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Abstract

This paper provides a further look at uncertainty
or information criteria used in the context of deci-
sion tree induction, and more generally of learn-
ing conditional class probability models. We
show the high degree of similarity among two
main families of criteria based respectively on
the logarithmicSHANNONentropy function and
the quadraticsINI index. We start by introduc-
ing a general family of entropy functions and then
discuss the latter particular cases, and end up with
a short review of the Kolmogorov-Smirnov dis-
tance, another related measure.

1 Generalized Information Functions

The concept of generalized information functions of type
was first introduced by Daczy [1] and its use for pattern
recognition problems was discussed by Devijver [2].

The entropy of typé? (5 positive and different from 1) of a
discrete probability distributiotps, . . . , p,,) is defined by

H(p1, ..., pm) sz ) (1)
where the uncertainty® (p;) is defmed by
g0 271 s-1

u” (p;) = m(l ;) (2)

Measureu” is a strictly decreasing function of.

1.1 Fundamental Properties ofH” [1, 2, 3]

20—t

H (pa. pm) = g L= S0

HP(pa,...,pm) is invariant with respect to the per-
mutation of its arguments;

[P4 HA(1)=HP(0,...,1,...,0)=0andH"(}, })=1;

Hﬁ(pla s 5pmflapm):Hﬂ(pla A ;pmfl + pm) +
(Pm—1+Pm) H? (Pm—1/ (Pm—1+Dm)s P/ (Prm-1+
pm)) (pSeudo-additivity);

0<HP(py,...,pm)<HP(X,... L), i.e. maximum
entropy corresponds to the uniform distribution;

0.5

Figure 1: Entropy function&/” for 3 € [0.01...1000]

HP(py . )|saconcaver® functlon1
VA; >0,pi; >0 : Z/\ —1/\pr—1 =
7j=1 i=1

HB(Z)\jplj,.. Z)‘meﬂ >Z)\H (P1js- - Pmj)-
j=1

The first five propertles follow d|rectly from the definition
of H?. The proofs of the other two properties are not given
here to save space. Thenvexityproperty (P7) has many
important implications further commented below.

Darbczy shows that properties 2, 4 and 5 provide a complete
characterization of the entropy functions of typeFigure

1 reproduce#” in the two-class case{ = p;p, = 1—p),

for a large range off values. In particular, the quadratic
entropy (3 = 2) and the logarithmic ongj(— 1) are hardly
distinguishable.

Note thatadditivity of entropies, i.e.

HP(p1, .., Pin—1,0m) = H? (D1, -+, Pm—1+ D)

Pm—1 DPm
+(Pm-1+ Pm Hﬁ ( ) )
( ) (pm—l + pm) (pm—l + pm)

can only achieved by letting converge towards 1, yielding
the logarithmic entropy (seg).

1.2 Conditional entropies

Let t andc denote two discrete random variables (etg.
might denote a test issue at a node of a decision tree, and
¢ the class which we would like to predict by the tree)
of respective probability distributiofp(t1), . . ., p(tx)) and
(p(c1),-..,p(cm)). We denote by

A
Hg:Hﬁ(p(Cl)aap(cm))a (3)
‘on the convex set defined py > 0 and}"""  pi =1



the prior classification entropy of tygeand the conditional e The mutual informations

type 3 entropy is defined by L2 He- Hc|T, (13)
HYyy = HE(p(er [ 45),-op(em [ £)), (4) .
clis @ ’ ! = - Z Zp (ci, t;)log, plc) , (14)
and the mean conditional typieentropy by it plcilty)
=1 j=
A
C|T ZP C|tj (5) IJQ = Hp-— HT|Ca (15)
The concave nature (Hﬁ |mpI|es the following fundamen- = - Z Zp (¢i,tj)log, p(t;) . (16)
tal monotonicity property (see e.g. [3] for a proof) i=1 j=1 p(tjlei)
Hg|T < H" (6) The following relationships are satisfied.
Furthermore, due to the strictness of the concavity the fol-s Additivity of entropies
lowing equality holds also Her = Ho + Hrje = Hr + Hopr = Hreo (17)
H§|T =H} & pleilt) =ple), ¥V iji (7)o And consequently reciprocity of mutual information

