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Abstract –A novel analysis framework based on 

nonlinear statistics, for detection and quantification of 
nonlinear power system behavior is presented. The 
technique uses output-only measurements for the 
extraction of nonlinear characteristics of systems 
subjected to large perturbations and can be used to 
determine the strength and distribution of nonlinear 
behavior of both, ambient and power system response 
data.  

First, linear statistic analysis techniques are used to 
determine critical machines following the occurrence of 
severe perturbations. Then the method of surrogate data is 
utilized to detect nonlinearities and non-stationarities in 
the underlying process. Criteria for determining possible 
nonlinearities with respect to variables are proposed and 
statistical significance tests are used to give a quantitative 
measure of nonlinearity. Finally, higher order spectral 
analysis techniques are employed to investigate the nature 
and extent of nonlinear interaction involving the 
electromechanical modes of oscillation of the system.  

 A detailed case study of a 68-bus, 16-machine test 
system is presented to illustrate the use of the proposed 
techniques. Examples are given of the application of 
statistical criteria to detect nonlinearity in power system 
signals, and estimating the strength of nonlinear 
interaction.  

Keywords:  Nonlinear time series analysis, higher-
order spectral analysis techniques 

1 INTRODUCTION 
In recent years statistical models are increasingly 

being used to facilitate model selection and quantifying 
nonlinearity and non-stationarity in time series.  
Quantification of nonlinearity is important because it 
allows identifying operating conditions under which 
linear analysis may not provide adequate 
characterization of system behavior [1-4].   

The analysis of time varying characteristics is also an 
important problem. Non-stationarity in power system 
behavior may arise from changing mechanisms in the 
underlying phenomena giving rise to oscillations and 
may have important implications for the analysis of 
nonlinearity [5]. Detecting nonstationarities enables to 
decide about the length of the data required to provide 
better estimates of the parameters of concern, or 
selecting the best analysis techniques that can allow us 
to track changes in system behavior [6,7]. 

Over the past few years there has been a rapid 
development in the application of nolinear techniques 
for time series to the analysis of power system behavior. 
This interest arises from a variety of motivations; these 
include the detection and quantification of nonlinearity 
and non-stationarity, the analysis of modal interaction 
and the detection of window lengths to assess system 
behavior [5,8].   

Recent studies reported in the literature [1,2], reveal 
that the dynamic response of stressed power systems 
subjected to critical contingencies may result in a 
complex dynamic pattern not accounted for by 
conventional linear analysis techniques. Detection of 
such transitions depends on the quality of the available 
signals and the relevance of the nonlinear statistics 
employed. Statistically-based methods of nonlinear time 
series analysis may provide additional information into 
various aspects of system dynamic behavior that is 
complementary to perturbation analysis. This approach 
can be applied to both ambient and power system 
response data and show promise in identifying 
nonlinear dynamics in complex systems owing to the 
flexibility of the model structure. 

In this paper, we explore the use of higher-order 
statistic analysis techniques to assess the significance of 
nonlinear behavior arising from higher-order analytical 
solutions. Using artificial or surrogate data, 
nonlinearities and non-stationarities in the process are 
identified. In particular, nonlinear-based statistical 
techniques are used to determine the strength and 
distribution of nonlinear behavior following the 
inception of large perturbations. The goal is to extract 
the underlying dynamics of the process giving rise to 
the oscillatory process and assess the distribution of 
nonlinearity directly in physical coordinates.  

Finally, higher order spectral (HOS) analysis 
techniques are applied to identify modal interaction 
involving the spectral components. The analysis 
methodology is demonstrated on a 68-bus, 16-machine 
test system. 
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2 DETECTION OF NONLINEARITY USING 
LINEAR STATISTICAL MEASURES 

2.1 Metrics or Distance Functions 
Suppose ( ) T
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** =x are two real-valued 

time series describing the same physical process.  Our 
goal is to evaluate the statistical significance of the 
evidence for nonlinear structure in each case.  
Following Jordan and Smith [9], the separation between 
them at any time t is defined by 
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where L  denotes the magnitude and L  represents 
the metric or distance function on the space. 
Corresponding to the distance function (1), the norm of 

vector x is given by 2/1
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In a statistical sense, )(tx  and )(* tx  may represent 
the set of original and surrogate data or denote the 
predicted and observed values, respectively.   Several 
relationships between model selection criteria for linear 
(nonlinear) time series have been established in the 
literature. We briefly review the nature of these models 
from the standpoint of linear statistics analysis of 
physical processes.  

