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Abstract - The paper describes how rough set theory can
extract decision rules from the data acquired by relays and
circuit breakers. The methodology correctly estimates the
fault section and can help operators in their decision making
process. Developing a knowledge based diagnostic system is
always costly and time consuming. Extra and superfluous
conditions in a knowledge base may lead to serious inconve-
niences especially in rules maintenance. Reducing the size of
the knowledge base and improving the quality of knowledge
acquisition, benefits the operating behaviour of the power
system. The proposed technique not only induces the deci-
sion rules, it also reduces the size of the knowledge base with-
out the loss of useful information. Results can be used by an
expert system or a neural network to generate supervisory
automation and to support operators during an emergency
situation. The former includes the generation of HMI alarms
and the latter, the diagnosis of the type and cause of the event
and suggestions for network restoration and post emergency
repair. The PSCAD/EMTDC simulator has been used to in-
vestigate the effect of faults and switching actions associated
with a typical distribution network. The fundamental ideas
of rough set theory are discussed, followed by a rule assess-
ment method that is outlined using an illustrative example.

Keywords - fault section estimation, relays, circuit breakers,
rough sets, discernibility, rules discovery, voting algorithm

1 Introduction

THE amount of data captured within a substation has
increased significantly over recent years and human

inspection and interpretation may no longer be feasible
[1] [2]. Each data record contains a large number of pa-
rameters but only some carry the information that is re-
quired [3]. In many cases, operators find themselves hav-
ing only a vague idea of which parameters are important
for their analysis. The essential consideration of achiev-
ing highly recallable information is to determine the sig-
nificant attributes in the dataset by filtering the unimpor-
tant attributes without losing useful information [4]. Un-
like the papers [5] that make use of the supervised rough
classification to reduce the overwhelming messages arriv-
ing at the control centre for emergency support, this pa-
per presents using the same approach to rule induction for
fault diagnosis and online decision support which is sim-
ple, robust and consistent. Extracted rules can help do-
main experts gain insight into the relationships between
decision variables so that they can build a more effective
knowledge base system. The rules will also be validated
on their classification performance using the voting algo-
rithm before they are verified by domain experts.

2 Decision System

A decision system contains a set of pre-classified
events received from relays. It can be perceived as a two-
dimensional data table with a set of data (element of U)
represented by rows. Each row corresponds to an event
and each column represents an attribute. The decision sys-
tem can be formulated as D = {U,C ∪D} where uni-
verse U represents a set of time events. C defines a set of
condition attributes i.e. observations and D is a decision
attribute that contains pre-classified events. Any combina-
tion of the values for the decision attribute in D is repre-
sented by a distinct value for d. Thus, D = {d}.

To overcome the lack of real data for analysis, a typi-
cal 132/11kV substation model, as given in Figure 1, was
developed [6]. The directional relays at R5 and R6 also
include non-directional time graded earth fault elements.
This is necessary to protect the 11kV busbar and provide
backup for the 11kV feeders [7]. Relays R1, R2, R3 and
R4 all gave an identical pattern for the fault F1 and there-
fore these relays are regarded as one and labelled as “Rx”
in which x = {1, 2, 3, 4} (See Table 1). Vx and Ix rep-
resent the three phase voltages and currents respectively.
Similarly, breakers BRK6 and BRK8 are regarded as one
and labelled “BZ3”. Due to the lack of space, the time
events in Table 1 are not displayed. The normal operating
voltage range (N) is typically from 0.90 to 1.10 p.u. of the
nominal value. Lower than 0.90p.u., the voltage is consid-
ered as Low (L) and above 1.10p.u., it is high (H). As the
current varies significantly more than the voltage, a wider
range of threshold is used. The nominal current range (N)
is considered to be between 0.50 and 1.50p.u, meaning
that if the current is lower than 0.50pu, it is low (L) and
if it is higher than 1.50p.u., it is high (H). The current H1
indicates that it is flowing in the same direction that would
trigger the directional relays. d1 indicates the state classi-
fications. Normal (N) indicates that all the constraints and
loads are satisfied, i.e. the voltages and currents are nomi-
nal. Alert (A) indicates at least one current is high and the
voltages are nominal, or the currents are nominal but at
least one voltage is abnormal. Emergency (E) indicates at
least two physical operating limits are violated (e.g. under
voltages and over currents). Safe (S) is when those parts
of the power system that remain are operating normally,
but one or more loads are not satisfied after a breaker has
opened [8]. d2 is used to capture the breaker information.
d2 = 1 indicates that a breaker has opened and the respec-
tive line has been disconnected. R9, R10, R11, R12 are
excluded from Table 1 since these unit protection relays
do not contribute to this fault (F1) analysis.
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Figure 1: 132/11kV Substation model

Table 1 displays the voltage and current patterns cap-
tured by the relays in the event of fault F1. The initial data
set is too large to include in the paper, hence only change
of state is presented.

