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Abstract

This paper provides a further look at uncertainty
or information criteria used in the context of deci-
sion tree induction, and more generally of learn-
ing conditional class probability models. We
show the high degree of similarity among two
main families of criteria based respectively on
the logarithmicSHANNONentropy function and
the quadraticGINI index. We start by introduc-
ing a general family of entropy functions and then
discuss the latter particular cases, and end up with
a short review of the Kolmogorov-Smirnov dis-
tance, another related measure.

1 Generalized Information Functions

The concept of generalized information functions of typeβ
was first introduced by Daróczy [1] and its use for pattern
recognition problems was discussed by Devijver [2].

The entropy of typeβ (β positive and different from 1) of a
discrete probability distribution(p1, . . . , pm) is defined by

Hβ(p1, . . . , pm)
△
=

m
∑

i=1

piu
β(pi), (1)

where the uncertaintyuβ(pi) is defined by

uβ(pi)
△
=

2β−1

2β−1 − 1
(1− pβ−1

i ). (2)

Measureuβ is a strictly decreasing function ofpi.

1.1 Fundamental Properties ofHβ [1, 2, 3]

P1 Hβ(p1, . . . , pm) = 2β−1

2β−1−1

[

1−
∑m

i=1 pβ
i

]

;

P2 Hβ(p1, . . . , pm) is invariant with respect to the per-
mutation of its arguments;

P4 Hβ(1)=Hβ(0, . . . , 1, . . . , 0)=0 andHβ( 1
2, 1

2)=1;

P5 Hβ(p1, . . . , pm−1, pm)=Hβ(p1, . . . , pm−1 + pm) +
(pm−1 +pm)βHβ(pm−1/(pm−1+pm), pm/(pm−1+
pm)) (pseudo-additivity);

P6 0≤Hβ(p1, . . . , pm)≤Hβ( 1
m

, . . . , 1
m

), i.e. maximum
entropy corresponds to the uniform distribution;
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Figure 1: Entropy functionsHβ for β ∈ [0.01. . . 100.0]

P7 Hβ(p1 . . . pm) is a concave (∩) function1 :

∀λj ≥ 0, pij ≥ 0 :
k

∑

j=1

λj = 1∧

m
∑

i=1

pij = 1 ⇒

Hβ(

k
∑

j=1

λjp1j, . . . ,

k
∑

j=1

λjpmj) ≥

k
∑

j=1

λjH
β(p1j , . . . , pmj).

The first five properties follow directly from the definition
of Hβ. The proofs of the other two properties are not given
here to save space. Theconvexityproperty (P7) has many
important implications further commented below.

Daróczy shows that properties 2, 4 and 5 provide a complete
characterization of the entropy functions of typeβ. Figure
1 reproducesHβ in the two-class case (p1 = p; p2 = 1−p),
for a large range ofβ values. In particular, the quadratic
entropy (β = 2) and the logarithmic one (β → 1) are hardly
distinguishable.

Note thatadditivityof entropies, i.e.

Hβ(p1, . . . , pm−1, pm) = Hβ(p1, . . . , pm−1 + pm)

+(pm−1 + pm)Hβ

(

pm−1

(pm−1 + pm)
,

pm

(pm−1 + pm)

)

,

can only achieved by lettingβ converge towards 1, yielding
the logarithmic entropy (see§2).

1.2 Conditional entropies

Let t andc denote two discrete random variables (e.g.t
might denote a test issue at a node of a decision tree, and
c the class which we would like to predict by the tree)
of respective probability distribution(p(t1), . . . , p(tk)) and
(p(c1), . . . , p(cm)). We denote by

Hβ
C

△
= Hβ(p(c1), . . . , p(cm)), (3)

1on the convex set defined bypi ≥ 0 and
∑

m

i=1 pi = 1



the prior classification entropy of typeβ and the conditional
typeβ entropy is defined by

Hβ

C|tj

△
= Hβ

C(p(c1 | tj), . . . , p(cm | tj)), (4)

and the mean conditional typeβ entropy by

Hβ

C|T

△
=

k
∑

j=1

p(tj)H
β

C|tj
. (5)

The concave nature ofHβ implies the following fundamen-
tal monotonicity property (see e.g. [3] for a proof)

Hβ

C|T ≤ Hβ
C . (6)

Furthermore, due to the strictness of the concavity the fol-
lowing equality holds also

Hβ

C|T = Hβ
C ⇔ p(ci|tj) = p(ci), ∀ i, j; (7)

i.e. if and only ifc andt are statisticallyindependent.