2.2 The Variance and Standard Deviation 
The standard deviation σ  of a probability 

distribution is defined as the square root of the 
variance 2σ . Given a set of observed data  )(tx , we 
may be interested in the fluctuation of the 
measurements around the mean, xt −)(x , 

where N
xxx N++= ...1 is the mean. In order to 

characterize the size of the fluctuations of the observed 
data around the mean, it is useful to obtain a measure of 
the mean value of the square of the fluctuations, 
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22 1σ , called the variance. The square 

root of the sample variance of a set of N  values is the 
sample standard deviation, 
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An important attribute of the standard deviation as a 
measure of spread is that if the mean and standard 
deviation of a normal distribution are known, it is 
possible to compute the percentile rank associated with 
any given score. The Box-whisker plot (see Figure 1) is 
a commonly used graphical method to provide 
information about both the location and dispersion of 
the data. 

 
Figure 1:  Box-whisker plot  

The quartiles are given around the median, splitting 
the distribution into two parts. The first quartile (Q1), is 
the median of the data values in the lower half of the 
data set. The third quartile (Q3), is the median of the 
data values in the upper half of the data set. A more 
accurate and precise statement of statistical significance 
is given elsewhere [8]. 

A limitation of the techniques just described is that 
they implicitly assume that the data are statistically 
independent and that the underlying mechanism is 
linear and stationary.  

3 QUANTIFAYING NONLINEAR BEHAVIOR 
USING SURROGATE DATA 

3.1 Testing for Nonlinearity in Time Series 
A number of measures have been developed for 

testing for nonlinearity in time series. A common 
approach is to specify some linear process as a null 
hypothesis, and then generate artificial or surrogate data 
sets which are consistent with this null hypothesis [6,7]. 
If the computed statistics for the original data is 
significantly different than the values obtained for the 
surrogate sets, then the null hypothesis is rejected and 
nonlinearity is detected.  

In what follows we examine practical algorithms to 
generate surrogate data using Fourier transform based 
surrogate data tests. 

3.2 The Method of Surrogate Data 
Let )(tx  denote a time series of N  values obtained 

from measurements or simulation taken at regular 
intervals of time tNttttt No ∆−∆== − )1(,...,,0,...,, 11 . 

Application of the Fourier transform results in 
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where )( fA  is the amplitude and )( fφ  is the phase. 

A phase-randomized Fourier transform )( fX
r

 is 
made by rotating the phase φ  at each frequency f  by 
an independent random variable ϕ  which is chosen 
uniformly in the range [0,2π], namely [7] 

)]()([)()(ˆ ffiefAfX ϕφ +=                       (4) 
The surrogate time series is then given by the inverse 

Fourier transform )}(~{)( 1* fXtx −ℑ= . By construction 

)(* tx  will have the same power spectrum as the 
original data set, and the same autocorrelation function. 
Since the surrogate data is assumed to have no 
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dynamical nonlinearities, a number of discriminating 
statistics can be used to test for nonlinearity and non-
stationarity. 

3.3 Takens Best Estimator forHypothesisTesting 
Among the several discriminating statistics, we use 

the Takens best estimator of correlation dimension 
motivated by previous work on nonlinear dynamics 
statistic [7]: 
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where or  is an upper cutoff, and )(rC  is the 
correlation integral 
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Here, Θ  is the Heaviside function, .  is the 
maximum norm, and W  is a constant accounting for the 
order of a few autocorrelation times, which is used to 
remove autocorrelative effects; *x  can be either a 
multivariate signal or a time delay embedding; 

)])1((),...,(),([)( **** ττ −−−= mtxtxtxtx . The 
correlation dimension can be interpreted as a measure of 
the average complexity of a signal and gives insight into 
nonlinearity [7]. In practical terms, an estimated 
correlation dimension provides a discriminating 
statistics in tests for nonlinear structure.  

A simple measure of significance can then be 
defined as 
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where Q  is the Takens estimator for the original 

data set, surrQ  is the mean value statistics for the 

surrogates, and surrσ is the standard deviation of the 
statistic for the surrogates. Analogous reasoning can be 
applied to linear measures of statistical significance. 

3.4 Surrogate Data for Non-Stationary Signals 

Most realistic signals have non-stationary 
characteristics ( i.e. their frequency content changes 
with time). This may render the above analysis 
unreliable or uninformative.  

To circumvent this problem we split the time series 
into segments that can be considered nearly stationary 
and perform individual tests. A three step procedure is 
developed for testing for non-stationarity:  

(1) Divide the data into M records (segments) of K 
length , (2) Generate a surrogate for each segment using 
the procedure in section 3.2, and (3) Obtain the 
statistical test by averaging the individual ensemble 
statistics and determine measures of significance. 