Rx R5 R6 R7 R8 BRK d
Vx Ix V5 I5 V6 I6 V7 I7 V8 I8 BZ3 d1d2

N N N N N N N N N N 0 N 0
L N N N N N N N N N 0 A 0
L N L N L N N N N N 0 A 0
L N L H L N N H N H 0 E 0
L N L H L H1 N H N H 0 E 0
L L L H L H1 N H N H 0 E 0
L L L H L H1 N H N H 1 E 1
L N L H L H1 N H N H 1 E 1
L N L H L L N H L N 1 E 1
L N L N L L N N L L 1 A 1
N N L N L L N N L L 1 A 1
N N N N L L N N L L 1 S 1

Table 1: Decision system

3 Rough Sets
3.1 Approximations

The concept of power system states cannot always be
defined in a crisp manner using the data collected in a sub-
station. This is where the notion of rough set emerges.
Rough set hinges on two basic concepts i.e. the lower and
upper approximation. The former indicates the elements
that doubtlessly belong to the set whereas the later indi-
cates the elements that possibly belong to the set. The
fundamentals of rough set theory for decision system are
excluded in this paper for they have already been made
available in the paper [5]. Nevertheless, two examples are
given to demonstrate how rough sets and the discernibility
matrix are used to compute the reducts1. A relative dis-
cernibility matrix is applied to the minimal attribute set to
look for the core2 before any rules are extracted.

3.2 Discernibility Matrix

In a decision system, the same cases could occur sev-
eral times or some attributes could be superfluous. Those

unnecessary attributes should be eliminated using a dis-
cernibility matrix. It is a symmetric n × n matrix where
n denotes the number of elementary sets [9]. Assume that
the attribute B ⊆ A and the decision table is represented
as D = (U, B ∪ {d}). The discernibility matrix, Md (B)
can thus be formulated as follows: -

Md (B) =
{
md

B(xi, xj)
}

n×n
,

md
B(xi, xj)




∅ if ∀ d ∈ D [d(xi) = d(xj)]
{r ∈ B : r(xi) 6= r(xj)}

if ∃d ∈ D [d(xi) 6= d(xj)]
(1)

where i, j = {1, ..., n} and n = |U/IND (B)|
The notion r (x) denotes the set of decisions for a

given class x ∈ U/IND (B). The entry md
B (xi, xj) in the

discernibility matrix is the set of all (condition) attributes
from B that classify events xi and xj into different classes
in U/IND(B) if r (xi) 6= r (xj). Empty set ∅ denotes that
this case does not need to be considered. All the disjuncts
of the minimal disjunctive form of this function define the
reducts of B [10].

3.3 Discernibility Functions

After the discernibility matrix has been created, the
discernibility function can be defined. A discernibility
function f (B) is a boolean function that expresses how
an event (or a set of events) can be discerned from a cer-
tain subset of the full universe of events. Given a decision
system D = (U,B ∪ {d}), the discernibility function is: -

fd
B (xi) =

∧ {∨
m̄d

B (xi, xj) : 1 ≤ j ≤ i ≤ n
}

(2)

where (
∨

) and (
∧

) are the disjunction and conjunc-
tion operators. n = |U/IND (B)| and

∨
m̄d

B (xi, xj) is
the disjunction taken over the set of Boolean variables
m̄d

B (xi, xj) corresponding to the variables md
B (xi, xj)

which is not equal to ∅ [10].
The decision relative discernibility function of B can

be constructed to discern an event belonging to another
class such as for an event class xk = (1 ≤ k ≤ n) over
attributes B, it can be represented in Equation 3.

f (xk, B) =
∧ {∨

m̄d
B (xk, xj) : 1 ≤ j ≤ n

}
(3)

This function computes the minimal set of attributes
B necessary to distinguish xk from other event classes de-
fined by B [10].

