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Al~lraet--An inductive inference method for the automatic 
building of decision trees is investigated. Among its various 
tasks, the splitting and the stop splitting criteria successively 
applied to the nodes of a grown tree, are found to play a 
crucial role on its overall shape and performances. The 
application of this general method to transient stability is 
systematically explored. Parameters related to the stop 
splitting criterion, to the learning set and to the tree classes 
are thus considered, and their influence on the tree features 
is scrutinized. Evaluation criteria appropriate to assess 
accuracy are also compared. Various tradeoffs are further 
examined, such as complexity vs number of classes, or 
misclassifieation rate vs type of misclassification errors. 
Possible uses of the trees are also envisaged. Computational 
issues relating to the building and the use of trees are finally 
discussed. 

1. INTRODUCTION 
Trm DECISION TREE methodology is nowadays 
recognized to be a generally nonparametr ic  
technique, able to produce classifiers in order  to 
assess new, unseen situations, or to uncover  the 
mechanisms driving a p rob lem (Breiman et al., 
1984; Friedman,  1977; Kononenko  et al., 1984; 
Quinlan, 1986). The building of a decision tree is 
based on a learning set (LS), composed of a 
number  of states together  with their correspond- 
ing known classification. The building procedure  
starts at the top node of the tree with the entire 
LS, and progresses by recursively creating 
successor nodes, i.e. by splitting the LS into 
subsets of  increasing classification purity. The 
procedure is s topped when all the newly created 
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nodes are " te rmina l"  ones, containing "pure  
enough" learning subsets. The ways of splitting 
the successive subsets, and even more  of 
deciding when to stop splitting, are essential to 
the method.  Often,  the lack of general,  efficient 
stop splitting methods is evaded by means of 
alternative procedures,  such as first building a 
very large tree, then pruning it; they generally 
rely on empirical justifications applicable to 
particular cases, but without guarantee of 
effectiveness in other  application domains.  To 
remove this difficulty, a stop splitting criterion 
was developed on the basis of  a general 
statistical hypothesis test (Wehenkel  et al., 
1989a, b). It was designed independently of any 
specific application, then applied to power  
system transient stability. 

Transient stability in general is concerned with 
the system ability to withstand severe contin- 
gencies. A possible measure  of this is the critical 
clearing time (CCT),  i.e. the maximum time that 
a contingency may remain without causing the 
irrevocable loss of machines '  synchronism. To  
compute CCTs one may either use t ime-domain 
methods,  which solve numerically the nonlinear 
differential equations describing the system 
motion,  or direct methods which rely on the 
Liapunov criterion (Bergen, 1986; Ribbens-  
Pavella and Evans,  1985). Observe  that the CCT 
is not appropriate  enough for assessing transient 
stability, in that it carries partly useless and 
partly incomplete information;  indeed, it merely 
provides a rather  crude "yes-or -no"  answer, 
whereas what really matters  in practice is to 
assess "stability margins"  and, if necessary, to 
suggest remedial  actions (EPRI  Project ,  1987). 
Within the tree methodology,  however ,  the CCT 
provides a handy means of classifying the states 
of a LS. 
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The application of the tree methodology to 
transient stability was initially proposed in 
Wehenkel et al. (1986, 1987), then developed in 
Wehenkel et al. (1989a, b). The leading idea is to 
compress and organize the information about 
transient stability in the form of decision trees 
with the twofold objective: to classify new, 
unseen states, and to uncover the salient 
parameters driving the transient stability pheno- 
mena. Note that the foreseen advantages go 
beyond this objective: indeed, on-line means to 
compute stability margins and to infer control 
strategies were also suggested (Wehenkel et al., 
1988; Wehenkel, 1988). The first results 
obtained in a few practical examples were quite 
promising. The constructed trees exhibited nice 
features, notably with respect to accuracy and 
complexity. However, to make this method fully 
reliable and effective, a systematic exploration 
was necessary. This is a main purpose of the 
present paper. 

Particular attention is paid to learning sets, 
"adequate" for building efficient decision trees; 
the way of generating their states in simulations 
and in real-life situations is discussed, and the 
influence of their number on the tree features is 
examined. 

Another key issue concerns the splitting 
criterion. In Wehenkel et al. (1986, 1987), this 
consisted of a test applied to various "candidate 
attributes", chosen among static parameters of 
the power system, a priori likely to drive 
transient stability. Their influence on the tree 
structure is investigated below. 

The cornerstone of the method is probably the 
stop splitting criterion (Wehenkel et al., 
1989a, b). Applied to transient stability, this 
criterion yielded simple, quite accurate trees in 
the few cases considered so far. In this paper, we 
determine its optimal parameters, and explore 
the accuracy and the complexity of the resulting 
trees. 

The number of stability classes to be 
considered in the automatic building of trees is 
another question worth considering. Complexity, 
accuracy, misclassification rate and severity of 
misclassification errors are all interrelated 
features. Our purpose is to assess them, and to 
suggest possible practical applications, not 
necessarily to decide on a solution. 

To conduct the above investigations we need 
appropriate tools for evaluating trees' accuracy. 
One of our first concerns will be to consider and 
compare a priori interesting evaluation criteria. 

The ultimate goal for building trees is to use 
them. This topic is a whole research of its own. 
In this paper, we will merely indicate possible 
types of applications. 

2. FUNDAMENTALS OF THE METHOD 
2.1. General f r a m e w o r k  and basic notation 

The automatic building of decision trees by 
the proposed inductive inference method implies 
the existence of a learning set, i.e. of a number, 
say N, of preclassified states. Without loss of 
generality, we will assume that each state is 
characterized by a certain number, say n, of 
ordered numerical attributes (the same number 
for each state), and that the N states are 
classified into two classes only { + , - } .  The 
generalization to more than two-class classi- 
fications will be considered in Section 2.10; the 
extension to categorical attributes in addition 
to the ordered ones would be quite 
straightforward. 

In the sequel, a learning set (LS) will be 
defined by: 

t S  ~ {(Vl, c1) , (v2, c2) . . . . .  (VN, CN) } (1) 

where the components of vector v~ 

Vk = (Vl, ,  Vzk . . . .  , V , , )  r (2) 

represent the attribute values of the state Sk, 
which is characterized by its n attributes: 

s ,  = [a,  = Vlk] n [a2 = Vzk] n . - .  n [a .  = v . k l ,  

(3) 
and where 

Ck e { +, - }. (4) 

Note that the preclassified learning set is 
considered to be a statistical sample of size N, 
drawn from the population of possible states. 

The test set (TS), is defined as a similar, but 
independent sample of size M: 

TS a___ {(VN+I ' CN+I), (VN+2, CN+2 ) . . . . .  

(vN+,,, ON+M)}. (5) 
It will be used for the purpose of evaluating the 
performance of a decision tree with respect to 
unseen states (see Section 2.8). 

2.2. Decision trees ( D T s )  
A DT is a tree structured upside down. It is 

composed of test and terminal nodes, starting at 
the top node (or root) and progressing down to 
the terminal ones. Each test node is associated 
with a test on the attribute values o f  the states, to 
each possible outcome of which corresponds a 
successor node. The terminal nodes carry the 
information required to classify the states. Such 
a DT is portrayed in Fig. 1, built for an example 
treated in Section 4 in the context of transient 
stability. Note that in this case, where only 
numerical attributes are considered, the tests are 
dichotomic, and the resulting DT is binary: each 
test node is split into two successors. 
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PG2 < 762.62 

PG113 <919.71 

m 
m UNSTABLE 
--]STABLE 

FIG. 1. A biclass tree for contingency #2.  N = 5 0 0 ,  
cr = 0.0001. 

A convenient way to define a DT is to 
describe the way it is used for classifying a state 
of a priori unknown classification on the basis of 
its known attributes. This classification is 
achieved by applying sequentially the test at the 
test nodes, beginning at the root of the tree, and 
systematically passing the state to the successor 
appropriate to the outcome of the test, until a 
terminal node is finally reached; the state is 
classified accordingly. 

The above description provides an interesting, 
geometric interpretation of a tree procedure 
(Breiman et al., 1984): it recursively partitions 
the attribute space into hyperboxes, such that 
the population within each box becomes more 
and more class homogeneous. This in turn allows 
one to view the classification of a tree as the 
partitioning of this hyperspace into two regions, 
corresponding to the two classes. Each class is 
composed of the union of the elementary boxes 
corresponding to its terminal nodes. Figure 2 
illustrates the geometric representation of the 
tree of Fig. 1. (Actually, according to this tree 
structure, the states belonging to the region 
labelled "stable" have a small chance (13%) to 
be unstable.) 

2.3. Automatic construction of  D Ts 
For a given LS, our purpose is to build a near 

optimal DT, in the sense that it realizes a good 
tradeoff between complexity and accuracy, i.e. 
between total number of nodes and classification 

J PG2(MW) 

1000- 
763' ' " 

OPn ~/ 

0 STABLE ~ PG113(MW~) 

920 1000 

FIG. 2. Geometric representation of the tree of Fig. 1. 

ability. Usual ways of estimating accuracy are 
specified in Section 2.8; anticipating, observe 
that, intuitively, assessing trees' ability to 
correctly classify states should rely on test states 
rather than on states belonging to LS itself. 

The ultimate objective of the building 
procedure is to: (i) select the relevant attributes 
among the candidate ones (generally the number 
of retained attributes is much lower than n, the 
total number of candidate attributes); (ii) build 
the decision tree on the basis of these relevant 
attributes. This building procedure is described 
below (Wehenkel et al., 1989a). 

