Pattern Extraction for Time Series Classification

Pierre Geurts |

University of Liege, Department of Electrical and Computer Engineering
Institut Montefiore, Sart-Tilman B28, B4000 Liége, Belgium
geurts@montefiore.ulg.ac.be
tResearch fellow, FNRS

Abstract. In this paper, we propose some new tools to allow machine
learning classifiers to cope with time series data. We first argue that
many time-series classification problems can be solved by detecting and
combining local properties or patterns in time series. Then, a technique
is proposed to find patterns which are useful for classification. These
patterns are combined to build interpretable classification rules. Exper-
iments, carried out on several artificial and real problems, highlight the
interest of the approach both in terms of interpretability and accuracy
of the induced classifiers.

1 Introduction

Nowadays, machine learning algorithms are becoming very mature and well un-
derstood. Unfortunately, most of the existing algorithms (if not all) are dedicated
to simple data (numerical or symbolic) and are not adapted to exploit relation-
ships among attributes (such as for example geometric or temporal structures).
Yet, a lot of problems would be solved easily if we could take into account such
relationships, e.g. temporal signals classification. While a laborious application
of existing techniques will give satisfying results in many cases (our experiments
confirm this), we believe that a lot of improvement could be gained by design-
ing specific algorithms, at least in terms of interpretability and simplicity of the
model, but probably also in terms of accuracy.

In this paper, the problem of time signals classification is tackled by means
of the extraction of discriminative patterns from temporal signals. It is assumed
that classification could be done by combining in a more or less complex way
such patterns. For the aim of interpretability, decision trees are used as pat-
tern combiners. The first section formally defines the problem of multivariate
time-series classification and gives some examples of problems. Related work in
the machine learning community is discussed here as well. In the next section,
we experiment with two “naive” sets of features, often used as first means to
handle time series with traditional algorithms. The third section is devoted to
the description of our algorithm which is based on pattern extraction. The last
section presents experiments with this method. Finally, we conclude with some
comments and future work directions.

L. De Raedt and A. Siebes (Eds.): PKDD 2001, LNAI 2168, pp. 115-127, 2001.
@ Springer-Verlag Berlin Heidelberg 2001

116 P. Geurts

2 The (multivariate) time-series classification problem

2.1 Definition of the problem
The time series classification problem is defined by the following elements:

— A universe U of objects representing dynamic system trajectories or scenar-
ios. Each object!, o, is observed for some finite period of time [0, ts(0)]%.

— Objects are described by a certain number of temporal candidate attributes
which are functions of object and time, thus defined on U X [0, +oo[. We
denote by a(o,t) the value of the attribute a at time ¢ for the object o.

— Each object is furthermore classified into one class, c(o) € {c1,...,cp }-

Given a random sample LS of objects from the universe, the goal of the ma-
chine learning algorithm is to find a function f (o) which is as close as possible to
the true classification ¢(o0). This function should depend only on attribute values
(not on object), ie. f(0o) = f(a(o,.)) where a denotes the vector of attributes.
The classification also should not depend on absolute time values. A consequence
of this latter property is that the model should be able to classify every scenario
whatever its duration of observation.

Note that alternative problems should also be addressed. For example, in
[7], a temporal detection problem is defined where the goal is to find a function
f(o,t) of object and time which can detect as soon as possible scenarios of a
given class from past and present attribute values only.

Temporal attributes have been defined here as continuous functions of time.
However, in practice, signals need to be sampled for representation in computer
memory. So, in fact, each scenario is described by the following sequence of
vectors: (a(o,(0)),a(0,t1(0)), -..,a(o0,t,(0))) where t;(0) = i - At(o) and i =
0,1,---,n(0). The number of time samples, n(o), may be object dependent.

2.2 Description of some problems

The possible application domains for time series classification are numerous:
speech recognition, medical signal analysis, recognition of gestures, intrusion
detection... In spite of this, it is difficult to find datasets which can be used to
validate new methods. In this paper, we use three problems for evaluation. The
first two datasets are artificial problems used by several researchers in the same
context. The last one is a real problem of speech recognition.

Control chart (CC) This dataset was proposed in [1] to validate clustering
techniques and used in [2] for classification. Objects are described by one tempo-
ral attribute and classified into one of six possible classes (see [1] or [2] for more
details). The dataset we use was obtained from the UCI KDD Archive [3] and
contains 100 objects of each class. FEach time series is defined by 60 time points.