4 Rule Accuracy and Assessment

A decision rule can be denoted α → β, read as “if
α then β”. The pattern α is called the rule’s antecedence
while the pattern β is called the rule’s consequence. Three
units of measure shown below can be used to evaluate the
quality of a given decision rule [11]:

1. Support: the number of events that possesses both
property α then β.

1REDUCT is a reduced set of relations that ensures the same quality approximation as the whole set of attributes.
2CORE is the set of relations occurring in every reduct, i.e. the set of all indispensable relations to characterize the equivalence relation.
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2. Accuracy: A decision rule α → β may only reveal
partially the overall picture of the derived decision
system. Given pattern α, the probability of the con-
clusion β can be assessed by measuring how trust-
worthy the rule is in drawing the conclusion β on
the basis of evidence α .

Accuracy (α → β) =
support (α · β)

support (α)
(4)

3. Coverage: The strength of the rule relies upon the
large support basis that describes the number of
events, which support each rule. The quantity cov-
erage (α → β) is required in order to measure how
well the evidence α describes the decision class. It
can be defined through β: -

Coverage (α → β) =
support (α · β)

support (β)
(5)

5 Voting Algorithm

There are various ways of classifying events using rule
sets, and the voting algorithm can be used to resolve the
conflicts and rank the predicted outcomes. This works
reasonally well for rule-based classification. Let RUL
denotes an unordered set of decision rules. The voting
process among the rules that fire, is a way of employing
RUL to assign a certainty factor to each decision class for
each event. The concept of the voting algorithm can be
divided into three parts [11]:

1. The set of rules RUL searches for applicable rules
RUL(x) that match the attributes of event x (i.e.
rules that fire) in which RUL(x) ⊆ RUL.

2. If no rule is found i.e. RUL(x) = ∅, no classifica-
tion will be made. The most frequently occurring
decision is chosen. If more than one rule fires, this
means that more than one possible outcome exists.

3. The voting process is performed in three stages: -

• Casting the votes: Let a rule r ∈ RUL(x) casts
as many votes, votes(r) in favour of its out-
comes associated with the support counts as
given by Equation (6):-

votes(r) = | ||α ∩ β|| | (6)

• Compute a normalisation factor, norm(x). The
normalisation factor is computed as the total
number of votes cast and only serves as a scal-
ing factor in Equation (7): -

norm(x) =
∑

r∈RUL(x)

votes (ri) (7)

• Certainty Coefficient: The votes from all
the decision rules β are accumulated before
they are divided by the normalisation factor
norm(x) to yield a numerical certainty coeffi-
cient. Certainty(x, β) for each decision class
is given in Equation (8): -

Certainty (x, β) =
(

votes (β)
norm (x)

)
(8)

in which the votes (β) =
∑ {votes (r)} and

r ∈ RUL(x) ∧ r ≡ (α → β). The certainty
coefficient decides which rules will be the best
fit for the unknown event.

6 Example I

This example considers a scenario which involves a
Fault (F1) on the 11kV transformer T1 feeder given in Fig-
ure 1. The fault results in the operation of the directional
relay R6, the tripping of circuit breakers BRK6 and BRK8
and the isolation of the transformer T1. The decision sys-
tem in Table 1 is transformed into a discernibility matrix
shown in Table 2 using Equation 1.

1 2 3 · · · 10 11 12
1 ∅
2 x ∅
3 x,5,6 ∅ ∅
4 x-8 5-8 5,7,8 · · ·
5 x-8 5-8 5-8 · · ·
6 x-8 x-8 x-8 · · ·
7 x-8B x-8B x-8B · · ·
8 x-8B 5-8B 5-8B · · ·
9 x-8B 5-8B 5-8B · · ·
10 x,5,6,8,B 5,6,8,B 6,8,B · · · ∅
11 5,6,8,B x,5,6,8,B x,6,8,B · · · ∅ ∅
12 6,8,B x,6,8,B x,5,6,8,B · · · x,5 5 ∅

Table 2: Discernibility matrix

where :

{x− 8} = {x, 5, 6, 7, 8}
{x− 8B} = {x, 5, 6, 7, 8, BZ3}
{5− 8} = {5, 6, 7, 8}
{5− 8B} = {5, 6, 7, 8, BZ3}

Based on the discernibility functions derived from
each column in Table 2 using Equation 2, the fi-
nal discernibility function computed is thus: f(D) =
Rx · R5 · BZ3, in which the form ‘·’ refers as the oper-
ator of conjunction (

∧
). As Rx = {R1,R2,R3, R4} and

BZ3 = {BRK6, BRK8}, a total of 8 reducts can be gen-
erated. Depending on the data availability, either one of
these reducts can be used to classify the events. In other
word, if there are some missing sources e.g. R1 and R4 are
not available, we can use the data from (R2 or R3) and R5
and (BRK6 or BRK8). The reduct set is given in Table 3.