• Starting at the root of the tree, with the list of 
candidate attributes and with the whole LS, 
the learning states are analysed in order to 
select a test which allows a maximum increase 
in purity or, equivalently, which provides a 
maximum amount of information about their 
classification. The selection proceeds in two 
steps: 
(i) for each attribute, say ai, it finds the 

optimal test on its values, by scanning the 
values of this candidate attribute for the 
different learning states; in our case of 
ordered numerical attributes, this step 
provides an optimal threshold value vi. 
and defines the test 

a i < v i , ?  (6) 

(ii) among the different candidate attributes, 
it chooses the best one, a , ,  along with its 
optimal value, v**, to split the 'node. 

In short, step (ii) defines the optimal attribute, 
step (i) its optimal threshold value. 

• The selected test is applied to the learning set 
of the node and splits it into two subsets, 
corresponding to the two successors of the 
node. Starting with the root of the tree and 
the entire LS, the two subsets 

LS1 & {Vk e LS I a .  < v**} 
LSz ___a {Vk e LS I a .  --> v**}, 

correspond to the two successors of the root. 
• The successors are labeled terminal or not on 

the basis of the stop splitting criterion 
described below. 

• For the nonterminal nodes, the overall 
procedure is called recursively in order to 
build the corresponding subtrees. 

• For the terminal nodes, the class probabilities 
p+ and p_ are estimated on the basis of the 
corresponding subset of learning states there 
stored, and the class label of the majority class 
is attached. 

Obviously, the crux of the entire construction 
of a DT lies in the selection of the splits and the 
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of a DT lies in the selection of the splits and the 
decision whether to declare a node terminal or 
to continue splitting. These two questions are 
examined below, after the introduction of some 
necessary notions of (im)purity and information, 
drawn from the information theory. 

2.4. Mathematical formulation 
2.4.1. Definitions. Denoting by: 
S the subset of all possible states, correspond- 

ing to some node of a DT, i.e. directed to that 
node by the classification procedure; 

p (+  IS) (resp. p ( -  IS)) the probability of a 
random state drawn from S to belong to the 
class + (resp. - ) ;  

T a dichotomic (candidate) test [e.g. see (6)] 
on some attribute's values of the states; 

Sy (resp. S,) the subsets of S of states yielding 
the answer "YES" (resp. "NO") to the test T; 
these sets would correspond to the successors of 
the node split on the basis of T; 

p(Sy IS ) (resp. p(S, IS)) the probabilities of 
the outcomes "YES" and "NO" in S; one 
defines the following measures. 

The prior "classification entropy" of S 

Hc(S) & - [ p ( +  I S) log2 (p(+ I S)) 

+ p ( -  IS) log2(p(-  I S))]. (7) 

Hc(S) is a measure of the impurity or the 
uncertainty of the classification of a state of S; 
He(S)=0  corresponds to a perfectly pure 
( p ( + ] S )  = 1 or 0) subset, whereas Hc(S)= 1 
corresponds to p (+  IS) = p ( -  I S) = ½, i.e. max- 
imal uncertainty. 

The entropy of S with respect to the test T 

Hr(S) & -[p(Sy I S) log2 (p(Sv I S)) 

+p(S,  I S)logz(p(S, Is))]. (g) 

Hr(S) is a measure of the uncertainty of the 
outcome of T in S; with respect to the outcome 
of T, it has similar properties to Hc with respect 
to the classification. 

The mean posterior "classification entropy" of 
S given the outcome of T 

Hc,r(S) a--p(Sy I S)Hc(Sy) +p(S ,  I S)He(S,). (9) 

Hclr(S) is a measure of the residual impurity if S 
is split into Sy and S~ according to the outcomes 
of test T. 

The "information" provided by T on the 
classification of S 

IV(S) & Hc(S) - Hc,T(S); (10) 

IV(S) is a measure of the ability of T to produce 
pure successors. 

The normalized information gain of T 

Ccr(S) & 21~(S) (11) 
He(S) + Hr(S) " 

Remark. The measures defined in (7)-(10) are 
expressed in bits whereas that in (11) is 
dimensionless. 

2.4.2. Interpretation. It is possible to give a 
qualitative interpretation of the relation between 
ccT(s) and the classification ability of the test T. 
To this, first observe that the following 
inequalities can be easily shown: 

0 < Hc(S), HT(S), HCIT(S ), I~(S), Ccr(S) - 1 

(12) 
Hc,T(S), I (S) <-- He(S). (13) 

Then consider the two following extreme cases: 
1. The outcome {"YES", "NO"} of T and 

the classification {+, - }  are statistically inde- 
pendent, i.e. the test T provides no information 
at all about the classification. In this case 

p(+ I Sy )=p (+  ] S , ) = p ( +  IS) and 

p ( - [ S y ) = p ( - ] S , ) = p ( - I S ) .  (14) 

Thus, Hc(Sy) = Hc(S,) = Hc(S) and according to 
(9), Hcir(S)= Hc(S). In addition, by virtue of 
(10) and (11), 

i (s) = c (s) = o.  

2. The outcome of T provides pure classified 
subsets Sy and S,. Then necessarily Hc(Sy)= 
Hc(S,) = 0. According to (9), this implies that 
Hclr(S) =0  and IcT(s) =Hc(S).  Moreover, in 
this case the probability p(Sy IS) (resp. 
p(S, IS)) will be equal to either p (+  IS) (resp. 
p ( -  IS)) or p ( -  IS) (resp. p (+  IS)), and thus 
Hr(S) = Hc(S) and 

C~(S) = 1. 

From the above it follows that the higher the 
value of cV(s), the more interesting the test T 
for splitting the node corresponding to S. This is 
exploited in Section 2.5 to define the optimal 
splitting rule, used in the building of DTs. 

2.4.3. Estimation on the basis of the sample 
of learning states. The information and entropy 
measures defined in (7)-(11) cannot be comp- 
uted directly since the probabilities involved are 
generally unknown. Therefore, we use the 
learning set as a statistical sample and estimate 
the probabilities by their empirical values 
computed in the LS. More precisely, the set S, 
corresponding to some node of the DT, is 
replaced by the subset of learning states (i.e. 
SNLS) corresponding to this node. The 
computation of p (+  IS), p ( -  IS), p(Sy IS) and 
p(S~ IS) of this subset is then straightforward, 
since the classification and attribute values of the 
learning states are known. 

It should be noted that, although the estimates 
of p(+  IS), p ( -  IS), p(Sy IS) and p(S, IS) are 
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generally unbiased, their substitution in (7)-(11) 
provides rather optimistically biased information 
measures, thus overestimating the actual "good- 
ness" of the test T. Fortunately, the amount of 
bias is inversely proportional to the sample size 
(the number l of states in SOLS) and the 
measures may still be used for comparison 
purposes, e.g. in order to select an "optimal" 
test for splitting the node. 

For example, it can be shown (Kv~lseth, 1987) 
that for an actual value of I~(S)=0 (no 
correlation), its estimate 

i = t~(S n LS) (15) 

has a x-square like distribution, the expectation 
(or bias) of which is positive and inversely 
proportional to the number l of states in S n LS. 
This property is exploited below, in the stop 
splitting criterion. 

In the sequel, to emphasize the difference 
between the purity measures and their estimates, 
we will call the latter "apparent" as opposed to 
the "real" unknown values. 

2.5. On the optimal splitting criterion 
Obviously, the splits at the test nodes should 

be selected so as to avoid to the extent possible 
the appearing of deadends (i.e. of impure 
terminal nodes, see the definition given below in 
Section 2.6), and to obtain the desired degree of 
accuracy. This is done in a more or less heuristic 
(not necessarily optimal) fashion: the best test 
(defined by the optimal attribute together with 
its optimal threshold value, see Section 2.3), is 
considered to be the one which separates at most 
the states of the two classes in the local learning 
subset. This strategy amounts to selecting the 
split which yields the purest direct successors, or 
maximizes the apparent normalized information 
gain C~(S n LS) defined in (11). In that sense, it 
may be considered to be locally, rather than 
globally optimal. 

2.6. Stop splitting method 
Many methods were proposed. For example, 

ID3 (Quinlan, 1986) stops splitting at a node 
only if the corresponding learning subset is 
completely included in one of the classes of the 
goal partition. Unluckily, in many situations, as 
shown by our experience, this strategy tends to 
build overly complex DTs, most of the terminal 
nodes of which contain only a very small and 
unrepresentative sample of learning states. They 
perform generally badly with respect to unseen 
situations and are unable to indicate in a reliable 
way the inherent relationship between the 
attributes and the goal classification. To 
circumvent this difficulty we propose a more 

conservative criterion, which stops splitting a 
node if one of the following two conditions is 
met: 

1. The local subset of learning states is 
sufficiently class pure. Such a terminal node will 
be called a leaf in the sequel. The degree of class 
purity required for leaves is a parameter of the 
algorithm and fixes the amount of detail we want 
the DT to express. 

Note. Actually, the degree of residual "im- 
purity" may be specified by Hm, the maximal 
residual entropy [see (7)]. The entropy of the 
learning subset relative to a node, is inversely 
proportional to its purity. Thus, in terms of 
entropy, a node will be a leaf only if its entropy 
is lower than Hm. In the practical investigations 
reported in this paper, a constant value of 
Hm=0.1 bits was used. This very low value 
amounts to building DTs as detailed as possible. 
Higher values could be of interest if one wanted 
to build simpler "first guess" DTs, for data 
exploration purposes. 

