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Abstract. This paper focuses on the variance introduced by the dis-
cretization techniques used to handle continuous attributes in decision
tree induction. Different discretization procedures are first studied em-
pirically, then means to reduce the discretization variance are proposed.
The experiment shows that discretization variance is large and that it is
possible to reduce it significantly without notable computational costs.
The resulting variance reduction mainly improves interpretability and
stability of decision trees, and marginally their accuracy.

1 Variance in Decision Tree Induction

Decision trees ([1], [2]) can be viewed as models of conditional class probability
distributions. Top down tree induction recursively splits the input space into non
overlapping subsets, estimating class probabilities by frequency counts based on
learning samples belonging to each subset. Tree variance is the variability of its
structure and parameters resulting from the randomness of the learning set; it
translates into prediction variance yielding classification errors.

In regression models, prediction variance can be easily separated from bias,
using the well-known bias/variance decomposition of the expected square er-
ror. Unfortunately, there is no such decomposition for the expected error rates
of classification rules (e.g. see [3,4]). Hence, we will look at decision trees as
multidimensional regression models for the conditional class probability distri-
butions and evaluate their variance by the regression variance resulting from the
estimation of these probabilities. Denoting by Py(Ci|z) the conditional class
probability estimates given by a tree built from a random learning set of size NV
at a point z of the input space, we can write this variance (for one class C;):

Var(Py(Cil.)) = Ex{ELs{(Pn(Cilz) — ELs{Pn(Ci|z)})*}}, (1)

where the innermost expectations are taken over the set of all learning sets of size
N and the outermost expectation is taken over the whole input space. Friedman
[4] has studied the impact of this variance on classification error rates, concluding
to the greater importance of this term as compared to bias.

Sources of Tree Variance. A first (important) variance source is related
to the need for discretizing continuous attributes by choosing thresholds. In
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local discretization, such thresholds are determined on the subset of learning
samples which reach a particular test node. Since many test nodes correspond
to small sample sizes (say, less than 200), we may expect high threshold variance
unless particular care is taken. We will show that classical discretization methods
actually lead to very high threshold variance, even for large sample sizes.

Another variance source is the variability of tree structure, i.e. the chosen
attribute at a particular node, which also depends strongly on the learning set.
For example, for the OMIB database (see appendix), 50 out of 50 trees built
from randomly selected learning sets of size 500 agreed on the choice of the root
attribute, but only 27 at the left successor and only 22 at the right successor.

A last variance source relates to the estimation of class probabilities, but this
effect turns out to be negligible (for pruned trees). Indeed, fixing tree structure
and propagating different random learning sets to re-estimate class probabilities
and determine the variance, yields with the OMIB database a variance of 0.004,
which has to be compared to a total variance of 0.05 (see Table 2).

To sum up, tree variance is important and mainly related to the local node
splitting technique which determines the tree structure. The consequences are :
(i) questionable interpretability (we can not really trust the choice of attributes
and thresholds); (ii) poor estimates of conditional class probabilities; (iii) sub-
optimality in terms of classification accuracy, but we have still to prove this.

Reduction of Tree Variance. In the literature, two approaches have been
proposed : pruning and averaging. Pruning is computationally inexpensive, re-
duces complexity significantly and variance to some extent, but also increases
bias. Thus, it improves only slightly interpretability and accuracy. Averaging
reduces variance and indirectly bias, and hence leads in some problems to spec-
tacular improvements in accuracy. Unfortunately, it destroys the main attractive
features of decision trees, i.e. computational efficiency and interpretability.

It is therefore relevant to investigate whether it is possible to reduce decision
tree variance without jeopardizing efficiency and interpretability. In what follows,
we will focus on the local discretization technique used to determine thresholds
for continuous attributes and investigate its variance and ways to reduce it. We
show that this variance may be very large, even for reasonable sample sizes, and
may be reduced significantly without notable computational costs.

In the next section we will study empirically the threshold variance of three
different discretization techniques, then propose a modification of the classical
method in order to reduce threshold variance significantly. In the following sec-
tion we will assess the resulting impact in terms of global tree performance,
comparing our results with those obtained with tree bagging [5].