Rule Rx R5 BRK d Support
No. Vx Ix V5 I5 BZ3 d1d2 count
1 N N N N 0 N 0 1
2 L N N N 0 A 0 1
3 L N L N 0 A 0 1
4 L N L H 0 E 0 2
5 L L L H 0 E 0 1
6 L L L H 1 E 1 1
7 L N L H 1 E 1 2
8 L N L N 1 A 1 1
9 N N L N 1 A 1 1

10 N N N N 1 S 1 1

Table 3: Reduct table
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6.1 Quality of rule measure

The quality of rules from Table 3 can be assessed
based on the unit of measure i.e. RHS and LHS support,
accuracy coverage and length in Table 4. The LHS (“left
hand side”) support signifies how many events are in the
data set. The RHS (“right hand side”) support signifies
how many events in the data set that match the if-part and
have the decision value of the then-part. For an incon-
sistent rule, then-part shall consist of several decisions.
Accuracy and coverage are computed from the support
counts using Equation 4 and 5. Since there is no incon-
sistency in the decision system, the accuracy of rules are
thus 1.0. Length indicates the number of attributes in the
LHS or RHS; LHS = 3 (Rx, R5, BZ3) and RHS = 1.

Rule Acc LCov RCov LLH RLH LSP RSP
1 1.0 0.08 1.00 3 1 1 1
2 1.0 0.08 0.50 3 1 1 1
3 1.0 0.08 0.50 3 1 1 1
4 1.0 0.17 0.67 3 1 2 2
5 1.0 0.08 0.33 3 1 1 1
6 1.0 0.08 0.33 3 1 1 1
7 1.0 0.17 0.67 3 1 2 2
8 1.0 0.08 0.50 3 1 1 1
9 1.0 0.08 0.50 3 1 1 1

10 1.0 0.08 1.00 3 1 1 1

Table 4: Quality of rule measure

RHS:Right hand side, LHS:Left hand side, Acc:Accuracy,
LCov:LHS Coverage, RCov:RHS Coverage, LLH:LHS Length,
RLH:RHS Length, LSP:LHS Support, RSP:RHS Support.

1 2 · · · 10
1 ∅ Vx · · · BZ3
2 Vx ∅ · · · Vx, BZ3
3 Vx, V5 ∅ · · · Vx, V5, BZ3
4 Vx, R5 R5 · · · Vx, R5, BZ3
5 Rx, R5 Ix, R5 · · · Rx, R5, BZ3
6 Rx, R5, BZ3 Ix, R5, BZ3 · · · Rx, R5

7 Vx, R5, BZ3 R5, BZ3 · · · Vx, R5

8 Vx, V5, BZ3 V5, BZ3 · · · Vx, V5

9 V5, BZ3 Vx, V5, BZ3 · · · V5

10 BZ3 Vx, BZ3 · · · ∅
Table 5: Relative discernibility matrix

6.2 Relative discernibility functions

Table 3 may include some unnecessary values of the
condition attributes. To condense the rules, the rela-
tive reduct and core are computed using the relative dis-
cernibility function given in Equation 3. It is based on
the relative discernibility matrix constructed for the sub-
space {Rx, R5, BZ3} as shown in Table 5. Because
of the space constraint in Table 5, let Rx = {Vx, Ix}
and R5 = {V5, I5}. Voltage and current attributes in
each relay are considered separately rather than treat-
ing them as one unit as in Table 2. In each column
of Table 5, the relative discernibility functions are com-
puted. For example, to construct f (1, B) where B ⊆
A, all sets of attributes from column 1 are summed
using the absorption law, similarly for f (2, B) with
all sets of attributes from the column 2 and so on.

