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Abstract. In this paper, a temporal machine learning method is pre-
sented which is able to automatically construct rules allowing to detect
as soon as possible an event using past and present measurements made
on a complex system. This method can take as inputs dynamic scenar-
ios directly described by temporal variables and provides easily readable
results in the form of detection trees. The application of this method
is discussed in the context of switching control. Switching (or discrete
event) control of continuous systems consists in changing the structure
of a system in such a way as to control its behavior. Given a particu-
lar discrete control switch, detection trees are applied to the induction
of rules which decide based on the available measurements whether or
not to operate a switch. Two practical applications are discussed in the
context of electrical power systems emergency control.

1 Introduction

Supervised learning methods, while being very mature, often are only able to
handle static input or output values, either numerical or categorical. Neverthe-
less, many problems whose complexity makes interesting alternative approaches
like automatic learning, would need to take into account temporal data. An obvi-
ous suboptimal solution is to transform the dynamic problem in order to match
the static constraints of traditional learning algorithm but it does not seem to us
very appropriate. Besides this simple approach, some recent research on learning
classification models with temporal data are described for example in [3],[4] and
[5].

In this paper, we present a temporal machine learning method able to au-
tomatically construct rules allowing to detect (predict) as soon as possible an
event using past and present measurements made on a complex system. This
method is able to handle directly temporal attributes and provides interpretable
results. We then propose to use this method for the tuning of rules responsible
for the triggering of discrete control event in complex systems. Two practical
applications are discussed in the context of electrical power systems emergency
control. The first one aims at avoiding loss of synchronism in the Western part of
the North-American interconnection, while the goal of the second application is
the detection of voltage collapse in the South-Eastern part of the French power
system.
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The paper is organized as follows. In Section 2, we define the temporal de-
tection problem. Section 3 is devoted to a description of the learning method we
proposed to solve it. In Section 4, we discuss the two practical applications.

2 Temporal detection problem

When dealing with temporal data, we are given a universe U of objects repre-
senting dynamic system trajectories (or episodes, scenarios). These objects are
described by a certain number of temporal candidate attributes which are func-
tions of object and time, thus defined on U x [0, +oo[!. We denote by a(o,t) the
value of the attribute a at time ¢ for the object o, by a(o,.) the attribute vector
(a'(o,.),...,a™(0,.)) and by ajg 4(0,.) its restriction to the interval [0, ¢].

In a temporal detection problem, we also assume that each scenario o is
classified into one of two possible classes c(0) € {4+, —}. We then call detection
rule a function of past and present attribute value :

d(ap,g(0,.)) = {+,-} (1)

which classifies a scenario at each time ¢ and has the following monotonicity
property :
d(a[(),t] (0, )) =4+ & Vt' Z t: d(a[o,t/](o, )) = +. (2)

Thus, we assume that if an object is classified into class + at some time, it will
remain so for all later times (monotonicity). We will call the detection time of
an object by a detection rule the first time it is classified into class + and we
will say that an object is detected by the rule if such a time exists.

The machine learning problem can now be formulated as follows : given a
random sample LS of objects whose attributes values are observed for some finite
period of time [0, t£(0)], the objective is to automatically derive a detection rule
which would perform as well as possible in detecting objects with class + from
U. Clearly a good detection rule is a rule which will detect only those objects
which actually belong to class +, and among good rules, the better ones are
those having the smallest detection times.

3 Detection rules model : detection trees

We choose to represent a detection rule by a tree whose arcs have been labeled
by elementary tests. Figure 1 shows a simple detection tree and the detection
rule it represents. Each test is a logical functional of the attributes :

T(ap..q(0,.)) — {T,F}. 3)
which, like detection rules, exhibits a monotonicity property :
T(a[o___t](o, )) =T Vt' Z t: T(a[o___t/](o, )) =T. (4)

! without loss of generality we assume start time of scenario being always 0
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Fig. 1. An example detection tree and the corresponding detection rule

Note that the tests are not mutually exclusive; hence, using such a temporal
tree, and given a value of ¢, a scenario is propagated through the tree along all
paths starting at the root R (i.e. the top-node), until a condition T; along the
path is false or a terminal node is reached. If the scenario reaches at least one
terminal node, it is classified into class +, otherwise it is classified into class — at
time ¢. Notice that the monotonicity property of tests implies the monotonicity
of the tree detection.