2. There is no possibility to enhance the DT 
accuracy in a statistically significant way by 
splitting this node further. In other words, given 
the optimal dichotomic split for this node, there 
is not enough evidence in the local learning 
subset, that this split would actually improve the 
real performance of the DT. Such a terminal 
node is called a deadend in the sequel. This 
second criterion prevents the building of 
unnecessarily complex DTs. It is formulated as a 
statistical hypothesis test: 

Given the local subset of  learning states and the 
optimal split, can we accept the hypothesis that 
the apparent* increase in accuracy, as measured 
in this subset, provided by the split, is a purely 
random effect? 

In quantitative terms, the statistic ~ a--cli 
(where I is the size of the local learning subset, c 
a constant and t the apparent increase in purity 
provided by the optimal split) is distributed 
according to a x-square law (with one degree of 
freedom) under the hypothesis of no real 
increase in purity. Hence, if we fix the a~-risk of 
not detecting these situations to a given value, 
testing the value of ,/i against the threshold -4or 
such that Prob(fi~---fi~cr)= a~ allows one to 
detect the cases where the apparent increase in 
accuracy is a random effect, with a probability of 
1 - a~. Figure 3 sketches such x-square probabil- 
ity density functions. 

* Apparent as opposed to real increase in accuracy, means 
the increase measured in the LS as opposed to the increase 
measured for unseen states. 
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~ f . . . . . 3  degrees of [reedom 

FIG. 3. ;c-square probability density functions of ,4. 

Thus, the or-risk of the hypothesis test fixes 
the amount of evidence we require at each node 
in order to split it; the answer depends on the 
value of or, the size of the local learning set, and 
the amount of apparent accuracy improvement 
provided by the test. The question of "how 
much evidence should be required to allow the 
splitting of a node",  is related to the degree of 
representativity we impute to the learning set 
and the risk that this degree is overestimated. 
Therefore, the degree of cautiousness of the 
procedure is fixed by the user via the selection of 
the value of or. This value ranges from 1 (the 
criterion has no effect on the splitting procedure 
anymore, and the tree grows according to the 
above condition 1) to zero (no growth is 
allowed, the tree reduces to its root). 

The value of cr has indeed drastic effects on 
the resulting trees characteristics as illustrated by 
the following example (borrowed from Section 
4, below). Four DTs were grown for o~ assuming 
the values 1.0, 0.1, 0.01 and 0.0001; they were 
built on the basis of a LS composed of 500 states 
and evaluated on the basis of an independent 
test set of 1500 other states. Table 1 reports their 
complexity and accuracy, i.e. the number of 
their nodes and the percentage of correctly 
classified test states. These quite impressive 
figures illustrate that the larger trees are less 
accurate than the smaller ones and on the other 
hand that the appropriate selection of cr allows 
the building of small, yet better DTs (see also 
the discussion of Section 2.9 and the simulation 
results of Section 4.3.2). 

2.7. Comparison with the ID3 method 
The proposed inductive inference method 

originates from the ID3 algorithm, from which, 
however, it departs in some essential respects. 

TABLE l 

¢r 1.00 0.1 0.01 0.0001 

Complexity 63 55 7 5 
Accuracy 88.1 88.5 91.2 91.2 

Below, we collect the main differences between 
the two methods. 

Application domain. ID3 was initially in- 
tended to handle mainly symbolic and 
deterministic learning problems characterized by 
very large (almost complete) learning sets 
composed of objects described by discrete (or 
qualitative) attributes only. Thus, it was 
essentially designed to handle large sets of data, 
in order to compress rather than extrapolate 
their information (Quinlan, 1984). On the 
contrary, the proposed method is especially 
tuned to handle mainly numeric and 
nondeterministic problems, where the learning 
set has to be generalized in an appropriate 
fashion. The method is general enough to handle 
at the same time numeric and qualitative 
attributes and can be tuned to the degree of 
"representativeness" of the learning set, via the 
appropriate choice of the threshold cr (see 
Section 4.3 below). 

Stop splitting criterion. ID3's stop splitting 
criterion amounts to building DTs which classify 
the learning set as correctly as possible, which is 
indeed the best approach if the latter is almost 
complete. The proposed method, on the other 
hand, stops splitting earlier, as soon as the 
statistical hypothesis test alows to conclude that 
no significant improvement of the tree's accuracy 
would be achieved by developing the node 
anymore. This is quite different, and enables the 
method to take the best advantage of learning 
sets which are only partly representative of the 
possible objects. This is further discussed in 
Section 2.9 below. 

Optimal splitting criterion. ID3 considers the 
best test to be the one providing the largest 
apparent information gain i c  r. It has been found 
that this measure is biased in the favour of 
those having the largest number of succes- 
sors, especially in the context of randomness 
(Quinlan, 1986). Note that this is supported by the 
fact that the number of degrees of freedom 
of the z-square distribution (and thus its bias) 
increases linearly with the number of successors 
of a split. The normalized correlation measure 
Cc T evaluates the tests more objectively since the 
number of succesors is compensated by the term 
/4r in its denominator. 

Strategy. ID3's strategy, embodied by its 
optimal and stop splitting criteria, amounts to 
building trees which maximize the apparent 
reliability, regardless of their complexity. On the 
other hand, the strategy of the proposed method 
is to build DTs maximizing a measure of quality 
which realizes a compromise between apparent 
reliability and complexity. The latter is more 
effective in the context of incomplete and 
random data (Wehenkel, 1990). 
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2.8. Evaluation criteria 
The criteria described below (e.g. see Touss- 

aint, 1974) allow assessing the accuracy of a D T  
in general, or equivalently, its misclassification 
rate. Observe that these are only estimates, since 
in real world problems it is seldom possible to 
scan all the possible states, even in deterministic 
type problems. 

Resubstitution estimate, R ~S obtained by con- 
sidering all the states belonging to the LS, 
dropping them through the DT,  and computing 
the ratio of misclassified over the total number  
(N) of states; 

Test sample estimate, R TM obtained by con- 
sidering all the states belonging to the TS, 
dropping them through the DT,  and computing 
the ratio of misclassified over the total number  
(M) of states; 

Cross-validation estimate, R cv obtained by: (i) 
dividing the total number  of learning states into, 
say V, equally sized subsets, using one of them 
as the test set and the union of the remaining 
V - 1 as a learning set; (ii) building a DT  based 
on this learning set and assessing its accuracy on 
the basis of the test set; (iii) repeating this 
procedure V times by considering successively 
each of the V subsets as test set; (iv) taking the 
average of the V individual estimates as the final 
accuracy. The validity of the procedure implies 
that V is quite large (>10),  so that the DTs 
constructed on the basis of the ( V - 1 )  subsets 
are (almost) identical with the initial DT,  
constructed on the basis of the total number  of 
states (V subsets). For V = N this is the so-called 
"leave-one-out"  estimate. 

Remark. The above defined measures can be 
considered as more or less accurate estimates of 
the true probability of misclassifying a new state. 
They have the following characteristics. 

R ~s is easy to compute and requires no 
additional samples but is generally optimistically 
biased, underestimating the real probability of 
error. Intuitively, for fixed N, the larger the DT,  
the higher the correlation between the DT  and 
the LS, and the more biased R ~. 

R t~ is the most reliable and unbiased estimate 
and is easy to compute.  Moreover ,  if M is 
sufficiently large its variance is small. Its main 
drawback is that it requires additional states in 
sufficiently large number,  which cannot be used 
in the learning set. Another  advantage of R ts is 
that one can easily estimate its variance and 
therefrom compute confidence intervals. In the 
sequel we will consider this estimate as the 
benchmark. 

R cv combines advantages of the two preceding 
measures, since it is generally less biased than 
R ~s and does not require additional states. On 
the other hand, its variance can be very large, 
and certainly depends strongly on the charac- 
teristics of the problem at hand. In practical 
situations, when the number of samples is 
limited, it is an interesting alternative to R ts. 
Notice also that the computational burden 
required for R cv can be very heavy, since it 
needs the building of V additional DTs. 

The above considerations are illustrated in 
Section 4, on a real world example. 

2.9. On the right size of trees 
The stop splitting method introduces the 

statistical threshold parameter  tr. Varying its 
value allows to modify the size of a tree. But 
how to choose the right tree size? The choice 
should be guided by the observation that too 
large a DT will yield a higher misclassification 
rate and hide relevant relationships, whereas too 
small a tree will not make use of some of the 
information available in the LS. Indeed,  the 
terminal nodes of a too small D T  have not been 
expanded enough and this prevents from getting 
the purer subsets and the corresponding insight 
about the role that the attributes would have 
played in this expansion; a too large DT,  on the 
other hand, results from the splitting of 
statistically unrepresentative subsets; therefore,  
it is likely to cause an increase in the 
misclassification rate when classifying states not 
belonging to the LS. Stated otherwise, a tradeoff 
appears between the two following sources of 
misclassification: bias (overlooking significant 
information in the LS) and variance (badly 
interpreting the randomness in the LS): too large 
a tree will suffer from variance whereas too small 
a tree will present bias. 

2.10. Building multiclass DTs 
The above description of the inductive 

inference method made in the case of two classes 
{ + , - } ,  is general enough to handle (at least in 
principle) an arbitrary number,  say m of classes, 
provided that m remains negligible with respect 
to the size N of the LS. 