f (1,B) = Vx · BZ3
f (2,B) = Vx · (V5 + I5) · (V5 + BZ3)

= (Vx ·V5 · I5) + (Vx ·V5 · Bz3)
f (3,B) = I5 · BZ3 · (Vx + V5)

= (Vx · I5 · BZ3) + (V5 · I5 · BZ3)
f (4,B) = I5 · BZ3
f (5,B) = (Ix + I5) · BZ3 = (Ix · BZ3) + (I5 · BZ3)
f (6,B) = (Ix + I5) · BZ3 = (Ix · BZ3) + (I5 · BZ3)
f (7,B) = I5 · BZ3
f (8,B) = I5 · BZ3 · (Vx + V5)

= (I5 · BZ3 ·Vx) + (I5 · BZ3 ·V5)
f (9,B) = V5 · (Vx + BZ3) · (Vx + I5)

= (V5 ·Vx · I5) + (V5 ·Vx · BZ3)
f (10,B) = V5 · BZ3

The form ‘·’ refers as the operator of conjunction
(
∧

) and ‘+’ as the operator of disjunction (
∨

). The re-
sult for f (2,B) indicates that there are two rules to clas-
sify the abnormal state. The first rule requires the at-
tributes {Vx,V5, I5} whereas the second rule requires the
attributes {Vx,V5, BZ3}. The relative discernibility func-
tions are converted into 16 decision rules listed in Table 6.
Among the rules, one of the two are actually redundant i.e.
4 and 5(1), 6(1) and 7. They are filtered out leaving only 14
applicable rules. The set of rules in Table 6 is categorised
into 5 different classes according to their outcomes:

1. ABNORMAL A0
Rule 1: Vx(L), V5(N), I5(N) Z1
Rule 2: Vx(L), V5(N), BZ3(0) Z1
Rule 3: Vx(L), I5(N), BZ3(0) Z1
Rule 4: V5(L), I5(N), BZ3(0) Z25

The system behaves abnormally and is at high alert. Zone
Z1 and Z2 both experience voltage sags.

Referring to Figure 1, the substation can be divided into
four main protection zones. Zone 1 represents the protec-
tion zones of R1, R2, R3 and R4. Zone 2 the zones of R5,
R7, R9 and R11. Zone 3 the zones of R6, R8, R10 and
R12. Zone 4 is the busbar protection zone which is not
considered in this scenario. Protection Zone 25 indicates
that the regional Zone 2 is supervised by the relay 5.

2. ABNORMAL A1
Rule 5: Vx(L), I5(N), BZ3(1) Z1 & Z3
Rule 6: V5(L), I5(N), BZ3(1) Z25 & Z3
Rule 7: Vx(N), V5(L), I5(N) Z25
Rule 8: Vx(N), V5(L), BZ3(1) Z25 & Z3

The system is recovering. Protection at Zone 3 has re-
sponded. The situation is under control but not safe.

3. EMERGENCY E0
Rule 9: I5(H), BZ3(0), Z25
Rule 10: Ix(L), BZ3(0), Z1

The system is unstable and an urgent action is required.
Protection has not yet responded.

4. EMERGENCY E1
Rule 11: Ix(L), BZ3(1), Z1 & Z3
Rule 12: I5(L), BZ3(1), Z25 & Z3

The system is still unstable. Protection at Zone 3 has re-
sponded. The fault is isolated to Zone 3.

5. SAFE S1
Rule 13: V5(N), BZ3(1), Z3

The system is within the safe margin. A fault analysis
report is generated that identifies the fault type and the
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affected region. The condition of the protection is evalu-
ated. Restoration procedure and maintenance records are
generated accordingly.

Rules 7, 10, 11, 12 may have to be modified as it does
not clearly justify the status. This does not mean that
the rules extraction is inaccurate, simply because the data
set does not contain adequate information to classify the
events.

Rules Rx R5 BRK d Sup.1 Sup.2
No. Vx Ix V5 I5 BZ3 d1d2 Index Index
1 N • • • 0 N 0 1 1
2 L • N N • A 0 1 1

2(1) L • N • 0 A 0 1 1
3 L • • N 0 A 0 2 2

3(1) • • L N 0 A 0 1 1
4 • • • H 0 E 0 3 5
5 • L • • 0 E 0 1 2
6 • L • • 1 E 1 1 3
7 • • • H 1 E 1 3 8
8 L • • N 1 A 1 1 2

8(1) • • L N 1 A 1 2 3
9 N • L N • A 1 1 1

9(1) N • L • 1 A 1 1 1
10 • • N • 1 S 1 1 1

Table 6: Core table

Sup.1 Index: support count index 1 based on the number of
events given Table 1. Sup.2 Index: support count index 2 based
on a more complete data set using a three phase currents and a
3-phase voltage.