! In what follows, we will use indifferently the terms scenario and object to denote an
element of U.
2 Without loss of generality we assume start time of scenario being always 0.

Pattern Extraction for Time Series Classification 117

Cylinder-Bell-Funnel (CBF) This problem was first introduced in [12] and
then used in [11, 8, 2] for validation. The goal is to separate three classes of object:
cylinder(c), bell(b) and funnel(f). Each object is described by one temporal
attribute given by:

(6 + 77) ' X[a,b](t) + G(t) if C(O) =¢,
a0, t) = (6+n) - X[a,p)(t) - (t — a) /(b= a) + €(t) if c(0) = b,
(6 +1) - Xja,p(t) - (b—1)/(b—a) + €(t) if c(o0) = f,

where ¢ € [1,128] and x[q,4)(t) = 1 if a < ¢ < b, 0 otherwise.

In the original problem, 1 and €(t) are drawn from a standard normal dis-
tribution N(0,1), a is an integer drawn uniformly from [16,32] and b — a is an
integer drawn uniformly from [32,96]. Figure 1 shows an example of each class.
As in [11], we generate 266 examples for each class using a time step of 1 (i.e.
128 time points per object).

Cylinder Bell Funnel

o
GXe) Il v 50. Tool ' Al 150. 200 250. 300. 350. 400,

Fig. 1. An example of each class from the CBF dataset

This dataset attempts to catch some typical properties of time domain.
Hence, the start time of events, a, is significantly randomized from one object to
another. As we will argue later that our algorithm can cope with such temporal
shifting of events, we generate another version of the same datasets by further
emphasizing the temporal shifting. This time, a is drawn from [0,64] and b — a
is drawn from [32,64]. We will call this dataset CBF-tr (for “CBF translated”).

Japanese vowels (JV) This dataset is also available in the UCI KDD Archive
and was built by Kudo et al. [10] to validate their multidimensional curve clas-
sification system. The dataset records 640 time series corresponding to the suc-
cessive utterance of two Japanese vowels by nine male speakers. Each object is
described by 12 temporal attributes corresponding to 12 LPC spectrum coeffi-
cients. Each signal is represented in memory by between 7 to 29 time points. The
goal of machine learning is to identify the correct speaker from this description.

2.3 Related work in machine learning

Several machine learning approaches have been developed recently to solve the
time series classification problem. Manganaris [11] for example constructs piece-
wise polynomial models for univariate signals and then extracts features from

118 P. Geurts

this representation for classification. Kadous [8] extracts parameterized events
from signals. These events are clustered in the parameters space and the re-
sulting prototypes are used as a basis for creating classifiers. Kudo et al. [10]
transforms multivariate signals into binary vectors. Each element of this vector
corresponds to one rectangular region of the space value-time and tells if the
signal passes through this region. A method of their own, subclass, builds rules
from these binary vectors. Gonzales et al. [2] extends (boosted) ILP systems
with predicates that are suited for the task of time series classification.

All these approaches share some common characteristics. First, authors are
all interested in getting interpretable rules more than in accuracy. We will give
a justification for that in the next section. Second, they use some discretization
techniques to reduce the search spaces for rules (from simple discretization to
piecewise modeling or clustering). All of them extract rules which depend on
absolute time value. This makes difficult the detection of properties which may
occur at variable time position and can be a serious limitation to solve some
problems (for example the CBF-tr problem). The technique we propose does
not have this drawback.

3 Experiments with naive sampling and classical methods

Before starting with dedicated approaches for time series classification, it is
interesting to see what can be done with classical machine learning algorithms
and a naive approach to feature selection. To this end, experiments were carried
out with two very simple sets of features:

— Sampled values of the time series at equally spaced instants. To handle time
series of different durations, time instants are taken relative to the duration
of the scenario. More precisely, if n is the number of time instants to take
into account, each temporal attribute a gives rise to n scalar attributes given
by: ao,t(0)=17), i =0,1,---,n — 1.

— Segmentation (also proposed in [8]). The time axis of each scenario is di-
vided into n equal-length segments and the average value of each temporal

attribute along these segments are taken as attributes.

The two approaches give n - m scalar attributes from m temporal ones. Note
that while the first approach is fully independent of time, the second one takes
into account the temporal ordering of values to compute their average and so is
doing some noise filtering.