Indeed, on one hand the information theoretic 
purity measures defined in (7)-(11) may be 
generalized to m classes; on the other  hand the 
statistical hypothesis test remains applicable, 
provided that m - 1 degrees of freedom are used 
(instead of 1 in the two-class (or biclass) case) 
for the x-square law. 

Under  these conditions, the method will build 
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DTs classifying directly the states into one of the 
m specified classes. 

Another indirect possibility would be to build 
m - 1 biclass DTs and to combine them in order 
to obtain the m-class classification. 

In the investigations of Section 4 we use the 
first, direct approach. The obtained DTs are 
simpler and easier to interpret. Moreover, 
preliminary investigations indicate that they are 
at least as good, sometimes better, from the 
accuracy viewpoint, than the indirect multi- 
biclass trees. 

3. DECISION TREE BASED TRANSIENT 
STABILITY APPROACH 

Two main conjectures underlie the application 
of the tree method to transient stability 
assessment. First, transient stability is strongly 
dependent upon the contingency type and 
location; hence the idea of building a tree per 
contingency. Second, transient stability is a quite 
localized phenomenon, and is driven by a few 
number of the system parameters; hence the 
idea of proposing candidate attributes selected 
among the parameters of the system in its steady 
state condition. 

These generally well-accepted conjectures, 
have also been verified in the few cases treated 
by the tree methodology (Wehenkel et al., 
1989a, b). The case study of the next section 
attempts to further validate them by means of 
exhaustive simulations. It also provides answers 
to questions raised by the overall decision tree 
transient stability (DT-FS) method, whose prin- 
ciple is recalled below. 

3.1. Principle of the DTTS approach and related 
questions 

This may be formulated as follows: for each 
preassigned contingency, build up off-line a DT 
on the basis of a learning set and of candidate 
attributes. This tree is then used on-line to 
classify new, unseen states in as many classes as 
desired; for example, in a biclass tree, a given 
state would be classified as either stable or 
unstable, whereas in a three-class tree, the same 
state would be declared stable, fairly stable, or 
unstable. 

Below, we identify questions relevant to this 
definition and suggest answers, often anticipating 
the results of Section 4. 

3.1.1. Questions about the LS. 
(i) How to obtain the learning states; 

(ii) How to classify them; 
(iii) How many states should be used for the 

efficient construction of a DT; 
(iv) Whether the "right" size of LS should be 

dependent upon the size of the power 
system. 

Tentative answers. 
(i) Either by considering plausible scenarios 

and running a load flow program to get the 
corresponding operating states, or by using 
past records of the system real life; 

(ii) According to their CCT values, computed 
via a time-domain or a direct method as 
appropriate; 

(iii) This question is explored in the next 
section; 

(iv) The answer to this question is postponed 
until Section 5. 

3.1.2. Questions about the list of candidate 
attributes. 

(i) What kind of candidate attributes to select 
for test (6); 

(ii) How many; 
(iii) What would happen if the actually most 

relevant attribute were for any reason 
masked, i.e. discarded from the list; 

(iv) What if additional relevant attributes are 
further considered. 

Tentative answers. 
(i) Parameters of the system in its steady state, 

pre-contingency, operation; 
(ii) When no prior knowledge of the system can 

guide the selection, it is advisable to 
consider as many as possible candidates of 
the type just suggested, confined in a 
relatively restricted area surrounding the 
contingency location; note that the increase 
in computing cost is insignificant (see 
below); 

(iii) It would generally lead to somewhat more 
complex, yet quite accurate DTs, provided 
that other relevant attributes are still 
present in the list; 

(iv) See results of Section 4.3.4. 

3.1.3. Questions relating to the number of  
classification patterns. 

(i) Which are the main differences between 
trees of small and large number of classes; 

(ii) For a given misclassification rate, which type 
of trees provides narrower misclassification 
error. 

Tentative answers 
(i) One can reasonably conjecture that the 

smaller the number of classes in a tree, the 
less complex and more accurate this tree; 

(ii) Provided that the inductive inference 
method is correctly developed, it is normal 
to think that the larger the number of classes 
in a tree, the less severe the misclassification 



Decision trees and transient stability 123 

errors; indeed, in a well designed tree, 
misclassification errors will result in adjacent 
classes; it is therefore less severe to declare 
fairly stable a state which actually is stable 
(three-class tree), than to declare it unstable 
instead of stable (two-class tree) (see 
Section 4.3.5). 

3.1.4. Questions relating to computational 
aspects. 

(i) Which is the most expensive task of the 
DTI'S approach; 

(ii) How does the number of candidate 
attributes affect the computing time of a 
DT; 

(iii) How does the number N of learning states 
affect the computing time of a DT; 

(iv) How "expensive" is the storage of DTs; 
(v) How "expensive" is their use. 

Tentative answers. 
(i) The generation of a LS is undoubtedly the 

most demanding task; and the more refined 
the system modelling, the more expensive 
the task; 

(ii) According to the splitting criterion proce- 
dure described in Section 2.3, the time 
required by a DT building varies linearly 
with the number of candidate attributes; 

(iii) In terms of the size of the learning set, the 
computing time is upper-bounded by--and 
generally much lower than--N log N, i.e. 
the time required to sort the LS according 
to the values of the n candidate attributes; 

(iv) The storage of a DT is generally extremely 
inexpensive; indeed, it is proportional to 
the number of its nodes, which is found to 
be quite small (see next section); to fix 
ideas, a compiled LISP version of a 
DT-classifier composed of 25 nodes (which 
can be considered as an upper bound for 
the DT'FS method) takes about 600 
machine instructions, meaning that in the 
context of modern computer architectures 
thousands of DTs can be stored simul- 
taneously into main memory; 

(v) The mean classification time of a state by 
means of a DT is almost negligible (about 
0.6 ms for a DT comprising 25 nodes). 

given contingency: considering the appropriate 
DT, and applying to this state the test (6), one 
successively directs it through the various nodes 
of the tree, until reaching a terminal node; the 
state is classified accordingly. One could object 
that the information thus obtained is less refined 
than the CCTs used to classify the states of the 
LS; this however is not surprising, since the 
precise CCT values of the learning states are not 
fully exploited during the tree building. Weh- 
enkel et al. (1988) and Wehenkel (1988) 
proposed a means to approximately estimate the 
CCT of the state one seeks to classify, by using 
the notion of "distance to a class", whose 
definition takes into account the CCTs. This 
distance, inferred from the geometric interpreta- 
tion of a DT outlined in Section 2.2, is 
schematically illustrated in Fig. 2. One can see 
that the operating state (or point, OP) labelled 
OPn is stable, whereas the state OP1 is unstable 
and OP2 is very unstable. Moreover, it shows 
that to (re)inforce stability, one should suitably 
direct the OP in the attribute space, i.e. suitably 
modify the values of its relevant attributes. 

The above short description suggests that the 
DTrS approach can provide three types of 
transient stability assessment: analysis, directly 
linked to the classification of an OP, sensitivity 
analysis, linked to the "distance of an OP to a 
class", and control, linked to the way one can 
act to modify such a distance. Moreover, since 
the involved computations are likely to be 
extremely fast, several real-time strategies may 
be conceived. For example, one may proceed in 
a way similar to the standard "contingency 
evaluation" of steady state security assessment, 
viz.: draw up a contingency list, and build 
off-line the corresponding DTs; then, in 
real-time, scan the list, focus on those 
contingencies which are likely to create prob- 
lems, and if necessary propose corrective 
actions. Of course, care should be taken so as to 
avoid incompatible actions. But for the time 
being this question is beyond our scope. 

Finally, observe that the DTs provide also a 
clear, straightforward insight into the complex 
mechanism of transient stability. This is not the 
least interesting contribution of the DTI'S 
approach. 

3.2. Possible types of  uses of  the DTs 
Various uses can be inferred by following the 

pattern of the general DT methodology (e.g. see 
Section 2.2); many others are specific to the 
DTI'S approach. 

The use which immediately comes to mind is 
the classification of an operating state of a priori 
unknown degree of stability with respect to a 

4. CASE STUDY 
4.1. General description 

The investigations conducted in this section 
aim to answer the questions previously raised, to 
assess the salient features of the D T r s  approach 
and to test the conjectures underlying it. 

The power system we have chosen is small 
enough to avoid unnecessarily bulky computa- 
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tions, but large enough to draw realistic 
conclusions. It is composed of 31 machines, 128 
buses and 253 lines; its total generation power in 
the base case amounts to 39,000MW. This 
system is described in Lee, (1972), and sketched 
in Fig. 4. (The rationale of its decomposition is 
discussed in Section 4.2.1.) 

In this first set of large-scale simulations we 
adopted the standard simplified system modell- 
ing, i.e. constant electromotive force behind 
transient reactance for each machine and 
constant impedance for each load. 

To assess the DTTS method as objectively as 
possible, we have generated 2000 operating 
points (OPs). Two sets of simulations were 
considered, corresponding to very severe contin- 
gencies, consisting of three-phase short-circuits 
(3q~SCs) applied at generator buses (one at a 
time). The first set concerns thorough investiga- 
tions carried out with three such stability 
scenarios, of 3q~SCs applied at buses #2 ,  21, and 
49, arbitrarily chosen.* This implied the 
computation of 6000CCT values. Part of the 
OPs along with their classification have been 
used in the LS, the other part composing the TS. 
A large number of DTs have been built for the 
above three contingencies, for various sizes of 
LSs, varying values of the threshold ~r, and three 
different classification patterns, namely two-, 
three-, and four-class classifications. In the 
two-class case, one distinguishes stable and 
unstable OPs, depending upon whether their 
CCT is above or below a certain threshold CCT 
value; in the three-class case one distinguishes 
stable, fairly stable and unstable OPs (two 
threshold CCT values are used); in the four-class 
case one distinguishes very stable, stable, 
unstable and very unstable OPs (three threshold 
values). The threshold CCT values are a priori 
chosen rather arbitrarily, but so as to avoid a too 
important imbalance between the populations of 
OPs belonging to the various classes. 