i.e. if and only ifc andt are statisticallyndependent IL = Ho-— Heir = Hr+ He — Hreo
= Hr—Hpe = If. (18)
2 Shannon Entropy e Thus, -
For 3 = 1, v#(x) is not defined. However, since 5 = —ZZp(cz, ;) 100, (() i;) (19)
limg_ 1 uf(z) = —log, = i=1 j=1
o_ e Inequalities
- “m H” = lez log, pi. (8) Hpio < HpyHejr < He s 15 < He;
= T . JT . JT
i.e. the well-known logarithmic or Shannon entropy 16 < Hr: Ig < Her 16 2 0. (20)

Further, under the necessary and sufficient condition of
%trict association betweemndc (i.e. p(c;, t;) diagonalized

y permutation of columns or lines) the following equaktie
hold

1t =Hr=Hc=Her, Hpio=Her =0. (21)

The logarithmic entropy is the basis for various interpreta Flnally, under the necessary and sufficient condition of sta
tlﬁnzln the context OLpIiO/babI“StIC mOd%“nbgl(“ke]['hOOﬂ g Itlst|cal independence the following equalities hold.
the data given a model / posterior probability of a model ., o . - AT
given the data and model priors) [3, 4, 5]. Let us merely ' " =HriciHe=Her Hor=He+Hr; 16 =0. (22)
note that these interpretations are certainly among the mai2.2 Normalized information

It may be easily checked that properties (P1-P7) still haid f
the logarithmic entropy. In particular (P5) now expresse
additivity, i.e. the fact that the entropy of two indepentden
events is equal to the sum of their respective entropies.

reasons of the high popularity of this particular uncetiain
measure [6].

2.1 Conditional entropies and information
The mean conditional entropy becomes

HC|T_ ZZP Cza

7j=11i=1

9)

logzp(cz | tj )

The following quantities of interest are also defined.

e The entropy of,

ZP )1og, p(t; (10)
e The mean cond|t|onal entropy ofjivenc
Hre=—% Zp cirty)0gyp(t; | ). (11)
i=1 j=1
e The joint entropy of andc
HCT == ZZP Cla |Og2p(cl, ) (12)

=1 j=1

IZ measures the reduction of the uncertainty of one of the
variableg or ¢, given the knowledge of the other one. Inthe
context of decision tree induction itis useful as an evaduat
function of alternative tests at a tree node, in order toctele
the one reducing most significantly the uncertainty about
the unknown classification. More generally, in the context
of statistical modeling this measure may be used to assess
the information provided by alternative models.

Within this context, the fact that the information quantity
is upper bounded by the prior entropi makes its inter-

pretation difficult. The prior entropy, and hence the infor-
mation of candidate models will indeed be highly variable
according to the number and prior probabilities of classes.

Another frequently mentioned difficulty in the context of
decision tree induction concerns the bias of estimates of
information which increases with andm. This tends to
favor tests at a tree node with a larger number of outcomes
[3, 7, 8] (i.e. highelk).

Thus, various normalized “correlation” measures have been
derived from the information quantity so as to yield im-
proved “score” measures [7, 8, 9, 10]. We will discuss
some of them below and provide an illustration on the basis
of data related to a practical example.
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2.2.1 Normalization by Ho which is symmetrical irC' andT'.