2 Shannon Entropy

For β = 1, uβ(x) is not defined. However, since
limβ→1 uβ(x) = − log2 x

H
△
= lim

β→1
Hβ = −

m
∑

i=1

pi log2 pi, (8)

i.e. the well-known logarithmic or Shannon entropy

It may be easily checked that properties (P1-P7) still hold for
the logarithmic entropy. In particular (P5) now expresses
additivity, i.e. the fact that the entropy of two independent
events is equal to the sum of their respective entropies.

The logarithmic entropy is the basis for various interpreta-
tions in the context of probabilistic modeling (likelihoodof
the data given a model / posterior probability of a model
given the data and model priors) [3, 4, 5]. Let us merely
note that these interpretations are certainly among the main
reasons of the high popularity of this particular uncertainty
measure [6].

2.1 Conditional entropies and information

The mean conditional entropy becomes

HC|T = −
k

∑

j=1

m
∑

i=1

p(ci, tj) log2 p(ci | tj). (9)

The following quantities of interest are also defined.

• The entropy oft,

HT = −

k
∑

j=1

p(tj) log2 p(tj) (10)

• The mean conditional entropy oft givenc

HT |C = −
m

∑

i=1

k
∑

j=1

p(ci, tj) log2 p(tj | ci). (11)

• The joint entropy oft andc

HC,T = −

m
∑

i=1

k
∑

j=1

p(ci, tj) log2 p(ci, tj). (12)

• The mutual informations
IT
C

△
= HC − HC|T , (13)

= −

m
∑

i=1

k
∑

j=1

p(ci, tj) log2
p(ci)

p(ci|tj)
, (14)

IC
T

△
= HT − HT |C , (15)

= −

m
∑

i=1

k
∑

j=1

p(ci, tj) log2
p(tj)

p(tj |ci)
. (16)

The following relationships are satisfied.

• Additivity of entropies
HC,T = HC + HT |C = HT + HC|T = HT,C . (17)

• And consequently reciprocity of mutual information

IT
C = HC − HC|T = HT + HC − HT,C

= HT − HT |C = IC
T . (18)

• Thus,

IC
T = −

m
∑

i=1

k
∑

j=1

p(ci, tj) log2
p(ci)p(tj)

p(ci, tj)
. (19)

• Inequalities
HT |C ≤ HT ; HC|T ≤ HC ; IT

C ≤ HC ;

IT
C ≤ HT ; IT

C ≤ HC,T ; IT
C ≥ 0. (20)

Further, under the necessary and sufficient condition of
strict association betweent andc (i.e. p(ci, tj) diagonalized
by permutation of columns or lines) the following equalities
hold

IT
C =HT =HC =HC,T ; HT |C =HC|T =0. (21)

Finally, under the necessary and sufficient condition of sta-
tistical independence the following equalities hold.

HT =HT |C ; HC =HC|T ; HC,T =HC +HT ; IT
C =0. (22)

2.2 Normalized information

IT
C measures the reduction of the uncertainty of one of the

variablest orc, given the knowledge of the other one. In the
context of decision tree induction it is useful as an evaluation
function of alternative tests at a tree node, in order to select
the one reducing most significantly the uncertainty about
the unknown classification. More generally, in the context
of statistical modeling this measure may be used to assess
the information provided by alternative models.

Within this context, the fact that the information quantity
is upper bounded by the prior entropyHC makes its inter-
pretation difficult. The prior entropy, and hence the infor-
mation of candidate models will indeed be highly variable
according to the number and prior probabilities of classes.

Another frequently mentioned difficulty in the context of
decision tree induction concerns the bias of estimates of
information which increases withk andm. This tends to
favor tests at a tree node with a larger number of outcomes
[3, 7, 8] (i.e. higherk).