Different set of decisions can be fired based on the
rule’s consequence(s). A lookup table can be used to re-
trieve the mapping between the input values and the rule’s
consequence(s) for each scenario. If the fault symptom
matches the list of the rules (facts) given above, a fault
in Zone Z36 is concluded. The example shows that the
approach is capable of inducing the decision rules from a
substation database, even though the data set may contain
only a reasonable quality of information.

6.3 Voting results

The rules derived from the reducts should be assessed
on its classification performance, readability and useful-
ness before they can be used effectively for online diag-
nosis. Table 7 illustrates the results computed by the vot-
ing algorithm. Assume that only the rules presented with
V5 = L and I5 = N are fired, the voting algorithm based
on the Support Count Index 1 concluded the ABNOR-
MAL decision (combining the result of A0 = 4/9 and A1
= 5/9). The support count for the case V5 = L or I5 = N
that equal to the outcome A0 is 4, whereas the total sup-
port count for the case V5 = L or I5 = N regardless any
outcome is 9. The same procedure applies to the A1 in
which the support count for the case V5 = L or I5 = N
that equal to the outcome A1 is equal to 5. With the set
of given rules, the most likely decision value is thus an
ABNORMAL state. Considering which abnormal states
will be fired, it shall be A1. Now, assume that only rules

presented with Vx = L and V5 = L and I5 = H are fired.
We have accumulated the casted votes for all rules that fire
and divided them by the number of support count for all
rules that fire which is 16.

The voting algorithm indicates that an abnormal state
is the likely decision instead of the emergency state due to
its higher support count in the given set of rules. This may
not be agreed by some experts. The reason for this con-
flict is caused by the inadequate information in the small
data set in Table 1. As the result, the rule coverage is lim-
ited particularly on the emergency period. To support our
explanation, we apply the Support Count Index 2 based
on a more complete data set that contains a three phase
currents and a 3-phase voltage. The same procedure is re-
peated and this time, the emergency state is chosen which
can be seen in Table 7 with the certainty coefficients com-
puted for each decision class. The suggestion from the
voting result should be left to operators/experts to decide
the necessary actions.

Index Certainty Fraction Decimal
certainty(x, (d1d2 = A0)) 5/16 0.31

1 certainty(x, (d1d2 = E0)) 3/16 0.19
certainty(x, (d1d2 = E1)) 3/16 0.19
certainty(x, (d1d2 = A1)) 5/16 0.31
certainty(x, (d1d2 = A0)) 5/25 0.20

2 certainty(x, (d1d2 = E0)) 5/25 0.20
certainty(x, (d1d2 = E1)) 8/25 0.32
certainty(x, (d1d2 = A1)) 7/25 0.28

Table 7: Accumulating the casted votes for all rules that fires

6.4 Classifier performance

For assessing the classifier performance, the data set
is divided into a training set and a test set. The training
set is a set of examples used for learning that is to fit the
parameters, whereas the test set is a set of examples used
only to assess the performance of a classifier. Rules are
mined from a selection of events in each training set using
rough sets. They are then used to classify the events in the
test set. If the rules cannot classify the events in the test
set satisfactorily, the rules must be notified to the user and
refined to suit the real application.

The original simulation data is randomly divided into
three different training sets and test sets respectively with
a partition of 90%, 70% and 50% of the data for training
and 10%, 30% and 50% for testing. The procedure is re-
peated four times for four random splits of the data. This
means that four different test sets were generated in each
case and each of which was tested on every split of train-
ing set for a total for 4 runs. The splits are used to avoid
results based on rules that were generated for a particular
selection of events. This makes the results more reliable
and independent on one particular selection of events.