These two sets of attributes have been tried on the three problems described
in section 2.2 as inputs to three different learning algorithms: decision tree (the
particular algorithm we used is described in [13]), decision tree boosting [5] and
the one-nearest neighbor. Results in terms of error rates are summarized in Table
1 for increasing value of n. They were obtained by ten-fold cross-validation for
the first three problems and by validation on an independent test set of size 370
for the last one® (JV). The best result is boldfaced in every row.

3 This division was suggested by the donors of this dataset [10]

Table 1. Results with simple sampling methods

Pattern Extraction for Time Series Classification

119

CC Number of steps
Sampling 3 5 10 30 60
DT |31.67 £ 4.94|17.00 £+ 4.40|11.67 £+ 4.08|8.17 + 3.53|6.83 + 2.29
Boosting |24.33 £+ 4.67(12.33 + 3.96| 5.17 &+ 3.20 (2.00 £+ 1.63|1.50 + 1.17
1-NN [31.00 + 4.72|17.00 £+ 3.14| 8.66 + 3.78 |1.50 + 1.38(1.83 + 1.38
Segment 3 5 10 30 60
DT 12.33 + 4.73(16.33 + 4.46/3.50 £ 2.52{7.50 £+ 2.50| 6.83 &+ 2.29
Boosting | 6.67 £+ 4.01 |11.83 + 5.45(1.50 + 1.38(2.00 + 2.08| 1.50 + 1.17
1-NN | 8.16 + 4.24 |12.00 £ 4.46/0.50 + 1.07({1.33 £+ 1.00| 1.83 £+ 1.38
CBF Number of steps
Sampling 8 16 32 64 128
DT |9.33 £ 3.35| 7.83 £ 3.42 |7.50 £ 2.61|7.33 £ 2.49| 9.83 £ 3.83
Boosting |6.50 £ 3.02| 4.00 £+ 2.00 |2.33 + 1.70|2.17 + 1.83| 3.50 + 2.17
1-NN |7.66 £+ 4.16| 3.83 &+ 2.24 (2.00 + 1.63| 1.33 £+ 1.63 [1.16 + 1.30
Segment 8 16 32 64 128
DT |4.67 £ 2.45|2.67 + 1.33(4.33 £ 2.38| 7.67 + 4.29 | 9.83 + 3.83
Boosting |3.17 + 1.57|0.67 = 1.11|1.67 £ 1.83| 2.17 £ 1.98 | 3.50 £ 2.17
1-NN |2.33 £ 2.00/0.50 £+ 0.76|0.50 + 1.07| 1.00 + 1.10 | 1.16 &+ 1.30
CBF-tr Number of steps
Sampling 8 16 32 64 128
DT [19.17 + 3.18|23.50 + 6.81{20.67 + 3.82| 21.67 + 3.80 |23.83 + 6.95
Boosting | 14.17 £ 3.52 [10.50 + 4.54| 6.67 £ 2.79 | 5.00 + 2.36 | 7.17 £ 3.58
1-NN | 19.33 + 3.89 [8.00 + 4.70 | 5.33 + 2.56 | 3.50 + 2.03 | 3.83 + 2.89
Segment 8 16 32 64 128
DT 14.17 + 5.34 |14.17 £ 4.55|12.83 £ 5.58|12.67 + 3.82(23.83 £ 6.95
Boosting | 12.67 £ 5.23 | 6.00 £+ 3.27 |4.17 £+ 1.86| 5.33 + 2.08 | 7.17 £ 3.58
1-NN | 12.00 £ 2.33 | 3.00 £+ 2.66 (1.66 + 1.82]| 2.66 £+ 1.52 | 3.83 &+ 2.89
JV Number of steps
Sampling| 2 3 5 7
DT 14.8614.59|19.46 [21.08
Boosting | 6.76 | 5.14 | 5.68 | 6.22
1-NN [3.24| 3.24 | 3.24 | 3.78
Segment | 1 2 3 4 5
DT 18.11|17.30 (12.97|19.46{17.03
Boosting | 9.46 | 7.84 | 6.76 | 6.76 | 6.22
1-NN |6.49 | 3.51 | 3.51 |3.78 |4.05