3.1 Induction algorithm [2]

As in TDIDT (Top Down Induction of Decision Trees [1]), temporal tree induc-
tion is based on a quality measure and is composed of two search stages : tree
growing and tree pruning. Prior to tree induction, the overall learning set LS
is first decomposed in two disjoint subsets : the growing sample (GS) used to
evaluate the quality of candidate trees during growing, and the pruning sample
(PS) used to evaluate trees during pruning.

Quality measure. In order to assess the quality of a temporal tree from a sample
of objects S, we propose the following evaluation function :

(1= @)l = B) Coer+ F(EE) + BN 4] + aNT -
(1-a)Ny+aN_

Q(Ta S) =

€01}, (5)

where :

— Ny (resp. N_) denotes the number of samples of class + (resp. —) and Ny 4
(resp. N,_) the number of them classified + (resp. —) by the tree T,

— T7 denotes the subset of S of objects of class + correctly detected by the
tree,

— f(.) is a monotonically decreasing function defined on [0, 1] such that f(0) =1
and f(1) =0 (in our simulation f(z) =1 — x),

— « and j are two user defined parameters in [0, 1],

— t7(0) is the detection time of o by the rule modeled by the tree,
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— t7(0) denotes the maximal time after which observation of o stops. This time
is fixed a priori for each object, and allows one to specify a time after which
detection is not considered anymore useful.

This quality measure takes into account two tradeoffs : On one hand, the tradeoff
between the selectivity of the rule and the degree of anticipation of the detection
and on the other hand the tradeoff between non-detections and false-alarms. The
first tradeoff is mainly regulated by 3, the second one by «. Indeed, when 3 is set
to 1, detection time does not affect the quality. When « is set to 0 (resp. 1), only
correct detections of positive objects via Ny 4 (resp. correct non-detections of
negative objects via Ny _) are taken into account in the quality criteria. These
tradeoffs are not independent : the more anticipative we want the rule to be, the
more false-alarms the system will suffer in general. This relationship appears also
in our quality measure as the two parameters actually influence both tradeoffs.

Growing. A greedy approach is used. The algorithm uses a stack of “open” nodes
initialized to the root node corresponding to the trivial tree (which classifies all
objects into class +). It then proceeds by considering the node at the top of the
stack for expansion. At each expansion step, it pushes the created successor on
the top of the stack, thus operating in a depth first fashion. For example, the
test of the tree at figure 1 would have been added in this order : T, T», T3 and
Ts. When considering the expansion of a node, it scans the set of candidate tests
and evaluates (on the set GS) the increment of detection quality which would
result from the addition of each one of these tests individually. If no test can
increase quality at this node, then it is removed from the stack and the algorithm
proceeds with the next node on the top of the stack. Otherwise, the best test
is effectively added to the node, a new successor node is created and pushed on
the top of the stack while the node selected for expansion remains on the stack.

Pruning. The tree growing method generally tends to produce overly complex
trees, which need to be pruned to avoid overfitting the information contained in
the learning set.

The proposed pruning method is similar in principle to the standard tree
pruning methods used in TDIDT. It consists in generating a nested sequence of
shrinking trees 7o, ... Tk starting with the full tree and ending with the trivial
one, composed of a single node. At each step, the method computes the incre-
mental quality which would be obtained by pruning any one of the terminal
nodes of the current tree, and removes the one (together with its test) which
maximizes this quantity. It uses an independent set of objects (i.e. different from
the learning set) in order to provide honest estimates of the tree qualities, and
hence to detect the irrelevant parts of the initial tree. The tree of maximal quality
is selected in the sequence.