2 Evaluating and Reducing Threshold Variance

Classical Local Discretization Algorithm. In the case of numerical at-
tributes, the first stage of node splitting consists in selecting a discretization
threshold for each attribute. Denoting by a an attribute and by a(0) its value for
a given sample o, this amounts to selecting a threshold value ayy, in order to split
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Fig. 1. 10 score curves and empirical optimal threshold distribution for learning sets
of size 100 (left) and 1000 (right). OMIB database, attribute Pu.

the node according to the test T'(0) = [a(0) < atn]. To determine agp, normally a
search procedure is used so as to maximize a score measure evaluated using the
subset s = {01, 02, ..., 05, } of learning samples which reach the node to split. Sup-
posing that the [s is already sorted by increasing values of a, most discretization
techniques exhaustively enumerate all thresholds W(z =1..n—1). De-
noting the observed classes by C(0;), (i = 1,...,n), the score measures how well
the test T'(0) correlates with the class C'(0) on the sample /s. In the literature,
many different score measures have been proposed. In our experiments we use
the following normalization of Shannon information (see [6,7] for a discussion)

21} @)
He + Hy’
where H¢ denotes class entropy, Hr test entropy (also called split information
by Quinlan), and Ig their mutual information.

Figure 1 represents the relationship between CZ and the discretization thres-
hold, for the OMIB database (see appendix). Each curve shows the variation
of score in terms of discretization threshold for a given sample. The histograms
beneath the curves correspond to the sampling distribution of the global maxima
of these curves (i.e. the threshold selected by the classical method). One observes
that even for large sample sizes (right hand curves), the variance of the “optimal”
threshold determined by the classical method remains rather high.

Figure 2 shows results for sample sizes N € [50; 2500] obtained on the GAUS-
STAN database according to the following procedure : (i) for each value of N,
100 samples Is1,...,ls100 Of size N are drawn; (ii) for each ls; the threshold
al, maximizing C‘g (Is;) is computed, as well as left and right hand estimates
of conditional class probabilities. The graphs of Figure 2 plot the averages (+
standard deviation) of these 100 numbers as a function of N; it highlights clearly
how slowly threshold variance decreases with sample size.

cé =

Alternative Discretization Criteria. To assess whether the information the-
oretic measure is responsible for the threshold variance, we have compared it
with two alternative criteria : (i) Kolmogorov-Smirnov measure (see [8]);
(ii) Median, a naive method discretizing at the (local) sample median.
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Table 1. OMIB database, asymptotic value of a;,=1057, o attribute = 170

N =50 N =500 N = 2000

Gayy, |b(atn) | Var(P) || oa,, | b(ain) | Var(P) || oa,, | blain) | Var(P)
classic 91.0 | -15.6 | 0.01335 || 55.4 | -1.5 |0.00383 || 36.8 | -8.6 |0.00138
Kolmogorov || 59.3 | -13.8 | 0.00900 || 26.6 | -13.5 | 0.00126 || 18.7 | -18.6 | 0.00042
median 38.2 | -55.9 1 0.00772 || 13.1 | -59.2 | 0.00095 || 6.1 | -58.8 | 0.00016
averaging || 34.6 | -49.3 | 0.00945 || 20.3 | -20.0 | 0.00115 || 14.3 | -13.0 | 0.00035
bootstrap || 56.0 | 22.4 [0.00834 || 37.0| 2.8 |0.00194 || 25.9| -8.5 |0.00071
smoothing || 96.6 | -1.7 | 0.01485 || 51.6 | -1.0 | 0.00317 || 33.2| -8.8 |0.00108

method

The upper part of Table 1 shows results obtained for one of the test databases
(using the same experimental setup as above). It provides, for different sample
sizes, threshold standard deviations (o,,, ) and bias (b(atp), the average difference
with the asymptotic threshold determined by the classical method and using the
whole database), and standard deviations of class probability estimates (average
of the two successor subsets, denoted Var(lf’)). Note that the results for the
other two databases described in the appendix are very similar to those shown in
Table 1. They confirm the high variance of thresholds and probability estimates
determined by the classical technique, independently of the considered database.
On the other hand the “median” and to a lesser extent the “Kolmogorov-Smirnov
measure” reduce variance very strongly, but lead to a significant bias with respect
to the classical information theoretic measure. Note that median is not a very
sensible choice for decision tree discretization, since it neglects the distribution
of classes along the attribute values.

Improvements of the Classical Method. The very chaotic nature of the
curves of Figure 1 obviously is responsible of the high threshold variance. We
have thus investigated different techniques to “smoothen” these curves before
determining the optimal threshold, of which we report the three following :
Smoothing : a moving-average filter of a fixed window size is applied to the
score curve before selecting its maximum (window size was fixed to ws = 21).
Averaging : (i) the score curve and the optimal threshold are first computed,
yielding test T as well as the score estimate C’g* and its standard deviation
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estimate &Cg* (see [9]); (ii) a second pass through the score curve determines

the smallest and largest threshold values a,;, and @ yielding a score larger than
Co — )\&Cg* , where X is a tunable parameter set to 2.5 in our experiments; (iii)

finally the discretization threshold is computed as @;;, = (g, + Gtn)/2-
Bootstrap : the procedure is as follows : (i) draw by bootstrap (i.e. with re-
placement) 10 learning sets from the original local learning subset; (ii) use the
classical procedure on each subsample to determine 10 threshold values; (iii)
determine discretization threshold as the average of these latter.