120 P. Geurts

There are several things to say about this experiment. There exists an opti-
mal value of n which corresponds to the best tradeoff between bias and variance
for each problem*. This optimal value could be automatically fixed by cross-
validation. Segmentation rather than simple sampling is highly beneficial on all
datasets except for the last one. The best error rates we get with this simple
approach are very good with respect to previously published results on these
problems (i.e. with dedicated temporal approaches). The best method is 1-NN
on all problems. Decision trees do not work well while boosting is very effective.
As boosting works mainly by reducing the variance of a classifier, the bad results
of decision trees may be attributed to a high variance. Furthermore, their inter-
pretability is also questionable because of the choice of attributes. Indeed, how
to understand for example a rule like “if a(0,32) < 2.549 and a(0,22) < 3.48
then ¢(o) = bell” which was induced from the CBF dataset? Although very
simple and accurate, this rule does not make obvious the temporal increase of
the signal peculiar to the bell class (see Figure 1).

One conclusion of this experiment is that very good results can be obtained
with simple feature sets but by sacrificing interpretability. This observation jus-
tifies the fact that most of the machine learning research on temporal data have
focused on interpretability rather than on accuracy.

4 Pattern extraction technique

Why are the approaches adopted in the previous section not very appropriate ?
First, even if the learning algorithm gives interpretable results, the model will
not be comprehensible anymore in terms of the temporal behavior of the system.
Second, some very simple and common temporal features are not easily repre-
sented as a function of such attributes. For example, consider a set of sequences
of n random numbers in [0, 1], {a1, a2, ...,an}, and classify a sequence into the
class ¢y if three consecutive numbers greater than 0.5 can be found in the se-
quence whatever the position. With a logical rule inducer (like decision trees)
and using ay, as,...,a, as input attributes, a way to represent such a classification
is the following rule: if (a; > 0.5 and a2 > 0.5 and ag > 0.5) or (a2 > 0.5 and
a3 > 0.5 and a4 > 0.5) or ... or (a,_» > 0.5 and a,_; > 0.5 and a, > 0.5)
then return class c¢;. Although the initial classification rule is very simple, the
induced rule has to be very complex. This representation difficulty will result in
a high variance of the resulting classifier and thus in poor accuracy. The use of
variance reduction techniques like boosting and bagging often will not be enough
to restore the accuracy and anyway will destroy interpretability.

In this paper, we propose to extend classifiers by allowing them to detect
local shift invariant properties or patterns in time-series (like the one used to
define the class ¢; in our example). The underlying hypothesis is that it is pos-
sible to classify a scenario by combining in a more or less complex way such
pattern detections. In what follows, we first define what patterns are and how

* for a comprehensive explanation of the bias/variance dilemna, see for example [13]

Pattern Extraction for Time Series Classification 121

to construct binary classification tests from them. Then, we propose to com-
bine these binary tests into decision trees. In this context, piecewise constant
modeling is proposed to reduce the search space for candidate patterns.

Pattern definition. A possible way to define a pattern is to use a limited
support reference signal and then say that the pattern is detected at a particular
position of a test signal if the distance between the reference signal and the test
signal at this position is less than a given threshold. In other words, denoting
by p(.) a signal defined on the interval [0,t,] and by a(.) a signal defined on the
interval [0,t,] with t, > t,, we would say that the pattern associated to p(.) is
detected in a(.) at time ' (t, <t <t,) if:

7

1
d(p(.),a(.),t') = . (p(t—t' +t,) — a(t))*dt < dp, (1)
p Jt—t,
where d, is the minimal allowed distance to the pattern (euclidian distance). A
binary classification rule may be constructed from this pattern by means of the
following test:

T(o) = True & 3t € [t,, t7(0)],: d(p(.),a(o,.),t') < d, @)
& L eghin) 4p()alo)) < dy (3)

where a is a temporal attribute.

Integration with decision trees. As we are mainly interested in interpretable
classifiers, the way we propose to combine these binary tests is to let them
appear as candidate tests during decision tree induction. Each step of decision
tree induction consists in evaluating a set of candidate tests and choosing the
one which yields the best score to split the node (see [13] for more details). In
the present context, candidate tests are all possible triplets (a, p,d,) where a is
a temporal candidate attribute.

Once we have chosen an attribute a and a pattern p, the value of d, which
realizes the best score may be computed similarly as the optimum discretization
threshold for numerical attribute. Indeed, test (3) is equivalent to a test on the
new numerical attribute a,(0) = mingy d(p(.),a(o,.),t').

