which will be used for data 
mining analysis.   
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3.3 Data coverage period and size of data case generated 
 

From the 10000 extracted and converted snapshots, pData 
filter rejected more than half of the cases were, either because 
the resulting configuration did not have 3 lines connecting at 
Churchill Falls or data errors caused load flow non-
convergence.  In the remaining 4600 cases, 13000 load flow 
and transient stability simulations were run to find the 
minimum number of units to be tripped.  The total simulation 
duration of the 13000 cases is in the range of 500 CPU hours 
on a 650 MHz PC. 
 

4 DATA MINING 

 

4.1 Data mining techniques 
 

Data mining refers to the extraction of high-level synthetic 
information (knowledge) from databases containing large 
amounts of low-level data.  It is also called Knowledge 
Discovery in Databases (KDD).  Data mining has received a 
wide range of applications in recent decades, for example in 
medical diagnosis, in character recognition, as well as in 
financial and marketing problems.  The main reason for the 
important breakthrough is the tremendous increase in 
computing power.  This makes possible the application of the 
often very computationally intensive data mining algorithms 
to practical large-scale problems.  Nowadays, data mining 
techniques are also used in solving power system problems 
such as security assessment [3]-[5].  

Table 3: Statistical Data of Unnecessary Tripped units 
from the Generated Database 

Number Of Cases Over-tripping # Of 
Units 
to Trip With 

Current 
Rules 

Of Matched 
Tripping 

With 
Over-
tripping 

# of 
Units 

Average 
per case 

Rate 
(%) 

8 2130 205 1925 5643 2.65 33 
7 647 93 554 1818 2.81 40 
6 626 15 611 2288 3.65 61 
5 135 0 135 625 4.62 93 
4 278 0 278 1047 3.77 94 
3 159 0 159 477 3 100 
2 157 0 157 314 2 100 
1 58 0 58 58 1 100 
0 370 370 0 0 0 0 

Total 4560 683 3877 12270 2.69 44 
 
Data mining involves an integration of techniques from 

multiple disciplines such as database technology, statistics, 
machine learning, high-performance computing, pattern 
recognition, neural networks and so on.  Many methods have 
been developed in the field of data mining.  Here, this paper 
is focused on using the decision tree type methodology to 
optimize RPTC system settings for generator tripping in 
emergency control at Hydro-Québec.   

4.2 Decision (regression) trees 
 

A decision tree (DT) is a map of the reasoning process. 
This data mining technique is able to produce classifiers 
about a given problem in order to deduce information for 
new, unobserved cases.  The DT has the hierarchical form of 
a tree structured upside-down and is built on the basis of a 
Learning Set (LS).  The LS comprises a number of cases 
(objects).  Each case consists of pre-classified operating 
states (described by a certain number of parameters called 
candidate attributes), along with its correct classification 
(called the goal attribute).  The candidate attributes 
characterize the pre-disturbance operating points in terms o
parameters which can be used to make decisions.  The tree 
building process seeks to build a set of rules relating these 
attributes to the goal attribute, so as to fit the learning set data 
well enough without over-fitting this data.  The resulting tree 
is tested on a different data set (test set) where the prediction 
of the goal attribute by these rules is compared with the true 
class (determined by simulation) for each test case.  The 
classification error rate for the test set measures if the method 
is successful or not. 

 
There are many reasons to use decision trees.  The first is 

their interpretability.  A tree structure provides the 
information of how an output is arrived at.  Another very 
important asset is the ability of the method to identify among 
the candidate attributes the most relevant parameters for each 
problem.  A last characteristic of decision trees is its 
computational efficiency.  The particular decision/regression 
tree induction method used in this paper is described in 
details in [8]. 
 