Thus, various normalized “correlation” measures have been
derived from the information quantity so as to yield im-
proved “score” measures [7, 8, 9, 10]. We will discuss
some of them below and provide an illustration on the basis
of data related to a practical example.
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2.2.1 Normalization byHC

We denote this score measure byAT
C

△
=

IT
C

HC

. (23)

In the context of decision tree building, at a given tree node
HC is constant. Thus the ranking provided byAT

C andIT
C

are equivalent and the normalization has no effect at all on
the resulting tree. We use it here in place ofIT

C , merely for
comparison purposes.

It is worth mentioning thatIT
C and consequentlyAT

C

presents at least two interesting properties which do not
hold necessarily for the other measures presented below.

The first property concerns the location of optimal thresh-
olds for ordered attributes. One may indeed show that for
ordered attributes, the optimal thresholds maximizingIT

C

must lie at so-called cut-points, i.e. values where the class
probabilities are not stationary [11]. (In the finite sample
case, this excludes in particular all thresholds lying between
objects of identical classes.) Exploiting this propertyallows
in general to reduce significantly the computational burden
of searching for the optimal thresholds.

The second property concerns the search for an optimal
binary partition for a qualitative attribute [12, 13]. It allows
to reduce the search from 2L−1−1 toL candidate partitions
(whereL denotes the number of different values assumed
by the qualitative attribute).

2.2.2 Normalization byHT

In order to reduce the bias towards many-valued splits,
Quinlan introduced the so-called “gain ratio” [8], which we
denote by

BT
C

△
=

IT
C

HT

. (24)

Dividing by HT allows to reduce the bias ofIT
C towards

tests with many successors (yielding a high value ofHT ).

However, a possible problem with this measure lies in the
fact that it may overestimate the value of splits with very
low HT values, in particular splits corresponding to uneven
decompositions of a learning set into subsets. Thus, for
ordered attributes the optimal values ofBT

C often tend to
be located closer to its extreme values; this is known in
the literature as the “end-cut” preference of the “gain ratio”
criterion (see also the example in§2.2.5 below).

2.2.3 Normalization by 1
2(HC + HT )

The preceding normalizations yield asymmetrical “score”
measures. While it has been suggested that asymmetri-
cal measures are natural in the context of pattern recogni-
tion applications, because the learning objective privileges
the classification variable [2], we believe that symmetrical
measures are more appropriate. Indeed, in the context of
decision tree building a main objective is assessment of
correlations among attributes and classifications, and also
among various attributes. There is no reason that the corre-
lation of two attributes should not be symmetrical.

Thus, sharing the opinion of Kvålseth [9], we advocate the
use of the following measure [14].

CT
C

△
=

2IT
C

HC + HT

, (25)

which is symmetrical inC andT .

Kvålseth shows that ifIT
C > 0, the sampling estimatêCT

C

is asymptotically normally distributed with meanCT
C and

thus is (asymptotically) unbiased. One of its main practical
advantages is that Kvålseth provides the following explicit
formulation of its standard deviation

σCT
C

=

√

√

√

√

(

Ct
C

n..It
C

)2
∑

i=1,m

∑

j=1,p

nij

[

lognij +

(

Ct
C

2
− 1

)

log(ni.n.j) + (1− Ct
C) logn..

]2

, (26)

wheren.. denotes the sample size,nij the expected number
of samples of classcj yielding test issuetj (i.e. nij =

n..p(ci, tj)), ni.
△
=

∑

j nij andn.j
△
=

∑

i nij .)

Equation. (26) evaluates the level of inaccuracy of the
sample estimate of the uncertainty measure. This provides
valuable information in order to assess the significance of
score differences among various candidate models. The
sample estimate ofσCT

C
is obtained by replacing in eqn.

(26) the expected numbersni,j by their sample estimates
(i.e. by the cell counts).