The number of candidate patterns p(.) could be a priori huge. So, it is neces-
sary to reduce the search space for candidate patterns. A first idea is to construct
patterns from subsignals extracted from the signals appearing in the learning set
(each one corresponding to temporal attributes of objects). However, it is still
impossible in practice to consider every such subsignal as a candidate pattern.
Even assuming a discrete time representation for the datasets, this step will re-
main prohibitive (e.g. there are 8256 different subseries in a time series of 128
points). Also, patterns extracted from raw signals may be too complex or too
noisy for interpretation. The solution adopted here is to first represent the signal
by some piecewise model and then use the discontinuity points of this model to
define interesting patterns. By choosing the complexity of the model (the number
of time axis pieces), we are thus able to fix the number of patterns to consider.

122 P. Geurts

Fig. 2. Left, the regression tree modeling of a signal with 5 intervals. Right, the detec-
tion of a pattern extracted from this signal in another signal of the same class

Regression tree modeling. In this paper, a simple piecewise constant model
is computed for each signal. Regression trees are used to build recursively this
model. The exact algorithm is described in Table 2. It follows a best first strategy
for the expansion of the tree and the number of segments (or terminal nodes)
is fixed in advance. The discretization of an example signal in 5 segments is
reproduced in the left part of Figure 2.

From a discretized signal a(.), the set of candidate signals p(.) is defined as
follows:

P = {p(.) on [0,t; —t;]|t;,t; € D,t; < t;,p(t) = a(t; + 1)},

where D is the set of discontinuity points defined in Table 2. The size of this
set is n - (n + 1)/2 if n is the number of segments. The right part of Figure 2
shows a pattern extracted from the left signal and its minimal distance position
in another signal.

Node splitting for tree growing. So, candidate signals p(.) during node
splitting will be extracted from piecewise constant modeling of learning set time
series. Unfortunately, even with this discretization/segmentation, it will be in-
tractable to consider every subsignals in the learning set, especially when the
learning set is large. A simple solution to overcome this difficulty is to randomly
sample a subset of the scenarios from the learning set as references for defining
the subsequences. In our experiments, one scenario will be drawn from each class.
This further simplification should not be limitative because interesting patterns
are patterns typical of one class and these patterns (if they exist) will presum-
ably appear in every scenario of the class. Eventually, our final search algorithm
for candidate tests when splitting decision tree nodes is depicted in Table 3.

5 Experiments

We first experiment with the pattern extraction technique described in the pre-
vious section. Then, as a byproduct of regression tree modeling is a reduction of
the space needed to store the learning set, we further test its combination with
the nearest neighbor algorithm.

Pattern Extraction for Time Series Classification 123
Table 2. Discretization of time signals by regression trees

Let us denote by meany, ;,1(a(.)) and vary, :,1(a(.)) respectively the mean and the
variance of the signal a(.) on the interval [¢1, ¢2]:

1 t2
meany, 4,1(a(.)) = / a(t)dt
t1

to —t1

ta
vargs, 1) = t;tl / (a(t) — meany, +,;(a(.))) dt

To discretize a(.) on [t1,t2] with Npe, pieces:

1. set D = {ti1,t2}, the set of discontinuity points; set L = {[t1,%2]}, the set of
intervals; set a(t) = meany, t,1a(.) on [t1,ta], the model for a(.);

set Np = 1, the current number of time segments (pieces);

if Ny = Npnqo then stop and return a(.);

find [ti,¢;] in L such that (¢; — t;).vary, ¢+,1(a(.)) is maximal (best first strategy),
remove [t;, t;] from L,

find ¢* € [ti, t;] which maximizes the variance reduction:

S otk

Avar(t') = (t; — ti)vargs; +,1(a(.)) — (t" —ti)vary, 1(a(.)) — (5 — t*)var[t*,t].](a(.))

7. set a(t) = meany, t+1a(.) on [t;,t"] and G(t) = meany«; ja(.) on [t*, ;];
Np = Np + 1; add [t;,t*] and [¢*,¢;] to L; add ¢t* to D.
9. go to step 3

®

5.1 Decision tree with pattern extraction

Experiments have been carried out in exactly the same test conditions as in
section 3. For regression tree modeling, increasing values of the number of time
segments, N qz, were used (11 only for CC). Results are summarized in Table
4 and commented below.