Table 8 and Table 9 show that we have achieved a
100% in the accuracy of classification for the 10% and
30% test set. Finally, when 50% of the data is used, the ac-
curacy dropped to 94.6%. The overall results have proven
that the extracted rules have a very high and successful
classification rate.
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Training Test Sets (10%) Mean
Set (90%) Split 1 Split 2 Split 3 Split 4 Accuracy

1 1.000 1.000 1.000 1.000 1.000
2 1.000 1.000 1.000 1.000 1.000
3 1.000 1.000 1.000 1.000 1.000
4 1.000 1.000 1.000 1.000 1.000

Measure of Accuracy 1.000

Table 8: Classifier result using the 90% training set and 10% test set

Training Test Sets (30%) Mean
Set (70%) Split 1 Split 2 Split 3 Split 4 Accuracy

1 1.000 1.000 1.000 1.000 1.000
2 1.000 1.000 1.000 1.000 1.000
3 1.000 1.000 1.000 1.000 1.000
4 1.000 1.000 1.000 1.000 1.000

Measure of Accuracy 1.000

Table 9: Classifier result using the 70% training set and 30% test set

Training Test Sets (50%) Mean
Set (50%) Split 1 Split 2 Split 3 Split 4 Accuracy

1 0.933 1.000 0.967 1.000 0.975
2 0.900 0.733 0.800 0.833 0.817
3 1.000 1.000 0.967 1.000 0.992
4 1.000 1.000 1.000 1.000 1.000

Measure of Accuracy 0.946

Table 10: Classifier result using the 50% training set and 50% test set

7 Example II

Table 11 and Table 12 laid out a simple example
containing a list of voltage and current patterns as well
as the switching actions caused by the protection sys-
tem(s) subject to various faults at different locations in
the substation (See Figure 1). Bx = the breaker x in
which x = {1, 2, 3, 4}. Similar to BZ3, BRK5 and
BRK7 are regarded as one and labelled “BZ2”. The
auxiliary contacts are used to determine the condition
of a breaker and relay. ‘01’ indicates that the con-
tact of the breaker/relay is closed. ‘10’ indicates that
the breaker/relay is open/tripped, ‘00’ indicates failure
of the breaker/relay and ‘11’ indicates an undefined
breaker/relay state. The reason of acquiring the auxiliary
contacts is to capture the right information in case the pro-
tection system has failed/maloperated. The current H1 in-
dicates that it is flowing in the same direction that would
trigger the directional relays. Ix = {I1, I2, I3, I4} since all
the load currents have a similar patterns. Going through
the same procedure as described in Section 2, the results
obtained based on Table 11 are as follows:

Ix I5 V7 I7 ZONE
H • • • Z1x
• H1 N • Z25
L H N • Z36
• L • H Z27
• • • L Z38
• H1 L • Z2T
• H L • Z3T

Table 13: Rules generated for various fault scenarios in the substation

Combining the information from Table 12 and 13, six
concise decision rules can be obtained which can be inter-
preted as follows: -

RULE 1: IF Ix = H, Rx = 10 and Bx = 10, then the fault
section lies within Zone 1x, in which x = {1, 2, 3, 4}.

RULE 2: IF I5 = H1, V7 = N, R5 = 10 and BZ2 = 10, then
the fault section lies within Zone 25.

RULE 3: IF Ix = L, I5 = H, V7 = N, R6 = 10 and BZ3 =
10, then the fault section lies within Zone 36.

RULE 4: IF I7 = L, R8 = 10 and BZ3 = 10, then the fault
section lies within Zone 38.

RULE 5: IF I5 = H1, V7 = L and R9 = 10 and/or R11 = 10
and BZ2 = 10, then the fault section lies within Zone 2T. Zone 2T
is the region within the Zone 2 that is supervised by transformer
unit protections.

RULE 6: IF I5 = H, V7 = L and R8 = 10 and/or R12 = 10
and BZ3 = 10, then the fault section lies within Zone 3T.

The given example is small and incomplete. There-
fore, some of these extracted rules may look a little bit
oversimplified. This likely to happen when the data set
does not contain adequate information for knowledge ex-
traction. The solution is either to acquire a more complete
data set (which will not be a problem with the large quan-
tity of data modern relays/IEDs can generate) or some of
the rules should be refined by experts to improve the cov-
erage. The results look also predictable for a small substa-
tion like in Figure 1. However, considering a larger substa-
tion or a complex power network with a large number of
protection system(s), extracting rules from such circum-
stance may consume a lot of time and manpower. As such,
this method will be useful to power utilities for exploiting
substation rules. It also help reducing the size of conven-
tional rule base system by eliminating the extra and super-
fluous conditions that may exist in the knowledge base.
The rules produced are generally concise. Relying on the
switching actions for fault section estimation might not al-
ways be adequate concerning about relay failures and the
complexity of a power network. Therefore, we believe that
voltage and current components should also be considered
in a fault section estimation procedure.