These variants of the classical method where evaluated using the same ex-
perimental setup as before. Results are shown in the lower part of Table 1; they
show that “averaging” and “bootstrap” allow to reduce the threshold variance
significantly, while only the former increases (slightly) bias. The same holds in
terms of reductions of probability estimate variance. Hence averaging is the most
interesting, since it does not increase significantly computing times.

3 Global Effect on Decision Trees

To evaluate the various discretization techniques in terms of global performance
of decision trees, we carried out further experiments. The databases are first split
into three disjoint parts : a set used to pick random samples for tree growing
(LS), a set used for cross-validation during tree pruning (PS), a set used for
testing the pruned trees (T'S) (the divisions for each database are shown in
Table 3, in the appendix). Then, for a given sample size N, 50 random subsets
are drawn without replacement from the pool LS, yielding LS1,LSs,...,LSs0,
and for each method the following procedure is carried out

— A tree is grown from each LS; and for each discretization method.

— These trees are pruned (see [10] for a description of the method), yielding
the trees 7;, (i = 1, ..., 50).

— Average test set error rate P, and complexity C of the 50 trees are recorded.

— To evaluate variance, the quantity (1) is estimated using the test sample,
providing Var(Pr; (C|.))

Table 2 shows results obtained on the three databases for a learning sample
size of N = 1000; note that similar result were obtained for smaller and larger
learning sets but are not reproduced here due to space limitations (for more
details please refer to [11]). The last line of the table provides, as a ground for
comparison, the results obtained by tree bagging, implemented using 10 boot-
strap samples and aggregation of class-probability estimates of pruned trees,
reporting the sum of the complexities of the 10 trees. One observes that all the
methods succeed in decreasing the variance of the probability estimates on the
three databases, the most effective being the median, followed by averaging and
Kolmogorov-Smirnov. But, comparing the reduction in variance with the one
obtained in the previous section, we note that the decrease is less impressive
here. The main reason for this is that tree pruning, as it adapts the tree com-
plexity to the method, has the side effect of increased complexity of the trees
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Table 2. Results on three databases (global tree performances for N = 1000)

Gaussian (PP =11.8%) Omib (P =0%) Waveform (P2 = 14%)
P, C var P, C var P, C var
classic 12.56 | 10.32 | 0.0147 |/ 11.20| 67.6 [0.0572 | 27.30 |45.96 | 0.0434
Kolmogorov || 12.85| 9.92 | 0.0109 || 10.41 | 73.6 |0.0493 | 27.57 |54.12 | 0.0432
median 12.17|14.28 | 0.0083 || 10.39|103.92 |0.0383 || 27.30 | 66.04 | 0.0382
averaging || 12.21 [17.32| 0.0105 |[10.69 | 98.68 |0.0493 || 27.56 | 55.64 | 0.0386
bootstrap || 12.49|12.28 | 0.0133 | 11.59 | 74.6 |0.0500 || 27.39 | 49.48 | 0.0402
smoothing |[12.56 | 9.88 | 0.0137 || 10.89| 77.4 |0.0532 || 27.23 | 47.68 | 0.0396

| tree bagging [| 12.07 | 92.3 | 0.0047 || 8.29 | 468.6 [0.0133 ][ 20.83 | 367.3 | 0.0100

method

obtained with the variance reduction techniques. This balances to some extent
the local variance reduction effect. From the tables it is quite clear that me-
dian and averaging reduce variance locally most effectively, but also lead to the
highest increase in tree complexity. The error rates are mostly unaffected by the
procedure; they decrease slightly on the GAUSSIAN and OMIB databases while
they remain unchanged on the WAVEFORM database.

Unsurprisingly, tree bagging gives very impressive results in terms of variance
reduction and error rates improvement on all the databases, and especially on
the WAVEFORM. Of course, we have to keep in mind that this improvement
comes with a loss of interpretability and a much higher computational cost.