The second set of simulations is described in 
Section 4.4. 

4.2. Constitution of a data base 
The data base was randomly generated on the 

basis of plausible scenarios, corresponding to 
various topologies, load levels, load distributions 
and generation dispatches. Hereaf ter  we de- 
scribe the way used to generate them, to analyse 
them from the transient stability point of view, 
and to build the attribute files. 

4.2.1. Random generation of OPs. To gen- 
erate these various states, we grouped the nodes 

* In the sequel, a contingency will often be specified by 
merely the number of the generator bus at which it is 
supposed to apply; e.g. contingency (or fault) ¢t2, #21, ~49. 

of the power system into five internal zones, and 
one external zone composed of the boundary 
nodes of the system and its external equivalents 
(Fig. 4). The internal zones were defined 
empirically, on the basis of the "electrical 
distances" (number and length of lines) connect- 
ing their nodes. The OPs composing the data 
base were generated randomly according to the 
following independent steps. 

1. Topology: it is selected by considering base 
cases (with probability 0.5) and single outage of 
a generator, a load or a shunt reactor (each with 
probability 0.08), a single line (with probability 
0.16), two lines (with probability 0.1). The 
outaged element is selected randomly among all 
the elements of the power system. 
2. Active load level: the total load level is 
defined according to a Gaussian distribution 
(with/~ = 32,000 MW and o = 9000 MW). 
3. Distribution of the active load: the total load 
is first distributed among the six zones according 
to the random selection of participation factors 
(see below), then among the load buses of each 
zone homothetically with respect to their base 
case values. The reactive load of each bus is 
adjusted according to the local base case power 
factor. This results in a very strong correlation of 
the loads of a same zone, and a quite weak one 
among loads of different zones. 
4. Distribution of the active generation: in a 
similar fashion, the total generation is first 
distributed among the zones according to 
randomly selected participation factors, then 
among the generators of each zone according to 
a second selection of participation factors. Thus, 
neighbour generators are less correlated than 
neighbour loads. The reactive generations are 
obtained by a load flow calculation. To avoid 
overloads, the final active generation of each 
generator is constrained to 90% of its nominal 
power. 

Note. In order to avoid overloading or under- 
loading the slack generator,  the total generation 
is defined as the total active load plus a 
polynomial approximation of the active network 
losses of form: 

Network Losses (MW) 

1336 - 255P~ + 19P~ - 0.7P 3 

+ 0.012P 4 - 0.00007P 5 

where P~ denotes the total active load of the OP, 
in GW, and where the coefficients were 
determined by a least squares estimation on the 
basis of 11 OPs of different load levels for which 
the network losses were computed by a load flow 
program. 
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5. Load flow calculation: to check the feasibility 
of an operating point and compute its state 
vector, it is fed into the load flow program, and 
accepted if the latter converges properly. (About 
90% of the states were accepted.) (Remember 
that the power system has 128 buses and hence 
each state vector has 2 × 128 - 1 = 255 
components.) 

Participation factors. To distribute a given 
amount of active (generation or load) power (say 
Ptot) on a number, say E, of "elements" (zones, 
loads or generators) we use the following 
procedure. 

Let p/N, ( i =  1 . . . . .  E) be the "nominal" 
power of the elements (for zonal loads we use 
the base case total load of the zone, for 
generators their nominal power and for zonal 
generations the sum of the nominal generations 
of their generators), and ).~, ( i =  1 . . . . .  E), 
positive coefficients selected randomly, accord- 
ing to the procedure described below. The 

participation of each element is individual 
defined by: 

ei &-- AieN Ptot. (16) E 
X z,e  
j--I 

Thus, the ~., coefficients act as a distortion with 
respect to the homothetic nominal power 
distribution. They are selected randomly in the 
following way: 

One third of the cases are defined by 
2~ i =  1, ( i=  1, . . . ,  E), i.e. no distortion with 
respect to the nominal distribution; 

The rest of the cases are defined by ~'i = 2, for a 
randomly selected value of j, and ).i---l, 
(i = l . . . . .  j -  l, j + l . . . . .  E) ,  i.e. a higher 
participation of the j th  element. 

4.2.2. Transient stability (pre)analysis and 
attribute calculation. To use the data base for 
investigating the DTTS approach, we carried out 
the following preliminary calculations: 

1. Approximate calculation of the CCT of the 
2000OPs, for a 3~bSC at each one of the 31 
generator buses, using the extended equal area 
criterion (EEAC) (Xue et al., 1988). This gave 
us good information about the relative severity 
of these contingencies in relation to the OPs 
represented in the data base, and allowed us to 
select three "interesting" ones for our 
investigations. 
2. Precise calculation of the CCTs of the OPs, 
for the three selected faults, using the step by 
step (SBS) method. To accelerate the iterative 
cut and try process delimiting the precise value 
of the CCT, the approximate values supplied by 

the EEAC were used as an initial guess. 
Incidentally, these latter were found to be in a 
very good agreement with those computed by 
the SBS method (over the 6000 CCT values we 
found a negative bias of -0.007s and a standard 
deviation of 0.032s of the CCTs provided by the 
EEAC as compared to those computed by the 
SBS method). 
3. Generation of the files containing the 
attribute values for the 2000 OPs. About 270 
different "primary" attributes have been com- 
puted, comprising zonal statistics on loads, 
generation and voltage, voltage magnitudes at all 
buses, voltage angles at important buses, active 
and reactive power of each generator, and 
topology information for each OP. Other 
attributes, such as line power flows, could be 
defined as simple algebraic combinations of the 
primary attributes and did not necessitate to be 
stored explicitly. The attribute files were 
constructed on the basis of the load flow data 
and state vectors. 

Overall, the data base contains about 300 
values per operating point, in addition to the 
input files required for the load flow and 
transient stability analysis programs. 

4.3. Simulation results 
Over 400 different DTs were built for various 

scenarios: three different contingencies, about 15 
different classifications, distributed almost 
equally among the two-, three-, and four-class 
patterns, learning set sizes ranging from 100 to 
1500OPs, more than 100 different candidate 
attributes, cv values ranging from 1.0 to 0.00005. 
The DTs were evaluated on the basis of 
independent test sets. 

The resulting observations are organized and 
presented in six parts (Sections 4.3.1-4.3.6), 
although they are interdependent in many 
respects. The first part analyses general DT 
features, such as complexity and accuracy, with 
respect to various classification patterns, while 
fixing the other parameters (size of the LS, value 
of tr, list of candidate attributes); this provides a 
good insight into the overall DT'FS method. The 
second part focuses on the influence of cr on the 
resulting DTs, and suggests how to select good t, 
values in practical situations. The third part 
explores the way the size of the LS affects the 
DTs, while the fourth part discusses the 
influence of the candidate attributes on the DTs. 
The fifth part examines the influence of the 
number of classes on the misclassification rate 
and severity. Finally, the sixth part compares the 
different accuracy estimates defined in Section 
2.8. 
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TABLE 2. TREE FEATURES AS RELATED TO THE NUMBER OF 
CLASSES. ~ = 0.0001, N = 500, M = 1500 

Two classes Three classes Four classes 
Gen. 
bus # N, RtS(%) A N t R t S ( ° ~ )  A N t Rts(%) A 

2 7 2.27 3 17 5.67 4 27 9.60 7 
21 9 3.73 3 17 3.60 4 25 8.40 6 
49 5 1.53 1 9 4.33 2 15 7.53 3 

4.3.1. General tree characteristics. DTs cor- 
responding to three different classifications 
patterns (of two, three and four classes) are built 
for each of the three different contingencies 
under the following conditions: the data base 
(2000OPs) is divided in a LS composed of 
N=500OPs  and a test set composed of the 
M = 1500 remaining OPs (this fairly large size 
provides a high precision to the R ts estimate); 
the value of tr is fixed to 0.0001 (the justification 
of this choice will be found below); and the list 
of candidate attributes, the same for each DT, is 
composed of 81 static variables. 

The results are summarized in Table 2. The 
first column specifies the faulted bus number of 
the contingency. The nine following columns 
specify for the indicated contingency and 
number of classes, the characteristics of the 
resulting DT:Nt, the total number of its nodes 
(which measures its complexity); R ts, its test 
sample estimate, representing the percentage of 
misclassified test states; A, the number of 
different retained attributes among the 81 
candidates. This is repeated for the three 
contingencies, providing the features of nine 
DTs listed in the table. 

The same set of investigations was repeated 
three more times, with three other learning sets 
of the same size (each of 500 states), in order to 
detect the variability of the DTs with the LS. 
The obtained results are very similar to the 
above, and induce the following conclusions: 

--The complexity increases from the very simple 
two-class trees to the moderately complicated 
three- and four-class ones; 

--Their accuracy is quite satisfactory especially 
in the two- and three-class cases; the four-class 
trees are less accurate but, as we discuss 
below, their errors are less harmful; 

--The error rate varies only moderately with the 
fault location; 

--The total number of retained attributes 
remains overall very small. 