4 HIGHER-ORDER STATISTICAL ANALYSIS 
Higher order spectral analysis techniques such as the 

bispectrum, constitute an important tool for the analysis 
of nonlinear behavior.  

4.1 Conventional Spectral Analysis 
Let )(tx  be a time series that is stationary up to order 

k with kth  order cumulant function and let )(ωX  be its 
Fourier transform as a function of frequency, where 

)(ωX  is defined as 
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The power spectrum, )(ωP , can then be defined in 
terms of the signal´s DFT as 
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autocorrelation function or a cumulant of the second 
order.  

4.2 Bispectral Analysis 
The bispectrum is a double Fourier transform of the 

second-order autocorrelation function 
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the third order cumulant.  Given estimates of the 
spectrum and the bispectrum, the bicoherence is defined 
as [2,8] 
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The bispectrum is a complex, two-dimensional 
doubly periodic quantity that measures the magnitude 
and the phase of the correlation of a signal at different 
Fourier frequencies in the 21 ωω − plane. The amplitude 
of the bicoherence can be interpreted as the contribution 
of energy of nonlinear interaction to the wave energy 
with a frequency )( 21 ωω + .A value of ),( 21 ωωb close 
to unity indicates a nonlinear production mechanism. In 
contrast to this, the system is linear if 0),( 21 =ωωB for 
all 21,ωω . It follows that, ),( 21 ωωb has constant 
modulus if )(tx is linear. Therefore, testing the linearity 
of )(tx  reduces to testing the constancy of the squared 
modulus of the normalized bispectrum. Bispectral 
estimators employ statistical averaging, and implicitly 
assume there is randomization between segments; this 
approach can be used as a reliable detector of modal 
interaction only if the data to which it is applied satisfy 
a number of criteria, namely stationarity. 
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5 APLICATION STUDY 

5.1 Operation Conditions Study 
The developed procedures are tested on the 16-

machine, 68-bus model of the NPCC system. A pictorial 
representation of this system illustrating the location of 
coherent areas is provided in Figure 2. The system 
operating conditions and data are taken from Ref. [10]. 

To examine the onset of nonlinear behavior a three-
phase fault is applied at bus 28 cleared in 0.03 s by 
opening the tie-line to bus 26. This contingency excites 
several local and inter-area modes and leads to mode 
coupling under certain critical operating conditions.  

 
Figure 2:     Pictorial of the study system. 

Two operating scenarios were considered for 
analysis: (a) Operating scenario I. A scenario 
corresponding to the nominal operating condition, and 
(b) Operating scenario II. A scenario obtained by 
rescheduling generation. By re-dispatching generation 
both, the strength and distribution of nonlinearity are 
modified. Figure 3 shows the speed rotor deviations of 
the system generators for the above operating scenarios.  

 
Figure 3:   Speed rotor deviations following a short circuit at 
bus 28. a) Scenario I, b) Scenario II. 

As expected from physical considerations, generator 
# 9, in the neighborhood of the fault exhibits the largest 
speed rotor deviation. For operating scenario I, visual 
inspection of the speed rotor deviation of this generator 
in Figure 3(a), suggests the presence of essentially a 
simple harmonic behavior. In contrast, examination of 
the rotor speed deviations in Figure 3(b) for operating 

scenario II suggests the onset of nonlinear behavior 
involving more than significant mode of oscillation. 
Although no presented here, spectral analyses enable us 
to confirm these findings. 

5.2 Small Signal Analysis 
The analysis of the system reveals four inter-area 

modes of concern with damping ratios below 4%. The 
damping ratios and frequencies are displayed in Tables 
1 and 2 for the above operating scenarios, whilst Table 
3 shows the linear participation factors for scenario II. 