Candidate tests. The choice of candidate tests depends on the application prob-
lem and also on computation efficiency criteria. Indeed, the brute force screening
of all candidate tests at each expansion step implies the computation of the qual-
ity increment many times and is the most expensive step of the algorithm.
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For example, in order to handle numerical attributes in our application, we
consider tests in the form :

T(o,t) =T o3t <t | VT e[t = At...t'"] :a'(o,7) < (>)ven, (6)

thus based only on one attribute. For the sake of efficiency, the user defines for
each candidate attribute only a limited number of candidate values for At. Then
the method uses a brute force search screening for each candidate attribute and
At value all locally relevant candidate thresholds, computing their incremental
quality.

4 Application to switching control of power systems

Switching (or discrete event) control of continuous systems consists of changing
the structure of a system in such a way as to control its behavior. In any large
scale system (such as power systems) there are generally a large number of
possible discrete controls, and an even larger number of possible control laws
for each of them. Given a particular discrete control (say on-off status of a
switch), the question is to define a rule which decides based on the available
measurements whether or not to operate the switch. Typically, measurements
are incomplete and noisy to some extent which results in uncertainties. Thus
the question is then to process past and present measurement in order to make
as reliable decisions as possible. In this section, we will describe two practical
applications of detection tree to the induction of control switch triggering rules
in the context of the emergency control of power systems.

4.1 Electric power system emergency control

Electric power systems are highly critical infrastructures, responsible for the de-
livery of electricity over large geographical areas. (For example, the Western Eu-
ropean interconnection deserves electric energy to about 300 million customers.)
In order to avoid large scale blackouts, these systems are equipped with a large
number of control devices operating in different geographical areas and in dif-
ferent time frames. The design of these emergency control systems is difficult
due to the highly non-linear, complex and uncertain character of power systems.
Because it is not possible to collect data from the field to study the system be-
havior in highly disturbed conditions, the design is based on simulations. It is
generally decomposed into successive steps :

— identification of the main problem causes (type of disturbances and instabil-
ities which are more likely to cause a blackout);

— identification of possible remedies, in terms of control actions (emergency
control has to be fast and reliable, and often uses discrete switching control);

— design of control triggering rules (choice of appropriate measurements and
decision rules, which should be anticipative and reliable at the same time).

Monte-Carlo simulations together with automatic learning and data mining
may be used in order to assist decision making in all these steps [7]. In what
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(o [P Falfd 5

1.0(0.3(] 0.17 | 1 0 (3.441
0.5|0.3|| 1.17 | 7 0 [3.056
0.0|0.3|| 6.5 | 39 | 0 |2.239
0.2]0.3|| 6.83 | 41 | 0 [2.232
0.2|0.1||11.67 | 70 | 0 |1.967

Table 1. Results on test set (600 scenarios). P. = error rate (%), #fa = number of
false alarms (among 485 stable cases), #nd = number of non detections (among 115
instable cases), T7"Y = average detection time of instable cases (in sec.).

follows, we will show how temporal machine learning of detection rules is suited
for the design of control triggering rules. We will consider two different emergency
control problems corresponding respectively to detection of loss of synchronism
in the Western part of the North-American interconnection, and detection of
voltage collapse in the South-Eastern part of the French power system.

4.2 Loss of synchronism

In normal conditions, all the generators in a power system rotate at synchronous
speed (corresponding to 50Hz in Europe, 60Hz in North-America). When a large
disturbance appears (e.g. a short-circuit due to lightning), some generators start
accelerating with respect to others, and, if the disturbance is very large, may
loose synchronism. In this context, emergency control aims at anticipating loss
of synchronism as quickly as possible so as to open some breakers to avoid
cascading outages of lines and generators, which would lead to blackout. Because
the phenomenon is extremely fast (a few hundred milliseconds), detection and
control must be fully automatic.

The detection tree method was applied to a database composed of 1600
simulations of the North-American power system (about 25% are unstable).
The objective is to design a relaying rule used to open the Pacific AC Intertie
(a set of lines transmitting energy from Montana and Oregon to California).
Opening these lines should reduce the impact of the instability on the overall
system behavior [6], and avoid blackout.