We denote this score measure bydZ 2 £ (23)  Kvalseth shows that ifZ, > 0, the sampling estimate/,

He is asymptotically normally distributed with medy. and
In the context of decision tree building, at a given tree nodehus is (asymptotically) unbiased. One of its main prattica
Hc is constant. Thus the ranking provided By, and/},  advantages is that Kaseth provides the following explicit
are equivalent and the normalization has no effect at all ofiormulation of its standard deviation
the resulting tree. We use it here in placegf merely for ot N\ 2 ot
cornpanson purp(.)se-s. ocr = (n ?t ) Z Z nij {Iognij + (70 — 1)
It is worth mentioning that/}, and consequentlydZ, ~1C/ i=1,m j=1,p
presents at least two interesting properties which do not 5
hold necessarily for the other measures presented below. log(nin.;) + (1 — CL)log n] ’ (26)

The first property concerns the location of optimal thresh-

olds for ordered attributes. One may indeed show that fo{yhere;, denotes the sample sizg, the expected number

ordered attributes, the optimal thresholds maximizigg of samples of class; yielding test issue; (i.e. n;; =
must lie at so-called cut-points, i.e. values where thesclas ’ ’ /

A A
probabilities are not stationary [11]. (In the finite sample™..p(ci;t;)), ni. = 32, nij andn j = 3=, ni;.)

case, this excludesin particular all thresholds lying leetw  Equation. (26) evaluates the level of inaccuracy of the
objects of identical classes.) Exploiting this propertgws  sample estimate of the uncertainty measure. This provides
in general to reduce significantly the computational burderajuable information in order to assess the significance of
of searching for the optimal thresholds. score differences among various candidate models. The
The second property concerns the search for an optima&iample estimate of .z is obtained by replacing in eqn.
binary partition for a qualitative attribute [12, 13]. f@avs  (26) the expected numbers ; by their sample estimates

to reduce the search fronk2! — 1 to L candidate partitions  (i.e. by the cell counts).

(whereL denotes the number of different values assumed

by the qualitative attribute). 2.2.4 Normalization by He 1

Another symmetrical and normalized measure more re-
cently proposed by &pez de Mintaras is defined by [7]

In order to reduce the bias towards many-valued splits,
Quinlan introduced the so-called “gain ratio” [8], which we Dy = . (27)
denote by

2.2.2  Normalization by Hrp

BL 2 £ (24) This author shows formally thad?, is not biased towards
¢ Hy many-valued splits, and suggests also that it tends togeovi

Dividing by Hy allows to reduce the bias df; towards simpler trees than the gain ratio measure. He shows also
tests with many successors (yielding a high valuéle). that 1— D, is a proper distance measure of two probabil-

However, a possible problem with this measure lies in th ity distributions(p(cy), ..., p(en)) and(p(ta), ... p(tk)),

' : . ; hich satisfies the triangular inequality.
fact that it may overestimate the value of splits with very )
low H7 values, in particular splits corresponding to unevenlet us show the equivalence of the last two measurgs
decompositions of a learning set into subsets. Thus, foandDZ.
ordered attributes the_ optimal vaIueng oft_en_ tend to _Noting thatH¢ - = He + Hy — Ig we find that
be located closer to its extreme values; this is known in '

the literature as the “end-cut” preference of the “gairorati DL = L7 (28)
criterion (see also the example§R.2.5 below). He + Hp — I

or equivalently that
2.2.3 Normalization by (Hc + Hr) DT 1 (29
The preceding normalizations yield asymmetrical “score” ¢ % -1
measures. While it has been suggested that asymmetrif g Cl
cal measures are natural in the context of pattern recogni- D¢ = - (30)
tion applications, because the learning objective piiéke or —1

the classification variable [2], we believe that symmetrica which implies that the two measures are a monotonic trans-
measures are more appropriate. Indeed, in the context dérmation of each other, as shown in Fig. 2. Hence the
decision tree building a main objective is assessment ofreference relationship induced by these measures are iden
correlations among attributes and classifications, anal alstical. Therefore, as far as thanking of candidate tests is
among various attributes. There is no reason that the corr€oncerned the formal property of no bias towards multiple-
lation of two attributes should not be symmetrical. valued splits ofDZ, must also hold foC’Z.

Thus, sharing the opinion of Kiseth [9], we advocate the
use of the following measure [14].