2.2.4 Normalization byHC,T

Another symmetrical and normalized measure more re-
cently proposed by Ĺopez de Ḿantaras is defined by [7]

DT
C

△
=

IT
C

HC,T

. (27)

This author shows formally thatDT
C is not biased towards

many-valued splits, and suggests also that it tends to provide
simpler trees than the gain ratio measure. He shows also
that 1− DT

C is a proper distance measure of two probabil-
ity distributions(p(c1), . . . , p(cm)) and(p(t1), . . . , p(tk)),
which satisfies the triangular inequality.

Let us show the equivalence of the last two measuresCT
C

andDT
C .

Noting thatHC,T = HC + HT − IT
C we find that

DT
C =

IT
C

HC + HT − IT
C

, (28)

or equivalently that

DT
C =

1
HC+HT

IT
C

− 1
(29)

Thus
DT

C =
1

2
CT

C

− 1
, (30)

which implies that the two measures are a monotonic trans-
formation of each other, as shown in Fig. 2. Hence the
preference relationship induced by these measures are iden-
tical. Therefore, as far as therankingof candidate tests is
concerned the formal property of no bias towards multiple-
valued splits ofDT

C must also hold forCT
C .

2.2.5 Comparison

First of all we recall that it has been reported many times
from experimental studies that the predictive classification
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reliability of decision trees appears to be not much affected
by the type of attribute selection criteria used [7, 10, 12, 15].

However, the complexity of the trees and hence their in-
terpretability which is one of their main attractive features,
does often depend much more strongly on the type of mea-
sure used. Further, since the complexity of the tree will in-
fluence the size of the learning samples at its terminal nodes,
it will influence strongly the accuracy of their class proba-
bility estimates. Information about accuracy of class prob-
ability estimates and tree complexities is however seldom
reported in experimental studies. In addition the value of
simplicity may depend on pragmatic considerations which
are difficult to take into account in blind comparisons.

Let us consider an example data base of a real life electric
power transient stability assessment problem, taken from
[16]. It is composed of 12,500 randomly generated operat-
ing conditions of the EHV power system of Hydro-Québec,
classified into secure and insecure classes by numerical
simulation. A state is considered as insecure if there ex-
ists a plausible disturbance which would lead to a loss of
transient stability. In addition, every state is describedby
about 100 attributes which provide information about the
electrical and topological situation : power flows, num-
ber of lines in operation in different corridors, generation
in different power plants and automatic voltage regulating
devices in operation. The objective of applying a decision
tree induction algorithm to this problem is to identify among
these parameters those having a stronger influence on the
security and to formulate automatically operating strategies
expressed in terms of these variables.

For the purpose of illustration Fig. 3 depicts the frequency
distribution of one power flow attribute (denoted by Trbj)
which is found to strongly influence the security of the
system. The horizontal axis represents the value of the
attribute, and the overall height of the bars is proportional
to the number of states among the 12,500 which lie in
the corresponding range of attribute values; the relative
height of the dark and the light regions is proportional to the
relative frequency of insecure and secure states (estimating
the conditional class probabilities :p(ci|Trbj ∈ [x, x +
∆Trbj[.)

Let us consider the case where we use a test on this attribute
in order to discriminate among secure and insecure states.
In other words, for a given threshold, we definet as a
binary random variable, wheret = t1 if Trbj < Threshold,
and t = t2 otherwise. Varying the threshold between its
minimum and maximum values then defines a family of
tests, and for a given score measure, the optimal threshold

will be the one leading to a maximum score, as estimated on
the basis of the sample of 12,500 states. Fig. 4 represents
the variation of the four measures (A, B, C, andD) as a
function of the test threshold. In spite of the very large
sample size, it is possible to observe the small non-smooth
random fluctuations.

From the observation of these curves we draw the follow-
ing comments. First of all, all four measures present two
salient local maxima, one below 6000MW and one around
7300MW, which is also the global maximum. Actually,
they correspond to the two different statistical populations
from which the data base samples where drawn. In ad-
dition to these dominant tendencies, there are small high
frequency oscillations translating the effect of the sampling
of the probability distributions of classes. They vanish how-
ever above 8700MW, where all four curves start decreasing
monotonically. This is merely the consequence of the fact
that above this threshold value all the states of the data base
belong to the same class (see Fig. 3 and Fig. 5).