This latter aspect justifies the conjecture that 
transient stability is a localized phenomenon and 
highlights the ability of the method to select the 
relevant attributes. (A worth mentioning fact 
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Nt(~t = 1) ~, 2 classes 

[] 3 classes ~ - - ~  
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FIG. 5. Influence of tr on the normalized number  of nodes. 
N = 500, M = 1500. 

which does not appear in the table, is that the 
selected attributes are essentially variables 
related to buses very close to the faulted one.) 

4.3.2. Impact of the parameter o:. For a given 
LS, attributes list and classification pattern, the 
principle of the stop splitting criterion suggests 
that the lower the value of te the smaller the 
resulting DT. Although this reduction in 
complexity is certainly interesting from many 
viewpoints, it could also cause the DTs to be less 
accurate, as indicated by our earlier discussions. 
Hence, the necessity of scrutinizing the effect of 
tr on the complexity and accuracy of the DTs. 

These observations were extensively investig- 
ated using different faults, numbers of classes, 
and learning sets. They yielded the following 
conclusions: 

• The most important reduction of a DT's 
complexity is obtained as soon as a~ enters the 
range 0.001 to 0.0001; quantitatively, this 
effect is more marked in the three- and four- 
class cases; 

• Although lower values of tr still reduce 
(sometimes significantly) the size of the DTs, 
the effect is generally less spectacular; 

• The DTs corresponding to tr = 0.00005 can be 
two to ten times smaller than those cor- 
responding to te = 1.0; besides: 

• When cr decreases from 0.005 to 0.00005, the 
accuracy of the DTs varies very slowly, and 
generally insignificantly (cf. the statistical 
uncertainty of RtS). 

R"(¢,) 
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z~ 2 classes 
[ - ] ~ .  I'~ 3 classes 
• \ ~ \  • , o ,  . . . . .  
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T 

FIG. 6. Influence of a~ on the normalized test set error  
estimate. N = 500, M = 1500. 
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Figures 5 and 6 illustrate graphically the above 
observations in the two-, three-, and four-class 
situations. In each class, the curves represent the 
mean relative variations of the size, (Nt), and of 
the misclassification r a t e  (RtS) ,  of 132 DTs (each 
point of the curves represents the mean value of 
12 different DTs built for the corresponding 
value of or). 

The following example provides an insight into 
the way the value of tr operates in the particular 
case where the attributes contain less informa- 
tion (i.e. the "less separable" case). This 
corresponds to a LS of 500 states, a biclass 
pattern, and seven values of tr ranging from 1.0 
(the nodes are split until they are all leaves) to 
0.00005 (extremely "cautious" behavior). Seven 
DTs were accordingly built, for the contingency 
#2, where the most important attribute (PG122, 
the active power generated at the bus #112) was 
removed from the list of candidate attributes. 
Table 3 summarizes the results. Columns 2-5 list 
the number of respectively test nodes, leaves, 
deadends, total. (Note that since the DTs are 
binary, they always have as many nodes as the 
double of test nodes plus one: Nt = 2Nts + 1). 
The following three columns of Table 3 provide 
the misclassification rate as appraised by 
respectively the resubstitution, the test sample, 
and the cross-validation estimate; incidentally, 
observe the optimistic character of R ~S, and to a 
much lesser extent, of Rcv. 

One can see that decreasing the value of c~ in 
the interval [1 .0 . . .  0.01] not only drastically 
reduces the complexity of the DTs but it 
moreover significantly improves their accuracy. 
On the other hand, in the interval 
[0.01. . .  0.00005] the size of the DTs decreases 
moderately, whereas their accuracy remains 
unchanged. Figure 7 is an eloquent illustration of 
the decrease in complexity: for o~=1, N, 
amounts to 63, whereas for o~=0.0001 Nt 
reduces to 5. Notice that the two DTs have the 
same structure nearby their respective roots. 

The general conclusions are the following: 

1. The statistical hypothesis test is able to detect 
and identify the deadends in a very efficient and 

TABLE 3. IMPACT OF ~ ON COMPLEXITY AND ACCURACY IN 
THE LESS SEPARABLE CASE OF A BICLASS PATTERN N = 500, 

M = 1500, CONTINGENCY # 2  

o~ Nt~ N~ Naa N t R'~(%) R t ~ ( % ) R ¢ ~ ( % )  

1.00000 31 32 0 63 0.6 11.9 10.2 
0.10000 27 26 2 55 1.0 11.5 7.4 
0.01000 3 3 1 7 6.0 8.8 7.4 
0.00500 3 3 1 7 6.0 8.8 7.4 
0.00050 3 3 1 7 6.0 8.8 7.4 
0.00010 2 2 1 5 6.0 8.8 7.2 
0.00005 2 2 1 5 6.0 8.8 7.2 

reliable manner, provided that the value of tr is 
lower than 0.001; 
2. Using tr values below 0.001 provides the 
twofold benefit of reduced complexity and 
improved reliability; this effect is even more 
important in the less separable cases, where the 
"variance" effect can be very important; 
3. The precise value of tr, realizing the best 
compromise between what are called "variance" 
and "bias" in Section 2, lies somewhere in 
between 0.001 and 0.00005; the lower the 
number of classes, the lower the "optimal" 
value; moreover, the higher the contribution of 
the variance effect (e.g. the lesser the informa- 
tion contained in the candidate attributes), the 
lower the optimal value of re; 
4. Anyhow, the bias effect remains very low (it 
would probably appear markedly for values of tr 
much lower than 0.00005); thus the precise value 
of tr is practically of no concern, as long as it lies 
in the range [0.001.. .  0.00005]; 
5. Hence, considering that for a required 
accuracy, the smaller the trees the better, it is 
advisable to use or=0.0001 in all cases; 
sometimes it is even preferable to sacrifice a 
little accuracy for simplicity of the tree structure. 

Remark. Although the above conclusions are 
drawn in the specific context of transient 
stability, preliminary investigations indicate that 
they correspond to the very nature of the 
statistical hypothesis test, and should remain 
valid in general. (Wehenkel, 1990). 

4.3.3. On the size of the LS. One may 
distinguish the following three questions: 

How does the size of the LS influence a DT's 
complexity and accuracy? 

What is the minimal number of learning states 
required to achieve an acceptable accuracy? 

How "stable" is the DT when the LS changes? 
or stated otherwise, how sensitive is the 
structure of the DT to the changes of the LS? 

Qualitatively, according to the principle of the 
inductive inference method, one can say that, for 
a given value of c~, increasing the size of the LS 
will generally (although not necessarily) increase 
the complexity and the accuracy. 

Quantitatively, the answer to the first two 
questions strongly depends on the particular 
application of concern and especially on the 
intricacy of the underlying relationship between 
the attributes and the classification pattern. The 
more intricate this relation, the larger the 
sufficiently accurate DTs and the larger the LS 
required to build them in a reliable fashion. 

As regards stability, we generally found that 
the nodes near the root of the DT (which 



Decision trees and transient stability 129 

o -- 1.0 = 0.0001 

PG2 < 162.~ 

1~113. 91971 

PG2 < 7,17.07 

P~II3 < 714 ~5 

PG2<~ 

p L+/.3 O71589 90~ 

PG 113 < 5,~.3.12 

I'v32 < 507 83 ~ r  

P["+7+3 < ~ p ~ 9 . 1  i 
PL-Z3 < 5O76.28 

pt.-Z3 < 5O99.7O 

. " • . 
m 

1~32 < 757.88 

~ 3  

~ . 7 1  

l i  

FIG. 7. Typical variation of tree structure with ol 

express the most relevant relationships) do not 
change much when N increases, whereas the 
lower nodes (expressing the details) can change 
more significantly. 

To illustrate and support  these considerations, 
we conducted the following investigations: for 
the contingency #21,  re=0.00005,  and in the 
four-class pat tern,  six DTs were built with N, the 
size of the learning set, varying from 100 to 1250 
states. Each D T  was tested on the basis of  the 
remaining M - - 2 0 0 0 -  N test states. The results 

PG2 < 762.62 

PG113 < 919.71 
kl  m 

~ UNSTABLE 

[ ] S T A B L E  

(biclass DTs for contingency #2, N = 500). 

are represented graphically in Figs. 8 and 9. One 
can see that for increasing values of  N the error  
rate decreases from 12.2% to 5.5%, whereas the 
number  of the trees '  nodes increases from 9 to 
43. At  the same time, the number  of retained 
attributes is found to increase f rom 2 to 11. 
Figure 10 provides two DTs,  built for N - - 2 5 0  
and 750, and having respectively N t - - 9  and 25, 
and A = 2 and 7. Observe the stability of the 
DTs. 

These and many other  similar results indicate 

AUTO 27:1-I 
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that a size of 500 learning states seems to be a 
good compromise, allowing the building of 
sufficiently reliable and moderately complex 
DTs. 

4.3.4. Candidate attributes. What would hap- 
pen if the most relevant attribute (i.e. the one 
selected for the test at the tree root) were 
removed from the list of candidate attributes? 
and what if additional candidate attributes were 
provided to the procedure? 