21T First of all we recall that it has been reported many times
T & c X . . g
Co = Ho + Hy' (25) from experimental studies that the predictive classifirati

2.2.5 Comparison
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For the purpose of ranking
T T i
CC andDC are equivalent

Notice the variance

Insecure

A Dg 1 8560 0.173 (very large sample) ]g‘ FSec(Trbj)
N 0 ! o FinsedTrbi)
uaz :j DES (Trbj)
00 Ansgg '5000 6000 700 8000 g700 9000. mom;rRBJ Threshold “ Threshold
Figure 2: DL vs C}, Figure 3: Trbj vs security Figure 4: Scores vs ThresholdFigure 5: DX vs Threshold

reliability of decision trees appears to be not much affécte will be the one leading to a maximum score, as estimated on
by the type of attribute selection criteriaused [7, 10, B}, 1 the basis of the sample of 12,500 states. Fig. 4 represents

However, the complexity of the trees and hence their in{h€ variation of the four measured (B, C; and D) as a
terpretability which is one of their main attractive feasy ~function of the test threshold. In spite of the very large
does often depend much more strongly on the type of measample size, it is possible to observe the small non-smooth
sure used. Further, since the complexity of the tree will in-"andom fluctuations.

fluence the size of the learning samples at its terminal node&rom the observation of these curves we draw the follow-
it will influence strongly the accuracy of their class proba-ing comments. First of all, all four measures present two
bility estimates. Information about accuracy of class prob salient local maxima, one below 6000MW and one around
ability estimates and tree complexities is however seldonY300MW, which is also the global maximum. Actually,
reported in experimental studies. In addition the value ofthey correspond to the two different statistical populagio
simplicity may depend on pragmatic considerations whichfrom which the data base samples where drawn. In ad-
are difficult to take into account in blind comparisons. dition to these dominant tendencies, there are small high

Let us consider an example data base of a real life electrif@guency oscillations translating the effect of the santpl
power transient stability assessment problem, taken frorRf the probability distributions of classes. Theyvanlsh/ho_
[16]. Itis composed of 12,500 randomly generated operat€Ver above 8700MW, where all four curves start decreasing
ing conditions of the EHV power system of Hydro-&hec, monotomcally. This is merely the consequence of the fact
classified into secure and insecure classes by numericgiat above this threshold value all the states of the data bas
simulation. A state is considered as insecure if there exPelong to the same class (see Fig. 3 and Fig. 5).

ists a plausible disturbance which would lead to a loss ofComparing the curve related to measureavith the three
transient stability. In addition, every state is describgd others, we observe that the normalization®fC' and D
about 100 attributes which provide information about thetaking into account/;, enhances indeed the scores nearby
electrical and topological situation : power flows, num-the upper and lower bound of the threshold interval. In par-
ber of lines in operation in different corridors, generatio ticular, the value of the local maximum nearby 5700MW is
in different power plants and automatic voltage regulatingenhanced, and pulled towards the smaller threshold values.
devices in operation. The objective of applying a decisionThis effect is stronger for measurg’, than for measures
tree induction algorithm to this problemis toidentify angon  ¢'Z and DZ. Incidentally, we note that the latter two mea-
these parameters those having a stronger influence on thk@res are indeed equivalent, in terms of the location of all
security and to formulate automatically operating stri@®g the local maxima of their curve.

expressed in terms of these variables. Finally, we may observe in this present example the odd
For the purpose of illustration Fig. 3 depicts the frequencybehavior of measuré’, near the extreme values of the
distribution of one power flow attribute (denoted by Trbj) threshold interval, wherél; ~ 0. In particular its limit
which is found to strongly influence the security of the value is not equal to zero. As a conclusion we would not
system. The horizontal axis represents the value of theecommend this type of normalization.

attribute, and the overall height of the bars is proportiona

to the number of states among the 12,500 which lie inp 3 Hypothesis testing

the corresponding range of attribute values; the relative

height of the dark and the light regions is proportional ® th Here we merely recall the well known fact that under the
relative frequency of insecure and secure states (estigati hypothesis of statistical independence the finite sample es
the conditional class probabilities p(c;|Trbj € [z, +  timate 2u In2[} is distributed according to —square

ATrbj[.) law of (m — 1) x (k — 1) degrees of freedom [9].