Comparing the curve related to measureA with the three
others, we observe that the normalization ofB, C andD
taking into accountHT , enhances indeed the scores nearby
the upper and lower bound of the threshold interval. In par-
ticular, the value of the local maximum nearby 5700MW is
enhanced, and pulled towards the smaller threshold values.
This effect is stronger for measureBT

C than for measures
CT

C andDT
C . Incidentally, we note that the latter two mea-

sures are indeed equivalent, in terms of the location of all
the local maxima of their curve.

Finally, we may observe in this present example the odd
behavior of measureBT

C near the extreme values of the
threshold interval, whereHT ≈ 0. In particular its limit
value is not equal to zero. As a conclusion we would not
recommend this type of normalization.

2.3 Hypothesis testing

Here we merely recall the well known fact that under the
hypothesis of statistical independence the finite sample es-
timate 2n.. ln 2ÎT

C is distributed according to aχ−square
law of (m − 1) × (k − 1) degrees of freedom [9].

ThusÎT
C will assume the following expected value

E{ÎT
C} =

(m − 1)(k − 1)

2n.. ln 2
. (31)

This confirms2 the fact thatIT
C is biased, and the higher the

number of successors and classes, the higher the bias. On

2strictly speaking only under the independence hypothesis
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the other hand, the bias decreases towards zero when the
sample sizen.. increases.

3 Quadratic Entropy

Settingβ = 2 in eqn. (1) and (2) yields the quadratic
entropy

H2 = 2

[

1−

m
∑

i=1

p2
i

]

(32)

H2 = 4
∑

i6=j

pipj = 2
m

∑

i=1

pi(1− pi). (33)

This is identical to the so-called “Gini” index [12], which
may be interpreted in the following way. Let us suppose
that an object is classified randomly intoci, with a proba-
bility equal top(ci), in order to mimic the observed random
behavior of the classification. Then the probability of mis-
classifying the object will be equal to 1− p(ci) and the
expected misclassification probability is

Pe =

m
∑

i=1

p(ci)(1− p(ci)) =
H2

C

2
. (34)

Thus reducing the Gini index amounts to reducing the mis-
classification error associated with a randomized classifi-
cation. The Gini index is also equal to the variance of the
class-indicator regression variable (defined byyi(o) = 1 if
c(o) = ci, andyi(o) = 0 otherwise). Thus, reducing the
Gini index consists also of reducing the residual variance
of class indicator variables.

From the preceding discussion it follows also that the ex-
pected value of the quadratic entropy conditioned on the
attribute values is equal to twice the asymptotic error rate
of the nearest neighbor rule.

3.1 Quadratic conditional entropies and information

As in §2.1, the conditional entropy ofc is defined by

H2
C|T

△
=

k
∑

j=1

p(tj)H
2
C|tj

= 1−
m

∑

i=1

k
∑

j=1

p2(ci, tj)

p(tj)
. (35)

The quadratic information provided byt onc is defined by

I2T

C

△
= H2

C − H2
C|T . (36)

Similarly, one may define

H2
C|T

△
=

m
∑

i=1

p(ci)H
2
T |ci

= 1−

m
∑

i=1

k
∑

j=1

p2(ci, tj)

p(ci)
. (37)

The quadratic information provided byc on t is defined by

I2C

T

△
= H2

T − H2
T |C . (38)

It is worth noting that in generalI2T

C 6= I2C

T .

In the CART method, Breiman et al. useI2T

C as an attribute
selection criterion [12]. Given the very similar behavior
of quadratic and logarithmic entropies, this criterion must
admittedly suffer from similar difficulties than the logarith-
mic information criterion of§2.2. In particular, it favors
many-valued splits and makes the comparison of scores for
different values of the prior entropy difficult.

3.2 Normalizations

We are not surprised that the same normalization
“medicine” has been applied to derive from the quadratic
entropy an appropriate optimal splitting criterion. We will
merely indicate the definition of the resultingsymmetrical
τ measure proposed in [17],

τ
△
=

I2T

C + I2C

T

H2
T + H2

C

, (39)

which is the exact equivalent of our ownCT
C measure.