Accuracy. On the first three datasets, the new method gives significant im-
provements with respect to decision tree (compare with table 1). As expected,
the gain in accuracy is especially impressive on the CBF-tr problem (from 12.67
to 2.33). This problem is also the only one where our temporal approach is better
than boosting with simple features. On JV, our approach does not improve ac-
curacy with respect to naive sampling. Several explanations are possible. First,
this is the only dataset with more than one attribute and our method is not able
to capture properties distributed on several signals. Second, there are 9 classes
and only 270 examples in this problem and the recursive partitioning of decision
tree is known to suffer in such conditions. Third, it seems also that the temporal
behavior is not very important in this problem, as 1-NN with only two values
(the start and end values of each attribute) gives the best results (3.24 %).
From this experiment, the optimal number of segments appears to be prob-
lem dependent. In practice, we would thus need a way to tune this parameter.
Besides cross-validation, various methods have been proposed to fix the number
of segments for piecewise modeling (for example, the MDL principle in [11]).

124 P. Geurts

Table 3. Search algorithm for candidate tests during tree growing

For each temporal attribute a, and for each class c:

— select an objet o of class ¢ from the current learning set,
— discretize the signal a(o,.) to obtain a(o, .)
— compute the set P of subsignals p(.) from a(o, t)
— for each signal p(.) € P

e compute the optimal threshold dp,

o if the score of this test is greater than the best score so far, retain the triplet

(a(.),p(.),dp) as the best current test.

Table 4. Results of decision tree with patterns

Number of pieces
DB 3 5 7 11
CC |2.33 £ 1.70(3.17 + 2.03| 3.33 + 2.58 |3.00 £+ 1.63
CBF | 4.00 £+ 2.71 (2.00 £+ 1.45|1.17 + 1.67
CBF-TR| 9.33 £+ 5.68 (3.83 + 2.24|2.33 + 1.33
JV 22.97 21.62 194

In our case, we could also take advantage of the pruning techniques (or stop-
splitting criteria) in the context of regression tree induction. We have still to
experiment with these methods.

Interpretability. By construction, the rules produced by our algorithm are
very readable. For example, a decision tree induced from 500 examples of the
CBF problem gives the very simple rules described visually at Figure 3. The
extracted patterns are confirmed by the definition of the problem. This decision
tree gives an error rate of 1.3% on the 298 remaining examples. For comparison,
a decision tree built from the mean values on 16 segments (the features set which
yields the best result in Table 1) contains 17 tests and gives an error rate of 4.6%.

5.2 Regression tree modeling with 1-NN

As the discretization by regression trees yields a compact version of the original
time-series, it would be interesting to combine it into a nearest neighbor classifier.
The main advantage will be a reduction of the space needed to memorize the
learning set. The algorithm proceeds as follows. First, all signals in the learning
set are discretized by regression trees using the same maximum number of pieces.
Then, the distance between a test object o and an object o’ of the learning set
is defined by:

1
min(ts(0),t5(0"))
So, discretized signals a;(o’, t) for learning set objects are compared to full signals

for test objects. To deal with objects which are defined on different intervals, we
simply truncate the longest one to the duration of the shortest one.

m /min(tf (0),ts(0"))
0

d(o,0') = (ai(o,t) — ai (o', t))%dt.

(4)

i=1

pl

p2

Pattern Extraction for Time Series Classification

p3

if p1 then funnel
else if p2 and p3 then bell

else if p2 and not p3 then funnel
otherwise cylinder

Fig. 3. classification rules for the CBF problems

Table 5. Results of 1-NN with regression tree modeling

Number of pieces

DB

1

3

5

7

11

CC
CBF
CBF-tr

38.83 + 9.40
46.17 £ 6.15
43.00 £ 5.57

0.50 £ 0.76
10.50 £ 2.69
23.00 £ 7.18

0.17 + 0.50
1.33 £ 1.45
4.50 £ 3.58

0.33 +1.00
0.50 = 0.76
2.33 £ 1.70

0.33 £+ 0.67
0.33 + 0.67
2.50 + 1.86

125

JV 11.35 5.67 4.86 4.59 4.59

Experiments have been carried out with increasing values of the number of
time segments (from 1 to 11). Results are reported in Table 5. On the first three
problems, the accuracy is as good as the best accuracy which was obtained
in Table 1 and the number of time segments to reach this accuracy is very
small. The compression of the learning set is particularly impressive on the CC
dataset where only three values are enough to reach an almost perfect accuracy.
On the other hand, regression tree modeling decreases the accuracy on JV with
respect to 1-NN and only two values per attribute. Again, the optimal number of
pieces is problem dependent. In the context of 1-NN, leave-one-out is an obvious
candidate method to determine this parameter.