 
Mode  Eigenvalue Frecuency (hz) Damping (%) 
22,23 -0.066±2.5884i 0.4119 2.57 
24,25 -0.068±3.5006i 0.5571 1.96 
26,27 -0.049±4.6155i 0.7346 1.06 
28,29 -0.092±6.1744i 0.9827 1.49 
30,31 -0.077±5.0623i 0.8057 1.54 
Table 1:  System eigenvalues- operating scenario I 

Mode Eigenvalue Frequency (Hz) Damping (%) 

22,23 -0.069±2.0118i 0.3202 3.44 
24,25 -0.075±3.2036i 0.5099 2.35 
26,27 -0.065±3.688i 0.5870 1.77 
28,29 -0.088±5.4885i 0.8735 1.61 
30,31 -0.079±5.0034i 0.7963 1.59 

Table 2:  System eigenvalues- operating scenario II 

Mode Oscillation pattern Participation factors 
22,23 A2 vs A3, A4 A5 15(0.168),14(0.164), 13(0.105) 
24,25 A1 vs A2, A3 A4,A5 9(0.155), 6(0.058), 7(0.0433) 
26,27 A3 vs A2 16(0.303), 14(0.182), 13(0.011)
28,29 A1 9(0.312), 6(0.039), 5(0.036) 
30,31  A4 vs  A3 A5 15(0.296), 14(0.131), 16(0.067)
Table 3:  Linear Participation factors-scenario II 

For scenario II, the analysis of linear participations in 
Table 3 shows that generator # 9 has a dominant 
participation in the 0.51 Hz inter-area mode 24, and the 
local plant mode 28 at 0.87 Hz. It is also interesting to 
note that generators #13-16 have a significant 
participation in all inter-area modes. 

5.3 Linear Statistics Analysis 
Testing for nonlinearity using basic metrics provides 

insights towards identifying the extent and distribution 
of nonlinearity. A first estimate of nonlinear behavior is 
obtained from the global standard deviation for the 
cases of concern. Figure 4 shows the global standard 
deviations whilst Figure 5 presents the variance of the 
speed metrics. Examination of the global standard 
deviation results for scenarios I and II in Figure 4 
suggests the onset of both nonlinear and non-stationary 
behavior. This effect is more pronounced for scenario II 
as shown by the fluctuations in the standard deviation. 

Statistical measures provide information about the 
strength and distribution of nonlinearity. Thus, for 
instance, these results demonstrate that generator # 9 
and to a lesser extent generator # 5 make a significant 
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contribution to the variability of the oscillations and 
therefore play an important role in the dynamics of the 
system. For scenario I, the analysis of the variances in 
Figure 5 clearly shows that generator #9 has a relevant 
participation in system behavior. As the system is 
stressed, the participation of generators in Area 1 
relative to generator # 9 increases as shown in Fig. 5b).  

 
Figure 4:  Comparison of global standard deviations for 

scenarios I and II 

 
Figure 5:  Variance of the speed metrics for scenarios I, II 

To help in the interpretation of nonlinear behavior, 
we computed the Box-Whisker plot associated with the 
speeds solutions. Figure 6 displays the plots of the rotor 
speeds for both cases under investigation.  

 
Figure 6:  Box-Whisker plot associated with speeds in the 

scenarios I and II. 

By analyzing the Box-Whisker plot of each data set 
it is possible to determine more precisely which states 
contribute to nonlinear behavior as well as to reveal the 
amount of variation. From this basic analysis, we select 
machines # 4 through   9 for further study.  

6 TESTING FOR NON-STATIONARITY AND 
NONLINEARITY  

6.1 Surrogate Data Analysis 
For each operating condition, surrogate data was 

generated and several discriminating statistics were 
used to detect nonlinearity and non-stationarity. Figure 
7 compares the original and surrogate data sets for 
generator #9. Similar results are obtained for generator 
#5. 

 
Figure 7:  Comparison between original signal and the 

surrogate data for scenarios I and II. Generator # 9.  

6.2 Testing for Non-Stationarity 
Simulation results suggest that the observed time 

series are nonlinear and non-stationary. To identify time 
varying characteristics the data was divided into several 
records and statistical techniques were applied to 
determine time-varying characteristics. Figure 8 shows 
the speed deviation of generators #5 and #9 showing 
selected  segments for the analysis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8:  Rotor speed deviations of generators # 5 and 9. 
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For this analysis, the records were divided into 4 
segments each one consisting of  256 samples. For each 
segment, the surrogate data was computed and 
correlation measures were obtained.  As discussed 
above [5], the degree of correlation between two 
adjacent time windows (segments) provides a measure 
of nonlinearity and non-stationarity. This is an 
important consideration in the test for statistical 
significance 

In order to evaluate the non-stationary of the original 
signal, simple dispersion measures were computed.  
Individual variances were generated using the selected 
segments and the statistics of these simulations were 
calculated to create an overall stationarity measure of 
the data. The variance of the separation between the 
original and surrogate data is obtained from 
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N
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i
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where ( ) ( )    )( * ttte iii ωω −= denotes the difference 
between the exact solution and the approximate 
solutions provided by surrogate method and  k  is a 
number section selected to the analysis signal. The 
results of this analysis are shown in Figure 9 for 
generators # 5 and 9.  