Removing from the candidate list the most 
significant attribute, causes a decrease in the 
accuracy of the DT; however, if "good"  
alternative attributes remain in the list, this 
degradation is rather restricted. A ground of 
comparison has been given by Tables 2 and 3. In 
Table 2 a DT composed of 7 nodes was obtained 

for the two-class case corresponding to contin- 
gency #2 ,  when a sufficiently complete list of 
candidate attributes is used (including in 
particular the most relevant attribute for this 
case, namely PGll2, the active power generated 
at bus #112). Table 3 indicates the effect of 
removing PGu2 from the list of candidate 
attributes: the tree corresponding to 0c = 0.0001 
reduces to 5 nodes and its probability of 
m i s c l a s s i f i c a t i o n  R ts increases from 2.27% to 
8.80%. This is further illustrated in Fig. 11, 
where the two biclass trees are presented: 
obviously, removing the best attribute, has 
caused a degradation of the tree's accuracy 
which, nevertheless, remains quite good (8.80% 
vs 2.27%). 

Conversely, providing additional relevant 
attributes will generally improve the DT 
accuracy; however, if the most significant ones 
are already included in the list, only the lower 
parts of the DT will be affected, and the increase 
in accuracy will be almost negligible. 

As a conclusion, if the important attributes are 
not known a priori, it is advisable to use an as 
large as possible list of candidate attributes. The 
first constructed DT identifies itself the relevant 
attributes, which can be used for subsequent tree 
constructions, possibly in addition to new ones. 

4.3.5. Misclassification errors as related to the 
number o f  classes. In Section 4.3.1 we observed 
that the larger the number of a tree classes, and 
the larger its complexity and misclassification 
error rate. This is not surprising though: for a 
given LS, the more detailed the information one 
wants to extract, the larger its inaccuracy; as a 
counterpart,  one may reasonably expect this 
inaccuracy to be less harmful. 
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FIG. 11. Effect of  removing the best at tr ibute PG112 
(contingency # 2 ,  tr = 0.00005, N = 500). 

All our investigations corroborate this reason- 
ing. A typical case is considered in Tables 4 and 
5, which collect data for respectively a two- and 
a three-class tree, built for the contingency #21, 
c~=0.00005, N = 5 0 0  and M = 1500. The true 
classification of these 1500 test states is reported 
in the columns of the tables, where the labels 
VU, U, S, VS stand for respectively very 
unstable, unstable, stable, very stable. Their 
classification as provided by the (biclass and 
four-class) trees, is reported in the rows of the 
tables; an additional row provides the misclas- 
sification rates. These latter are overall quite 

TABLE 4. TYPICAL MISCLASSIFICATION ERRORS OF A TWO- 

CLASS TREE. C~ = 0 .00005 ,  N = 500, M = 1500 

True  classification 

U S All 

Tree U S I 723 56 6295 752 748 
classification 

All 779 721 1500 

Errors (%) 3.73 1.67 5.4 

TABLE 5. TYPICAL MISCLASSIFICATION ERROR DISTRIBUTION 

OF A FOUR-CLASS TREE. cr = 0.00005, N = 500, M = 1500 

True  classification 

VU U S VS All 

VU [ 461 29 0 0 490 
Tree U | 8 217 8 0 233 

classification S / 7 56 189 8 260 
VS 0 1 20 496 517 

All 476 303 217 504 1500 

Errors (%) 1.0 5.73 1.87 0.53 9.13 

reasonable, as is also suggested by the strongly 
diagonal dominant character of the "kernel" of 
the tables. 

Observe also that the total error of the biclass 
tree is lower than of the four-class tree; but the 
latter error is less misleading than the former; 
for example, declaring unstable a state which is 
actually stable is less misleading in the four-class 
than in the biclass tree, because of the finer 
definition of the four classes. Stated otherwise, 
in the four-class tree, a large majority of errors 
appear among neighboring classes (e.g. see Fig. 
12): the error distribution concentrates mainly 
around the true class and the number of 
"outliers" almost (if not totally) reduces to zero. 
Observe also that a finer exploration and 
identification of the misclassified states indicates 
that in the biclass tree these latter mainly 
concentrate in the vicinity of the stable-unstable 
borderline as well; hence their misclassification is 
not totally misleading, after all. 

4.3.6. On the accuracy o f  the R t' and R co 

estimates. To quantify the considerations of 
Section 2.8, we have compared the accuracy of 
the R Is and R cv estimates with respect to R ts 

considered as the benchmark, because of its high 
reliability. 

PG49 < 751.34 
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FIG. 12. Typical bi- and four-class trees (contingency #49 ,  c~ = 0.00005, N = 500). 
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With respect to R nS, we observe the following: 
• In all cases, it is strongly optimistically biased; 
• The bias varies from almost 100% underes- 

timation for the high values of a~ to 
approximatively 40% underestimation for 
tr = O. 00005; 

• For a fixed value of or, the bias decreases 
slowly when the number N of learning states 
increases; 

• The bias could become acceptable only for 
values of cr much lower than 0.00005; 

• Thus, for "good"  values of oL resulting from 
our earlier discussion, this measure is of no 
practical value for the estimation and com- 
parison of accuracies. 

Regarding the accuracy of R cv, we observe the 
following: 

• For a given DT, its precise value is almost 
independent of the value of the parameter  V, 
as long as this value is larger than 10. 

• Rcv sometimes overestimates, sometimes un- 
derestimates the DTs actual accuracy, de- 
pending on the particular DT  of concern; 

• Defining the error of  Rcv by E cv =~ Rcv - R ts we 
found that the mean value of E ~v over 14 
different DTs and for different values of V, is 
- 0 . 1 7 % ,  whereas the standard deviation of 
E cv is 2.15% (for the purpose of comparison 
we mention that the variance of R ts, is about 
0.7% for M = 1 5 0 0 ,  and about 2% for 
M = 150); 

• This corroborates our earlier statement that 
the variance of R cv is rather high; 

• As a conclusion, this estimate is particularly 
interesting when the total number of observa- 
tions (N + M) is too small in practice to be 
split into an LS and a sufficiently large 
(M > 500) test set. 

4.4. A global set of simulations 
Another set of simulations concerning a less 

refined but more global investigation than that of 
the previous Section 4.3 has been carried out 
using the same data base of 2000OPs: 31 
contingencies of the 3q~SC type, successively 
applied at each generator bus of the 31-machine 
system which have been pre-analysed via the 
extended equal area criterion. Table 6 collects 
information for the two-, three-, and four-class 
patterns (Nt and A stand for the total number of 
nodes and of selected attributes). Its last line 
summarises the mean characteristics of the DTs 
in terms of the number of stability classes. 

Note that their complexity and accuracy 
depend almost linearly on the number of classes. 
Observe also that in terms of accuracy, this 
global assessment is certainly pessimistic, un- 
favorable to the method. This is due to the fact 

TABLE 6. GLOBAL ASSESSMENT 3q~SC APPLIED AT EACH 
OENERATOR nUS el = 0.0001, N = 500, M = 1500 

Two classes Three  classes Four classes 
Gen. 

Bus # N t RtS(%) A N t RtS(O/b) A N t Rts(%) A 

2 7 2.67 3 19 5.40 5 25 9.53 6 
11 7 3.73 2 17 6.67 6 21 11.40 4 
19 5 4.33 2 13 11.73 2 27 11.87 8 
21 5 4.00 1 17 5.60 5 19 8.13 5 
22 5 3.93 1 17 7.13 5 21 10.47 3 
29 3 2.47 1 9 4.33 2 15 7.87 4 
30 5 3.93 2 17 8.07 6 23 9.60 6 
39 3 2.07 1 7 4.27 1 9 5.60 2 
41 7 3.87 2 19 13.20 5 25 12.67 6 
44 9 2.73 2 13 6.20 5 15 9.20 3 
48 15 4.67 4 23 8.27 7 27 15.87 6 
49 3 1.93 1 7 5.07 1 13 9.47 2 
50 15 3.73 5 23 9.13 7 29 11.80 9 
59 7 5.13 3 17 7,33 5 23 12.33 5 
65 5 2.27 1 15 3.40 3 11 6.73 2 
66 3 1.67 1 9 3.40 3 17 6.33 4 
70 7 3.00 2 11 7.93 3 19 7.93 5 
71 7 3.27 2 15 8.40 5 21 12.67 6 
72 5 2.20 2 9 5.33 3 l 1 9.20 3 
73 3 2.73 1 11 5.13 3 19 7.87 4 
74 17 4.20 6 23 8.87 6 31 17.07 9 
75 5 3.13 1 11 3.87 2 19 10.27 6 
79 3 2.00 1 9 4.80 2 15 7.40 4 
84 9 4.33 3 13 8.20 3 25 10.40 7 
95 5 2.00 2 15 6.13 4 21 8.67 4 

112 9 1.93 3 15 5.00 3 15 5.40 3 
113 5 5.00 2 15 8.67 5 29 11.40 8 
123 11 5.60 4 9 8.13 3 31 9.73 9 
124 7 2.53 2 15 3,80 4 15 9,47 3 
129 7 4.00 2 19 9.47 5 17 13.53 6 
132 7 1.73 2 7 5.80 1 13 8.47 3 

Mean values over 31 contingencies 

6.8 3.25 2.2 14.2 6.72 3.9 20 9.95 5.0 

that the candidate attributes used to construct 
the trees have been chosen so as to cover the 
whole power system; no particular care has been 
taken to consider a more refined list of attributes 
around the contingencies locations. (Remember  
that for the 31 contingencies, only 83 attributes 
are used, often not close enough to some of 
them.) Another ,  although less important source 
of inaccuracy is the fact that the CCTs used for 
classifying the OPs of both the LS and the TS 
have been computed via the E E A C  and not the 
numerical integration method; this, unavoidably 
introduces a small bias in most cases. More 
detailed information may be found in Wehenkel  
(1990). 