6 Conclusion and future work

In this paper, we have presented a new tool to handle time series in classification
problems. This tool is based on a piecewise constant modeling of temporal signals
by regression trees. Patterns are extracted from these models and combined in
decision trees to give interpretable rules. This approach has been compared to
two “naive” feature selection techniques. The advantage of our technique in
terms of interpretability is undeniable. In terms of accuracy, better results can
be obtained by using either boosting or 1-NN with naive features. However, in
some problems where start time of characteristic events are highly variable (like
in CBF-tr), accuracy can be improved by pattern extraction. Eventually, even
if our main goal was interpretability, our extended decision trees can also be
combined in boosted classifiers where they are very unlikely to destroy accuracy
with respect to the naive feature selection.

In the future, we will consider extensions of our method along several axis.
First, there are still many possible improvements of the pattern extraction al-
gorithm. For instance, we can experiment with other piecewise models (linear

126 P. Geurts

by hinges model, polynomial,...) or with more robust sampling strategies during
node splitting. As already mentioned, we also need a way to automatically adapt
the number of time segments during tree growing. Second, one limitation of our
pattern definition is that it does not allow the detection of shrunk or extended
versions of the reference pattern along the time axis. Several distances have been
proposed to circumvent this problem, for example dynamic time warping [4, 9]
or probabilistic pattern matching [6]. We believe that such distances could be
combined with our approach but at the price of a higher complexity. Eventually,
there exist many problems where the exact ordering of patterns appearing in
signals is crucial for classification. In these cases, the combination of patterns
by simple logical rules would not be enough and dedicated methods should be
developed which could take into account temporal constraints between patterns.

References

1. R. J. Alcock and Y. Manolopoulos. Time-series similarity queries employing a
feature-based approach. In Proc. of the 7th Hellenic Conference on Informatics,
Ioannina, Greece, 1999.

2. C. J. Alonso Gonzalez and Juan J. Rodriguez Diez. Time series classification by

boosting interval based literals. Inteligencia Artificial, Revista Iberoamericana de

Inteligencia Artificial, (11):2-11, 2000.

S. D. Bay. The UCI KDD archive, 1999. http://kdd.ics.uci.edu.

4. D. J. Berndt and J. Clifford. Finding patterns in time series: A dynamic pro-
gramming approach. In Advances in Knowledge discovery and data mining. AAAI
Press/MIT Press, 1996.

5. Y. Freund and R.E. Schapire. Experiments with a new boosting algorithm. In
Proc. of the 13th International Conference on Machine Learning, 1996.

6. X. Ge and P. Smyth. Deformable markov model templates for time-series pattern
matching. In Proc. of the 6th Intl. Conf. on Knowledge Discovery and Data Mining
(KDD), pages 81-90, Boston, MA, August 2000.

7. P. Geurts and L. Wehenkel. Early prediction of electric power system blackouts
by temporal machine learning. In Proc. of ICML-AAAI’98 Workshop on "Al
Approaches to Times-series Analysis”, Madison (Wisconsin), 1998.

8. M. W. Kadous. Learning comprehensible descriptions of multivariate time series.
In Proceedings of the Sizteenth International Conference on Machine Learning,
ICML’99, pages 454-463, Bled, Slovenia, 1999.

9. E. J. Keogh and M. J. Pazzani. Scaling up dynamic time warping for datamining
applications. In Proc. of the 6th Intl. Conf. on Knowledge Discovery and Data
Mining (KDD), pages 285-289, Boston, MA, August 2000.

10. M. Kudo, J. Toyama, and M. Shimbo. Multidimensional curve classification using

passing-through regions. Pattern Recognition Letters, 20(11-13):1103-1111, 1999.
11. S. Manganaris. Supervised classification with temporal data. PhD thesis, Vanderbilt
University, 1997.

12. N. Saito. Local feature extraction and its application using a library of bases. PhD
thesis, Department of Mathematics, Yale University, 1994.

13. L. Wehenkel. Automatic learning techniques in power systems. Kluwer Academic,
Boston, 1998.

@