5 RESULTS 
 

5.1 Correlation studies 
 
Using the generated database, correlation studies were 

performed.  Figure 4 shows the correlation of transfer and 
transfer margin on the Churchill Falls corridor vs minimum 
generator unit tripping as determined by the time
simulations.  The dashed horizontal line in Figure 
for example, that the currently used-rules require to trip 8 
units if the transfer margin on the Churchill Falls corridor is 
less than 400 MW (see Table 2).  From the generated 
database (4560 cases), there are about 2130 cases (see 
3) in which the current rules require 8 units to be trip
actually, we can see from Figure 4 that if the transfer on the 
Churchill Falls corridor is less than 3300 MW (dashed 
vertical line), there is no need to trip generator units at all.  If 
we count the number of cases for which the time domain 
simulations found that it is necessary to trip 8 units, we find 
only 205 cases.  Thus, among the 2130 cases for which the 
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Figure 4: Correlation of Transfer and Margin at Churchill Falls Corridor

current rules tell us to trip 8 units, there are 1925 cases which 
need less than eight (down to zero) unit tripping.  More 
synthetically, if we count among these 2130 cases the 
difference between the number of units required to trip by the 
current rules and the actual number of units necessary to be 
tripped according to the simulations,  it  is  found   that  33% 
of  generator units (5643 units) are unnecessarily tripped 
with the currently used 8 units tripping rules. 

 
Table 3 shows some other statistical data from the 

generated database.  It can be observed that among 4560 
cases the average of generator units over-tripped is about 
2.69 per case and 44% of generator units are over-tripped.   
From this, it can be seen that the current rules are highly 
conservative and could possibly be improved by taking into 
account not only the margin but also the total power transfer 
through the Churchill Falls corridor in their formulation. 

 

5.2 Applying a 5200 MW limit 
 

Table 2 takes into account the transfer margin  (maximum 
transfer minus measured transfer on the Churchill Falls 
corridors) to determine the number of units to be tripped.  
The maximum transfer considers many network 
configurations (lines, series compensation, synchronous 
condenser) as well as circuit breaker configurations, but 

circuit breaker configurations have no impact on the transfer 
limit for the event used in this study.  Therefore, the margins 
used in Table 2 are very conservative.  To quickly verify the 
impact of removing this restriction on the number of groups 
tripped in excess, we have rebuilt the table by taking into 
account a margin computed on a maximum transfer, which is 
5200 MW.  The obtained results are surprising:  it reduces 
over-tripping to an average value of 1.72 per case (
from 2.69 with the current rules.  However, this new table 
cannot be used as it is because it doesn't take into account 
certain network configurations having an impact on the event 
studied here.  For these cases, the number of groups assigned 
to the tripping is not enough to maintain stable operation.
 

5.3 Regression tree 
 

Constructions of regression trees were carried out on 
generated database using data mining software ATDIDT 
developed at the University of Liege.  Among 4560 objects 
(cases), 2000 objects were selected as a learning set and the 
remaining 2560 objects were comprised as a test set.  The 
goal is to predict the minimum number of generator 
be tripped.  Figure 5 Shows a constructed regression tree.  
The tree is to read top-down:  each internal node corresponds 
to a test on one of the candidate attributes and the terminal 
nodes correspond to decisions about the number of units to be

400 MW 

3300 MW 
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Figure 5:  Regression Tree to Predict Number of Generator Unit Tripping 

 
tripped.  These nodes are sorted left to right by increasing 
number of units to be tripped.  For example the left-most 
terminal node  (denoted T4) corresponds to 630 cases for 
which the expected number of units to be tripped is 0.04921.  
A case will be directed to this node if T_CHU_MONT < 
3912.5 MW.  On the other hand, the right-most terminal node 
(denoted T42) corresponds to an expected number of units to 
be tripped of 6.92, for the conditions of T_CHU_MONT > 
4754.5 MW and KV_CHU735 > 739.5 KV.   The parameter 
T_CHU_MONT represents the transfer on the Churchill Fall 
Corridors and KV_CHU735 is the voltage at the Churchill 
Falls. 