Let us consider the case where we use a test on this attributphusfg will assume the following expected value

in order to discriminate among secure and insecure states. R (m — 1)(k — 1)

In other words, for a given threshold, we defiheas a B{1l} = (31)
binary random variable, where= ¢ if Trbj < Threshold, 2n..In2

andt¢ = t, otherwise. Varying the threshold between its This confirms the fact that’Z is biased, and the higher the
minimum and maximum values then defines a family ofnumber of successors and classes, the higher the bias. On

tests, and for a given score measure, the optimal threshotd—— _ _ _
strictly speaking only under the independence hypothesis
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the other hand, the bias decreases towards zero when tBe2 Normalizations

sample size: . increases.

3 Quadratic Entropy
Settings = 2 in eqn.

entropy
H? = 2[1-2;;5] (32)
i=1
H? = 4> pip; =2 pi(l—-p;). (33)

i#] i=1

(1) and (2) yields the quadratic

We are not surprised that the same normalization
“medicine” has been applied to derive from the quadratic
entropy an appropriate optimal splitting criterion. Welwil
merely indicate the definition of the resultisgmmetrical
T measure proposed in [1;],

2 2¢

s o+ 1%y (39)
T HZ A HZ

which is the exact equivalent of our ow#}. measure.
Of course the advantages of the latter measure are the same
than those o%, no more no less.

This is identical to the so-called “Gini” index [12], which 3.3  Hypothesis testing

may be interpreted in the following way. Let us suppose

that an object is classified randomly intg with a proba-

bility equal top(c;), in order to mimic the observed random
behavior of the classification. Then the probability of mis-

classifying the object will be equal to % p(c;) and the
expected misclassification probability is

m 2
Po= Y ple) - ple) = =L

i=1

(34)

In the second part of their paper the authors of [17] present

the use of an associated-square hypothesis test. They

note indeed that the unantities
2

125 1%
(n. ~ (m 1 or (n.~D(k-1TT (40

- G T.
are distributed according to g—square law with(m —
1)(k — 1) degrees of freedom.

Thus reducing the Gini index amounts to reducing the misyy  Other Loss and Distance Functions
classification error associated with a randomized classifi-

cation. The Gini index is also equal to the variance of theyjany other criteria have been proposed in various decision

class-indicator regression variable (defined/by) = 1 if

tree induction algorithms (see e.g. [13] for an interesting

¢(0) = ¢;, andy;(o) = 0 otherwise). Thus, reducing the giscyssion of general divergence measures and their algo-
Gini index consists also of reducing the residual variancgjthmic properties).

of class indicator variables.

For example to avoid bias towards many valued splits and

From the preceding discussi_on it follows als_o. that the eX-pverfitting problems, one approach consists of using modi-
pected value of the quadratic entropy conditioned on thgjeq estimates of relative frequencies such as

attribute values is equal to twice the asymptotic error rate

of the nearest neighbor rule.

3.1 Quadratic conditional entropies and information

As in §2.1, the conditional entropy efis defined by
k m k 2
A p(cist;
By 23 plt) 2, =1- 303 PNl (35
— — — p(t;)
J G J
The quadratic information provided bync is defined by
T A
I’¢ = HE¢ — Hgp. (36)
Similarly, one may define
m m k 2
N pe(ciyt;
Heyp = ple)He,=1-> Y % (37)
i=1 i=1 j=1 plei)
The quadratic information provided layont is defined by
c A
IPp = Hf — Hfyo. (38)
. . : T c
It is worth noting that in generdP, # I2;.

In the CART method, Breiman et al. uﬁ% as an attribute

selection criterion [12]. Given the very similar behavior ks

ng; + A

Di = Vi=1,...,m, (41
. n+ mA
A being a problem a;pendent parameter [18, 19, 20].

Let us briefly describe thi€kolmogorov-Smirnov criterion
proposed by Friedman [21] as an attribute selection crite-
rion in decision tree induction, and afterwards extended fo
pruning [22]. The basic method is restricted to the two-
class case and to ordered (e.g. numerically continuous)
attributes.