4 Discussion and Related Work

In this paper, we have investigated the reduction of variance of top down in-
duction of decision trees due to the discretization of continuous attributes, con-
sidering its impact on both local and global tree characteristics (interpretability,
complexity, variance, error rates). In this, our work is complementary to most
existing work on discretization which has been devoted exclusively to the im-
provement of global characteristics of trees (complexity and predictive accuracy),
neglecting the question of threshold variance and interpretability.

On the other hand, several authors have proposed tree averaging as a means
to decrease the important variance of the decision tree induction methods, fo-
cusing again on global accuracy improvements. This has led to variations on the
mechanism used to generate alternative trees and on the schemes used to aggre-
gate their predictions. The first well known work in this context concerns the
Bayesian option trees proposed by Buntine [12], where several trees are main-
tained in a compact data structure, and a Bayesian scheme is used to determine a
posteriori probabilities in order to weight the predictions of these trees. More re-
cently, so-called tree bagging and boosting methods were proposed respectively
by Breiman [5] and Freund and Schapire [13]. In addition to the spectacular
accuracy improvement provided by these latter techniques, they are attractive
because of their generic and non-parametric nature. From our investigations it
is clear that these approaches are much more effective in improving global ac-
curacy than local variance reduction techniques such as those proposed in this
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paper. However, the price to pay is a definite shift towards black-box models and
a significant increase in computational costs. Our intuitive feeling (see also the
discussion in Friedman [4]) is that tree averaging leads to local models, closer in
behavior to nearest-neighbor techniques than classical trees. In terms of predic-
tive accuracy, we may thus expect it to outperform classical trees in problems
where the kNN method outperforms them (as a confirmation of this, we notice
that kNN actually outperforms tree bagging significantly on the WAVEFORM
dataset).

Another recent class of proposals more related to our local approach and
similar in spirit to the early work of Carter and Catlett [14], consists in using
continuous transition regions instead of crisp thresholds. This leads to overlap-
ping subsets at the successor nodes and weighted propagation mechanisms. For
example, in a fuzzy decision tree, fuzzy logic is used in order to build hierar-
chies of fuzzy subsets. Wehenkel ([9]) showed that in the context of numerical
attributes this type of fuzzy partitioning allows indeed to reduce variance sig-
nificantly. In [4], Friedman proposes a technique to split the learning subset
into overlapping subsets and uses again voting schemes to aggregate competing
predictions. Along the same ideas, we believe that a Bayesian approach to dis-
cretization ([9]) or probabilistic trees (such as those proposed in [15]) would allow
to reduce variance. The main advantage of this type of approach with respect to
global model averaging is to preserve (possibly to improve) the interpretability
of the resulting models. The main disadvantage is a possibly significant increase
in computational complexity at the tree growing stage.

With respect to all the intensive research, we believe that the contribution
of this paper is to propose low computational cost techniques which improve
interpretability by stabilizing the discretization thresholds and by reducing the
variance of the resulting predictions. In the problems where decision trees are
competitive, these techniques also improve predictive accuracy. We also believe
that our study sheds some light on features of decision tree induction and may
serve as a starting point to improve our understanding of its weaknesses and
strengths and eventually yield further improvements.

Although we have focused here on local (node by node) discretization philoso-
phies, it is clear from our results that global discretization must show similar
variance problems and that some of the ideas and methodology discussed in this
paper could be successfully applied to global discretization as well. More broadly,
all machine learning methods which need to discretize continuous attributes in
some way, could take advantage of our improvements.

In spite of the positive conclusions, our results show also the limitations of
what can be done by further improving decision tree induction without relaxing
its intrinsic representation bias. A further significant step would need a relaxation
of this representation bias. However, if we want to continue to use the resulting
techniques for data exploration and data mining of large datasets, this must be
achieved in a cautious way without jeopardizing interpretability and scalability.
We believe that fuzzy decision trees and Bayesian discretization techniques are
promising directions for future work in this respect.
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A Databases

Table 3 describes the datasets (last column is the Bayes error rate) used in the empirical
studies. They provide large enough samples and present different features : GAUSSIAN
corresponds to two bidimensional Gaussian distributions; OMIB is related to electric
power system stability assessment [10]; WAVEFORM denotes Breiman’s database [1].

Table 3. Datasets (request from geurts@montefiore.ulg.ac.be)

Dataset | #Variables | #Classes | #Samples | #LS | #PS | #TS | PeBayes

GAUSSIAN 2 2 20000 16000 | 2000 | 2000 | 11.8
OMIB 6 2 20000 16000 | 2000 | 2000 | 0.0
WAVEFORM 21 3 5000 3000 | 1000 | 1000 | 14.0