Table 4: Average of Over-tripped Units per Case 

Methods Used Average 
Current Rules 2.69 
Margin Based on 5200 MW limits 1.72 
Combination of Transfer and Margin 1.48 
Regression Tree with Post-processing 1.01 
 
Notice that among the 236 candidate attributes proposed to 

the tree building software, only 7 attributes were identified as 
important variables to decide on the number of units to be 
tripped.  Notice also that in order to translate the rules 
provided by the tree into decision rules it is obviously 
necessary to convert the fractional predictions into integer 
numbers (e.g. by rounding up to the nearest larger integer 

value – ceiling function).   
 
By construction, the predictions of the regression tree are 

unbiased estimates of the true values; this means that their 
errors are both negative and positive. In practice, it may be 
preferable to have rules which have less negative errors (too 
few unit tripping – under-tripping) than positive ones (too 
many – over-tripping) because the cost of instability is much 
higher than the cost of unnecessarily tripping one or two more 
units.  Such a bias can be introduced as a post-processing of 
the regression tree output, for example by adding some 
positive constant to its predictions before rounding
nearest integer. 

 

5.4 Comparison of results 
 

Table 4 lists the average of over-tripped units per case.  
Although this value may not have a direct physical meaning, 
it is used here as an indication of the improvement of the 
different methods tested.  The first line of the table refers to 
the rules actually in use, and designed by the classical 
deterministic method.  The second line concerns the 
modification of these rules when a constant transfer limit of 
5200MW is used to compute the margin.  The third line gives 
the performance of another rule designed by hand from taking 
into account both margin and transfer limit.  Finally, the last 



 7 

line gives the results obtained by rules of a post-processing of 
the regression tree of Figure 5.  This post-processing consists 
in adding a positive bias of 0.45 to the predictions of the tree 
and round up to the nearest integer (ceiling function).  It can 
be seen that the regression tree has the least average value of 
over-tripped generator units per case.  This means that if the 
regression tree rules are implemented, the number of 
generator unit tripping will be closest to their minimum 
among all other methods. 

 
Figure 6 shows the frequency diagram of mis-tripped 

generator units for different methods.  The term of “mis-
tripped” unit is defined as the difference between simulated 
optimal unit tripping and non-simulated unit tripping.  A 
positive value means generator units are over-tripped while 
negative value means under-tripped.  The distribution of mis-
tripped units by the current rules is widely spread while that 
of the regression tree is concentrated.  In most cases, the 
regression tree gives one generator unit over-tripping while 
the current rules sometimes gives 8 generator units over-
tripping.  The reason that the regression tree mis-tripping is 
concentrated around one is, as mentioned previously, that the 
post-processing is applied to the regression tree of Figure 5.  
This post-processing adds a positive value of 0.45 to the 
predictions of the tree before applying the ceiling function in 
order to eliminate most of the generator unit under-tripping.  
Therefore, it appears that in most cases the regression tree 
settles on one generator unit over-tripping.  The results from 
the regression tree are very promising, but more efforts have 
to be made to assess whether the risk of under-tripping is 
acceptable (with respect to other risks not taken into account 
in our study), and if not, to eliminate the few remaining cases 
of under-tripping. 

 

6 CONCLUSIONS 

 
The study described in this paper covers the RPTC 

automatic device installed at the Churchill Falls hydroelectric 
power station (5500 MW) in Labrador.  The data mining 
technique was applied to the results of some 13000 network 
simulations.  Various network states were taken from a real-
time database and were simulated using the network analysis 
software developed by Hydro-Québec Research Institute 
(IREQ). The data cases represent actual operating states 
collected over a 5-year period.  By using the data mining 
technique, the most relevant parameters for this automat were 
identified and effective settings were determined. 

 
A correlation analysis and the construction of regression 

trees were carried out on the results of these simulations using 
data mining software developed at the University of Liege.  
This analysis made it possible to minimize, in particular, the 
number of generators tripped by the RPTC system for a large 
number of network conditions, while maintaining the same 

performance in terms of security coverage.  New operation 
rules can thus be established and will be implemented.

 
Following these very encouraging results, other 

applications of these methods are being considered at Hydro
Québec in the coming years. 
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Figure 6:  Comparison of Results of Different Methods
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