5. DISCUSSION 

The questions posed and the answers given in 
the preceding sections are reorganized so as to 
draw general conclusions. Some pertain specifi- 
cally to the DT-FS method,  some others apply to 
the DT methodology in general. 

The statistical test used to stop splitting the 
nodes of a grown tree appears to work very 
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satisfactorily. Its threshold cr provides an 
effective tool for controlling the complexity and 
the accuracy of the resulting tree. It is 
particularly interesting that simplicity and 
accuracy of a DT are not contradictory 
objectives, at least in a rather large range of the 
tr values. Indeed, in this range, decreasing tr 
does not significantly affect the accuracy, 
whereas it contributes to drastically decrease the 
number of nodes of the tree. Incidentally, this 
explains a posteriori the good performances 
obtained in our earlier investigations where tr 
was fixed rather arbitrarily to 0.01. Overall, the 
simplicity and accuracy of the trees provided by 
the method are quite remarkable. This seems to 
be a general feature of the inductive inference 
method we developed to build DTs. 

The particular DTTS approach proves also to 
be very effective in many respects, and the 
underlying conjectures fully justified. For ex- 
ample, among the large number of attributes 
proposed to the method, only a few are retained 
as the relevant parameters driving the transient 
stability phenomena. Moreover, increasing the 
number of classification patterns of a tree 
provides additional relevant attributes; this 
allows to get a more refined insight into the 
mechanism of the phenomena, and to offer 
additional means to control transient stability. 
The interplay between biclass trees--with 
extremely simple structures and reduced number 
of relevant attributes, and multiclass trees---with 
more complex (yet tractable) structures and 
larger (yet restricted) number of attributes, is 
another attractive feature of the method, which 
thus shows to be very flexible and stable. This 
stability of a tree with respect to the attributes is 
a very interesting aspect, indeed: it amounts to 
systematically using the same, more relevant 
attributes nearby its root, whatever the number 
of its classes and its complexity. 

The tradeoff between bi- and multiclass DTs 
appears thus to be a great asset of the DTTS 
method, not a drawback. Various solutions, 
supplementing different, complementary infor- 
mation extracted from a LS, may thus be ex- 
ploited for various purposes, even at the price of 
a somewhat lesser accuracy in the multiclass case. 

Investigations relating to the construction of 
an "adequate" LS have pointed out another 
interesting aspect, namely that reasonable sizes 
of LSs are sufficient to build reliable DTs. On 
the other hand, the states composing the LSs 
were chosen on a statistical basis, the purpose 
sought here being the objective assessment of 
the DTI'S method. Note that in a real world 
context, this choice should take into account 
requirements imposed by the power system of 

concern, specified in collaboration with the 
engineers and operators in charge of the system. 
Reconsidering the "right size" of a LS, one may 
wonder to which extent this should depend on 
the size of the power system. To answer this 
question, one probably should specify whether 
the purpose is to build trees for contingencies 
spread throughout the whole system, or whether 
one seeks to explore some particular contin- 
gencies. In the former case, a LS covering the 
whole power system, with sufficiently detailed 
information, would indeed be needed; its size 
would therefore increase with that of the power 
system. In the latter case, the LS should 
essentially contain detailed information only for 
the regions of concern for these contingencies. 

One could object that the above conclusions 
rely on the particular, very severe type of 
contingencies considered sofar, and also on 
particularly simplified system modelling. How- 
ever, our objective was the validation of the 
method as such; we believe that this objective 
has been encountered. 

Certainly, to be interesting a method has to be 
computationally tractable. The considerations of 
Section 3.1.4 indicate that the main, and in fact 
sole, really burdensome task is the construction 
of the data base. But this has to be done only 
once, then occasionally updated. The construc- 
tion of the DTs, although also off-line, is a less 
demanding task; and the better the knowledge of 
the power system, the faster the construction of 
its trees. Once constructed, the storage .and use 
of the DTs are extremely inexpensive; thousands 
of DTs could be simultaneously stored into main 
memory; as for the mean classification time, it 
was assessed to be about 0.6ms, i.e. almost 
negligible. 

The way of using the DTs was not considered 
in this paper; only classes of possible uses were 
enumerated, and prospects for their real-time 
applications to transient stability analysis, 
sensitivity analysis and preventive control were 
suggested. Nevertheless, other interesting ap- 
plications of the DTTS approach may be 
foreseen as well, in the context of training 
simulators, and of planning studies. 

6. CONCLUSION 

Two main objectives have been pursued in this 
paper. First, to get in-depth knowledge of the 
inductive inference method designed in our 
previous studies, and more specifically of its stop 
splitting criterion. Second, to scrutinize the basic 
features of the decision tree transient stability 
(DTI'S) method, i.e. of the inductive inference 
method as applied to transient stability of power 
systems. 
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To encounter these objectives, a large-scale 
investigation was conducted, using a realistic 
power system. The obtained results are quite 
interesting. As regards the inductive inference 
method, it was proven to be very efficient, 
indeed, appropriate to yield simple and accurate 
DTs; and although it would be hazardous to 
compare methods used in different application 
domains, one nevertheless may say that it 
appears to be among the very effective methods 
reported in the technical literature. 

Concerning its application to transient stabi- 
lity, the devised DTTS method has exhibited 
very attractive features, with manifold potential. 
For example, it was found to be capable of 
treating the three aspects of transient stability 
assessment, viz. analysis, sensitivity, and control. 
It could therefore be exploited in planning 
studies. At least as interesting are its real-time 
aspects, and its capabilities in on-line transient 
stability assessment and preventive control. 

Admittedly, many other questions still remain 
unexplored. This study was the first, indispen- 
sable step towards real world application of the 
DTI~S method. 

REFERENCES 

Bergen, A. R. (1986). Power System Analysis. Prentice Hall, 
Englewood Cliffs, NJ. 

Breiman, L., J. H. Friedman, R. A. Olshen and C. J. Stone 
(1984). Classification and Regression Trees. Belmont, 
Wadsworth. 

EPRI EL-4958 Project 2496-1 (1987). Dynamic Security 
Assessment for Power Systems: Research Plan. Final 
Report. 

Friedman, J. H. (1977). A recursive partitioning decision 
rule for nonparametric classification. IEEE Trans. 
Computers, C-26, 404-408. 

Kononenko, I., I. Bratko and E. Roskar (1984). 
Experiments in automatic learning of medical diagnosis 
rules. Technical Report. Jozef Stefan Institute, Ljubljana, 
Yugoslavia. 

Kv~lseth, T. O. (1987). Entropy and correlation: some 
comments. IEEE Trans. Syst, Man Cybern., SMC-17, 
517-519. 

Lee, S. T. Y. (1972). Transient stability equivalents for power 
system planning. Ph.D. Thesis, Massachusetts Institute of 
Technology, MA. 

Quinlan, J. R. (1984). Learning efficient classification 
procedures and their application to chess endgames. In R. 
S. Michalski, J. G. Carboneil and T. M. Mitchel. Machine 
Learning: An Artificial Intelligence Approach, pp. 
463-482. Springer, Berlin. 

Quinlan, J. R. (1986). Induction of decision trees. Machine 
Learning, 1, 81-106. 

Ribbens-Pavella, M., and F. J. Evans (1985). Direct methods 
for studying dynamics of large scale electric power 
systems---A survey. Automatica, 21, 1, 1-21. 

Toussaint, G. T. (1974). Bibliography on estimation of 
misclassification. IEEE Trans. Inf. Theory, IT-120, 
472-479. 

Wehenkel, L., Th. Van Cutsem and M. Ribbens-Pavella 
(1986). Artificial intelligence applied to on-line transient 
stability assessment of electric power systems. Proc. 25th 
IEEE Conf. Decision and Control, pp. 649-650. Athens, 
Greece. 

Wehenkel, L., Th. Van Cutsem and M. Ribbens-Pavella 
(1987). Artificial intelligence applied to on-line transient 
stability assessment of electric power systems. Proc. lOth 
IFAC World Congress, pp. 308-313, Munich, F.R.C. 

Wehenkel, L., Th. Van Cutsem and M. Ribbens-Pavella 
(1988). Decision trees applied to on-line transient stability 
assessment of power systems. Proc. IEEE int. Symp. on 
Circuits and Systems, Vol. 2, pp. 1887-1890, Helsinki, 
Finland. 

Wehenkel, L. (1988). Artificial intelligence methods for 
on-line transient stability assessment of electric power 
systems. Proc. Syrup. on Expert Systems Application to 
Power Systems, pp. 5.1-5.8, Stockholm-Helsinki. 

Wehenkel, L., Th. Van Cutsem and M. Ribbens-Pavella 
(1989a). Inductive inference applied to on-line transient 
stability assessment of electric power systems. Automatica, 
25, 445-451. 

Wehenkel, L., Th. Van Cutsem and M. Ribbens-Pavella 
(1989b). An artificial intelligence framework for on-line 
transient stability assessment of power systems. IEEE 
Transactions Power Systems, PWRS-4, 789-800. 

Wehenkel, L. (1990). Une Approche de l'Intelligence 
ArtificieUe Appliqu~e h l'Evaluation de la Stabilit~ 
Transitoire des R~seaux Electriques, Ph.D. Thesis (in 
French), University of Liege, Belgium. 

Xue, Y., Th. Van Cutsem and M. Ribbens-PaveUa (1988). A 
simple direct method for fast transient stability assessment 
of large power systems. IEEE Trans. Power Systems, 
PWRS-3, 400-421. 