8 Conclusion

This paper suggests the use of a novel, structured
method to reason and extract implicit knowledge from op-
erational data derived from relays and circuit breakers.
The proposed analytical method has been used to identify
underlying data relationship and simplified logic based
rules that can be used to identify or classify the fault sec-
tion and abnormal events.

The theoretical approach taken is simple but robust
and the resulting method has shown promises for even-
tual application in the power system engineering domain.
The methodology is more attractive than some other tech-
niques like Bayesian approach because no assumption
about the independence of the attributes are necessary nor
is any background knowledge about the data [12]. There-
fore, a set of training data of reasonable quality is needed.
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R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 ZONE
V1 I1 V2 I2 V3 I3 V4 I4 V5 I5 V6 I6 V7 I7 V8 I8 I9 I10 I11 I12

L H L L L L L L L H L H N H N H L L L L Z11
L L L L L L L L L H1 L H N H N H L L L L Z25
L L L L L L L L L H L H1 N H N H L L L L Z36
L L L L L L L L L L L L L H L L L L L L Z27
L L L L L L L L L L L L L L L H L L L L Z38
L L L L L L L L L H1 L H L H L H H L L L Z2T
L L L L L L L L L H1 L H L H L H L L H L Z2T
L L L L L L L L L H1 L H L H L H H L H L Z2T
L L L L L L L L L H L H1 L H L H L H L L Z3T
L L L L L L L L L H L H1 L H L H L L L H Z3T
L L L L L L L L L H L H1 L H L H L H L H Z3T

Table 11: List of voltage and current patterns with estimated protection zones for various fault scenarios

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 B1 B2 B3 B4 BZ2 BZ3 ZONE
10 01 01 01 01 01 01 01 01 01 01 01 10 01 01 01 01 01 Z11
01 10 01 01 01 01 01 01 01 01 01 01 01 10 01 01 01 01 Z12
01 01 10 01 01 01 01 01 01 01 01 01 01 01 10 01 01 01 Z13
01 01 01 10 01 01 01 01 01 01 01 01 01 01 01 10 01 01 Z14
01 01 01 01 10 01 01 01 01 01 01 01 01 01 01 01 10 01 Z25
01 01 01 01 01 10 01 01 01 01 01 01 01 01 01 01 01 10 Z36
01 01 01 01 01 01 10 01 01 01 01 01 01 01 01 01 10 01 Z27
01 01 01 01 01 01 01 10 01 01 01 01 01 01 01 01 01 10 Z38
01 01 01 01 01 01 01 01 10 01 10 01 01 01 01 01 10 01 Z2T
01 01 01 01 01 01 01 01 10 01 01 01 01 01 01 01 10 01 Z2T
01 01 01 01 01 01 01 01 01 01 10 01 01 01 01 01 10 01 Z2T
01 01 01 01 01 01 01 01 01 10 01 10 01 01 01 01 01 10 Z3T
01 01 01 01 01 01 01 01 01 10 01 01 01 01 01 01 01 10 Z3T
01 01 01 01 01 01 01 01 01 01 01 10 01 01 01 01 01 10 Z3T

Table 12: List of switching actions with estimated protection zones for various fault scenarios

Though decision trees have been used successfully in
ID3 and C4.5, compare to rule set generated by rough set
theory, it remains questionable whether decision trees can
be described as knowledge, no matter how well they func-
tion [13]. Their performance can also be affected in the
presence of missing values in the test data set which is
less likely the case for rough set theory.

Our rules extraction and subsequent classification can
be performed without the presence of an expert. How-
ever, experts may still have to perform the final check
before these rules are used in the real time application.
The technique simplifies the rule generation (knowledge
acquisition) and reduces the time and manpower required
to develop a rule-based diagnostic system. The extracted
knowledge is a set of propositional rules, which can be
said to have syntactic and semantic simplicity for a hu-
man. Two examples have been given to show how knowl-
edge can be induced from the data sets and from these
simplified examples, the results shown look promising.
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