Denoting byF, (a;) (resp.F¢,(a;)) the (cumulative) prob-
ability distribution of an attribute conditioned to class
(resp.cy), the Kolmogorov-Smirnov distance is defined by

DES(a7) = max|Fr, (ai) — Fe,(as)- (42)

The sampling distribution abX° under the independence
assumption (i.e. ifF,, = F., ) is independent of the dis-
tribution F'(a;), yielding thus a non-parametric hypothesis
test of the independence @f andc.

Note that the sampling distribution (and thus the levels of
significance) depends on the sample sizes of each class
which are however constant at a given tree node and inde-
pendent of the considered attribute. Thus the ranking of
(a*) is equivalent to the ranking of the significance

of quadratic and logarithmic entropies, this criterion mus levels, and the optimal splitting rule derived by Friedman

admittedly suffer from similar difficulties than the logtr
mic information criterion 0f52.2. In particular, it favors

consists of splitting a node by the attributecorresponding
to the maximum Kolmogorov-Smirnov distance,

many-valued splits and makes the comparison of scores for

different values of the prior entropy difficult.

DE (az) = maxDE* (ay), (43)

IPMU96 5/6



together with its optimal thresholdf. fuzziness, plausibility and belief. In B. Bouchon-Meunier

The corresponding stop-splitting rule consists of chegkin L. Valverde and R. Yager, editorElncertainty in Intelligent

e . N\ Systems355—365. Elsevier - North Holland.
that the 5|gn|f|cz_;mce level o corresponding td)(a3) is [7] R. L. de Mantaras (1991). A distance-based attributes selec-
smaller than a fixed threshold [22].

tion measure for decision tree inductiodachine Learning
To appraise this criterion, we have applied it to our power  6:81-92. Technical Note. . .
system security problem. The corresponding variatiorl8] J. R. Quinlan (1986). Induction of decision tredgachine

of the sample values ofgedTrbj), FingedTrbi) and Learning 1:81-106. ,
DKS(Trbj) are illustrated in Fig. 5 [9] T. O. Kvalseth (1987). Entropy and correlation: Some com-
o . 5.

ments.|EEE Trans. on Systems, Man and Cyberne&dC-
We note that the overall shape of thEs“ curve is quite 17(3):517-519. - . .
similar to the shape of the curves in Fig. 4. It reaches itd10] J. Mingers (1989). An empirical comparison of selestio
maximum value at 7310.5MW, which is very close to the measures for decision tree inductiorMachine Learning
maximum of 7308.5MW of curve§}, and D% of Fig. 4. 3:319-342.

. xS [11] U. M. Fayyad and K. B. Irani (1992). On the handling
The behavior ofD” is however smoother than the other ™ ¢ ¢ ontinyous-valued attributes in decision tree genenati

measures, suggesting that its optimum threshold may be \achine Learning8:87-102.

less sensitive to sampling noise. [12] L. Breiman, J. H. Friedman, R. A. Olshen and C. J. Stone
(1984). Classifigatiop and Regression Treadadsworth In-
5 Convexity or no convexity ? ternational (California).

[13] P. A. Chou (1991). Optimal partitioning for classifiimat

. . . and regression treedEEE Trans. on Pattern Analysis and
Much of the above discussion turns around the convexity - pine IntelligencePAMI-13 (14):340-354

property of uncertainty measures, which has been oftefy4) | wehenkel, T. Van Cutsem and M. Ribbens-Pavella (1989
quoted as adesirable, if not necessary property inthextonte” ~an artificial intelligence framework for on-line transiesta-
of inducing classification or class-probability trees. bility assessment of power systemi&EE Trans. on Power

However, if we want to reduce the tendency of favoring Syst, PWRS-4789-800. ,
many valued splits - and incumbent overfitting problems -12°] D- Michie, D. Spiegelhalter and C. Taylor, editors, 23,

Machine learning, neural and statistical classificatioBllis
we should look for non-convex score measures. Horwood. Final rep. of ESPRIT project 5170 - StatLog.