 
Figure 9:   Variance  index computed in each segment under 

study for scenarios I and II and generators # 5 and 9. 

For scenario I, examination of the variances of 
generators # 9 and 5 in Figures 9a) and 9b) shows rather 
stationary behavior. In turn, the analysis of scenario II, 
suggests both, nonlinear and non-stationary behavior; 
nonlinearity appears to be more pronounced for 
segments A and B as indicated by the relative 
magnitude of the variances. The systematic application 
of this approach enables to identify the nonlinear and 
non-stationary structure of the data of interest for the 
selection and application of more advanced analytical 
tools. 

6.3 Testing  for Nonlinearity 
The Takens estimator was computed for each of the 

signals of concern. Table 4 shows the correlation 
dimension for scenarios I and II. The analysis enables to 

confirm the presence of nonlinearity in the system as the 
statistic of the original data is significantly less than that 
for the surrogates. Also of interest, the analysis of 
correlation numbers and the significance of statistical 
measures from (7) reveals a global increase in nonlinear 
behavior in agreement with previous findings. 

Operating condition Correlation number 
Scenario I. Original data 1.677 

Scenario I. Surrogate data 2.481 
Scenario II. Original data 2.323 

Scenario II. Surrogate data 2.904 
Table 4:  Correlation dimension for scenarios I and II  

Having determined the onset of nonlinear behavior, 
we next examine the potential for nonlinear behavior 
arising from interaction between the fundamental modes 
of the system using bispectral analysis. 

7 HIGHER-ORDER SPECTRAL ANALYSIS   
To further investigate possible the significance of the 

nonlinear terms nonlinear interaction between spectral 
components, the magnitude-squared bispectrum was 
obtained. Practical details of the application of the 
method are given in [2]. 

Figures 10 and 11 show the contour plot of the 
bispectrum of the speed rotors of generators # 5 and 9 1. 
In these plots, the contour lines indicate the bispectrum 
components with maximum activity; light shades 
represent low bispectrum components whilst dark 
shades indicate high bispectrum magnitudes. For 
generator #5, the bispectrum analysis of the scenario I 
and the scenario II essentially indicate self interaction of 
the inter-area mode at 0.50 Hz. The analysis of the 
bispectrum for generator # 9, on the other hand, reveals 
a more complex behavior suggesting the presence of 
nonlinear interaction between the inter-area mode and 
the local mode. The presence of small peaks in the 
bispectrum at (0.87Hz, 0.50 Hz) suggests the presence 
of the sum frequency of the fundamental modes and 
suggest phase coupling between the spectral 
components. 

 
 
 
 
 
 
 
 
 

                                                           
1 As pointed out in [10], the plot is symmetrical around the equal-

frequency diagonal running from the lower left to the upper right. 
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Figure 10:  Contour plot of the bispectrum. Generator # 5. 

 
Figure 11:  Contour plot of the bispectrum. Generator # 9. 

The strength of the nonlinear interaction originating 
from these components is illustrated in Figure 12 which 
displays the diagonal slice of the bispectrum for the 
speed deviation of generator # 9. Also, the modulus of 
the bispectral density function shows two prominent 
peaks at 0.50Hz and 0.87Hz . 

 
Figure 12:   Diagonal slice of bispectrum of the speed  

Generator #9. 

As predicted from statistical analysis, the magnitude 
of the diagonal slice of the bispectrum shows that 
nonlinear interaction increases with stress. The 
estimated parametric bicoherence spectrum (not 
shown), enables to confirm the presence of quadratic 
phase coupling between modes 25 and 28.  

8 CONCLUSIONS 
Nonlinear characterization of observed power system 

data is a difficult problem. In this paper, a statistical 
approach is proposed to determine the nonlinear and 
non-stationary structure of observed system data. The 
techniques can be applied to both ambient and power 
system response data and show promise in identifying 
nonlinear dynamics in complex systems owing to the 
simplicity and flexibility of the model structure. The 
proposed technique is being implemented into a 
production software for detection and quantification of 
nonlinearity and non-stationarity in the underlying 
process.  Simulation results show that the proposed 
technique can be efficiently applied to identify 
generators having a significant participation in system 
behavior as well as to determine the strength and 
distribution of nonlinearity. Other insights from the 
application of the proposed techniques include the 
detection of modal interaction arising from interaction 
between spectral components and the significance of 
non-stationary behavior. 
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