Of course the advantages of the latter measure are the same
than those ofCT

C , no more no less.

3.3 Hypothesis testing

In the second part of their paper the authors of [17] present
the use of an associatedχ−square hypothesis test. They
note indeed that the quantities

(n.. − 1)(m − 1)
I2T

C

H2
C

or (n.. − 1)(k − 1)
I2C

T

H2
T

(40)

are distributed according to aχ−square law with(m −
1)(k − 1) degrees of freedom.

4 Other Loss and Distance Functions

Many other criteria have been proposed in various decision
tree induction algorithms (see e.g. [13] for an interesting
discussion of general divergence measures and their algo-
rithmic properties).

For example to avoid bias towards many valued splits and
overfitting problems, one approach consists of using modi-
fied estimates of relative frequencies such as

p̂i =
ni + λ

n + mλ
∀ i = 1, . . . , m, (41)

λ being a problem dependent parameter [18, 19, 20].

Let us briefly describe theKolmogorov-Smirnov criterion
proposed by Friedman [21] as an attribute selection crite-
rion in decision tree induction, and afterwards extended for
pruning [22]. The basic method is restricted to the two-
class case and to ordered (e.g. numerically continuous)
attributes.

Denoting byFc1(ai) (resp.Fc2(ai)) the (cumulative) prob-
ability distribution of an attribute conditioned to classc1
(resp.c2), the Kolmogorov-Smirnovdistance is defined by

DKS
C (a∗

i ) = max
ai

|Fc1(ai) − Fc2(ai)|. (42)

The sampling distribution ofDKS
C under the independence

assumption (i.e. ifFc1 = Fc2 ) is independent of the dis-
tributionF (ai), yielding thus a non-parametric hypothesis
test of the independence ofai andc.

Note that the sampling distribution (and thus the levels of
significance) depends on the sample sizes of each class
which are however constant at a given tree node and inde-
pendent of the considered attribute. Thus the ranking of
DKS

C (a∗) is equivalent to the ranking of the significance
levels, and the optimal splitting rule derived by Friedman
consists of splitting a node by the attributea∗ corresponding
to the maximum Kolmogorov-Smirnov distance,

DKS
C (a∗

∗) = max
i

DKS
C (a∗

i ), (43)
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together with its optimal thresholda∗
∗.

The corresponding stop-splitting rule consists of checking
that the significance level 1− α corresponding toD(a∗

∗) is
smaller than a fixed threshold [22].

To appraise this criterion, we have applied it to our power
system security problem. The corresponding variation
of the sample values ofFSec(Trbj), FInsec(Trbj) and
DKS

C (Trbj) are illustrated in Fig. 5.

We note that the overall shape of theDKS
C curve is quite

similar to the shape of the curves in Fig. 4. It reaches its
maximum value at 7310.5MW, which is very close to the
maximum of 7308.5MW of curvesCT

C andDT
C of Fig. 4.

The behavior ofDKS
C is however smoother than the other

measures, suggesting that its optimum threshold may be
less sensitive to sampling noise.

5 Convexity or no convexity ?

Much of the above discussion turns around the convexity
property of uncertainty measures, which has been often
quoted as a desirable, if not necessary property in the context
of inducing classification or class-probability trees.

However, if we want to reduce the tendency of favoring
many valued splits - and incumbent overfitting problems -
we should look for non-convex score measures.

Another situation where the convexity property leads to
undesirable consequences is in the context of fuzzy tree in-
duction where it yields a systematic bias in favor of crisp
discriminators [23, 24, 25], instead of fuzzy ones. In this
case, it prevents one from realizing the necessary compro-
mise between model smoothness and information quantity.
Again, it is necessary to deconvexify the measure by nor-
malizing it by an appropriate regularization term [26].

We conclude that while convexity is a nice structural prop-
erty which may be exploited to improve computational per-
formances, it may also lead to undesirable results, in par-
ticular increased variance and hence overfitting. In such
circumstances, a natural way to reduce the variance and
overfitting is to deconvexify the measure.
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