Table 1 shows the results (obtained using a LS of 600, a PS of 400 and a TS
of 600 scenarios, selected randomly in the database) corresponding to different
values of parameters @ and 3. One can observe how different parameters lead to
different types of rule characteristics : smaller values of § (as well as smaller val-
ues of a) lead to more anticipative detection (smaller value of average detection
time t75°) at the price of a higher number of false alarms. The comparison of
these results with those obtained using non-temporal machine learning [6], show
that our rules are more anticipative and simpler, while being of comparable
accuracy.

In all trials, 3 different attributes were used as inputs, corresponding to local
measurements in the substation where the breakers are located. The amount of
data processed by the detection rule learning algorithm was about 10° values,
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U-BCARS71<31.47KV for Os U-TAMARS71<154.77kV for Os
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Fig. 2. A detection tree for the voltage collapse problem. Arcs are labeled with tests.
SEQ-XX(n) means that the test is true when at least one out of n events (not described)
of type XX occurs. SEQ-INC denotes the sequence of incidents affecting the system
and SEQ-A02 denotes the triggering of lines by the installed protections. U-X denotes
voltage at node X and IFIELD-Y denotes the excitation current of machine Y.

corresponding to a CPU time of 10 minutes for finalizing tree growing, pruning
and testing on a 300 MHz Ultra-Sparc processor.

4.3 Voltage collapse

In the recent years, voltage collapse has been one of the most studied problems
in the area of power system emergency control, in particular due to the fact
that it has been the cause of several large scale blackouts throughout the world.
Usually, this phenomenon is slower than loss of synchronism (in the order of
minutes), but still too fast to allow human decision making. Typical control
actions consist of disconnecting temporarily some customers so as to avoid the
system collapse. Of course, such control actions should be triggered only when
absolutely necessary but early enough to be effective, hence the need to design
appropriate decision rules which are both anticipative and selective.

We will illustrate the detection tree method on a database from a large scale
study carried out on the system of Electricité de France [8]. It is composed of
1400 simulations, characterized all in all by about 800 temporal attributes (total
of 2GB of raw data). In our simulations, we used only 42 of these attributes
pre-selected as being potentially relevant for the problem under consideration
(29 numerical time-series, and 12 sequences of events). Still, the amount of data
is quite important (12.108 values all in all).

Figure 2 shows one particular detection tree thus obtained. To build the
tree, the method has automatically selected a reduced set of attributes, together
with appropriate thresholds and delays. If compared to presently used detection
rules, this rule happens to be much more anticipative and accurate. Notice that
the delays selected by the machine learning method are here in the order of a
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few seconds (compared to 50 to 100 ms in the loss of synchronism problem),
which shows that the method is indeed able to identify the appropriate dynamic
features of the problem.

Here, the overall CPU time required to build the rule was about 3 hours on a
300 MHz Ultra-Sparc processor, which in this particular application is negligible
with respect to the time required to generate the database by simulations (3
months of CPU using a cluster of 10 high-end workstations [8]).

5 Conclusions

In this paper, we have discussed the development of an automatic induction
method of detection rules and its application was proposed to the inference of
triggering rules of control switch. This general framework was applied to the
emergency control of electric power systems in the case of two different kinds of
system failures, loss of synchronism and voltage collapse.

In the future, we will consider extensions of our detection tree method along
two axes : hypothesis space and search strategy. The semantics of detection trees
should be extended to allow the discovery of more complex temporal features.
At its actual stage (and for efficiency criteria), the method does not permit to
represent temporal constraints on the verification of tests, as for example in
rules like “if T becomes true and T becomes true strictly after 77 then ...”.
This capability has already been added to our system, but tends to be ineffective
in terms of accuracy improvement on the studied problems. Expansion of the
hypothesis space also will need to call into question the greedy search strategy
which may not be appropriate anymore.
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