Another situation where the convexity property leads to[16] L. Wehenkel, I. Houben, M. Pavella, L. Riverin and G. Ver
undesirable consequences is in the context of fuzzy tree in-  sailles (1995). Automatic learning approaches for on-line
duction where it yields a systematic bias in favor of crisp  transient stability preventive control of the Hydro-&bec
discriminators [23, 24, 25], instead of fuzzy ones. In this ~ System - Part I. Decision tree approaches. Hroc. of
case, it prevents one from realizing the necessary compro- SIPOWER'95, 2nd IFAC Symp. on Control of Power Plants
mise between model smoothness and information quantit)ﬁ?]a;d ;ﬁ‘(’)"frasr]ft?ms%1D_i”2§’ne'(1991) A statistical-heuristi
Again, it is necessary to deconvexify the measure by nor* : | '

L . 7 feature selection criterion for decision tree inductidBEE
malizing it by an appropriate regularization term [26]. Trans. Pattern Analysis and Machine Intelligend®AMI-

We conclude that while convexity is a nice structural prop- ~ 13:834-841. _ o

erty which may be exploited to improve computational per-[18] W. L. Buntine (1990). A theory of learning classification
formances, it may also lead to undesirable results, in par- [ljlr"?\fersﬁ’t;%ft1r_‘:;'15r;oﬁ)$00' of Computing Science, Sidney
ticular increased variance and hence overfitting. In suc : L .

circumstances, a natural way to reduce the vgriance and®! J- R. Quinlan (1987). Simplifying decision treeifit. J. of

overfitting is to deconvexify the measure Man-Mach. Studig27:221-234.
g fy ) [20] A. Zighed, J. Auray and G. Duru (1992%IPINA. Methode

et Logiciel Alexandre Lacassagne - Lyon.

References [21] J. H. Friedman (1977). A recursive partitioning deaisiule
] ] ] ) for nonparametric classificatiolEEE Trans. on Computers
[1] Z. Daroczy (1970). Generalized information functionk- C-26:404—408.
formation and Contrql16:36-51. [22] E. M. Rounds (1980). A combined nonparametric approach
[2] P.A. Devijver (1976). Entropie quadratique et recossance to feature selection and binary decision tree desigmttern
de formes. In J. Simon, editdJATO ASI Series, Computer Recognition12:313-317.
Oriented Learning ProcesselNoordhoff, Leyden. [23] X. Boyen and L. Wehenkel (1995). On the unfairness of
[3] L. Wehenkel (1990).Une approche de l'intelligence artifi- convex discrimination quality measures for fuzzy partitig
cielle appligieea I'évaluation de la stabilé transitoire des in machine learning. Technical report, University okge.
réseauxélectriques PhD thesis, University of l6ge. In  [24] X. Boyen and L. Wehenkel (1995). Automatic induction of
French. continuous decision trees. To appearPiroc. of IPMU96,
[4] M. D. Richard and R. P. Lippmann (1991). Neural network  |nfo. Proc. and Manag. of Uncertainty in Knowledge-Based
classifiers estimate Bayesian a posteriori probabilitiEsural SystemsGranada (SP).
Computation3:461-483.

. . ) . [25] M. Ramdani (1994).Syseme d’Induction Formell@ base
[5] L. Wehenkel (1993). Decision tree pruning using an addi-~ e connaissances Imérises PhD thesis, Univ. Paris VI.
tive information quality measure. In B. Bouchon-Meunier,

L. Valverde and R. Yager, editorklncertainty in Intelligent [26]. X. Boyen and L. Wehenkel (19.95)' Fuzzy decision tree
Systems397-411. Elsevier - North Holland. induction for power system security assessmentPrisc. of

[6] S. Guiasu (1993). A unitary treatment of several known SIE;(})_)WER’%!S, Endglgfclggmwpl). on Control of Power Plants
measures of uncertainty induced by probability, possbili and Fower Systemis1-156, Mexico.

IPMU96 6/6



