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Abstract – The paper aims at providing linear optimi-

zation models useful for a generating company for the 
solution of the transition problem from hourly energy 
programs – provided by day-ahead market auctions – to 
feasible power generation dispatches and to refined energy 
programs, as may be requested by the system operator. 
The feasible power generation dispatches and the refined 
scheduling should comply with both the energy constraint, 
i.e. they should provide the same hourly-energy produc-
tions defined by the day-ahead electricity market, and with 
all the power plant operating constraints. As some impor-
tant power plant characteristics, such as ramp constraints, 
are not usually taken into account by the market auction 
mechanism, a feasible solution of the problem requires 
some additional efforts to be achieved. The paper de-
scribes a two-steps linear programming approach, based 
on constraint relaxation and coordination, conceived with 
the aim of solving the above problem and with the goal to 
achieve a minimization of the production costs. The fea-
tures and qualities of the implemented models are shown 
by case studies that refer to the present rules of the Italian 
electricity market. 

Keywords: Energy markets, Generation scheduling, 
linear programming. 

1 INTRODUCTION 
Several day-ahead electricity auctions clear the 

hourly market without consideration of inter-temporal 
constraints, i.e. they do not allow bidders to specify 
some technical constraints on the dispatch, such as ramp 
rate ones [1]. In the literature (e.g. [2]) the advantages 
and drawbacks of this scheme with respect to more 
centralized systems, which involve auctions allowing 
bidders to specify more technical constraints on the 
dispatch, have been investigated.  

This paper proposes a the solution for the problem 
faced by generating companies when they have to ad-
just the market-generated hourly energy program in 
feasible power generation schedules to be implemented 
by power plant operators. The problem has also an 
impact on the use of generation reserves and on the 
performance of automatic generation control schemes 
[3]. 

Not every energy delivery that complies with the 
maximum and minimum generation limits can be real-
ized by a power unit, if ramp-constraints are enforced 
[4]. Particularly in the case of day-ahead market auc-
tions where a specific hourly energy program is settled 
for each generating plant – such as the Italian one – it 
often happens that a power generation schedule satisfy-
ing both the energy program and the capabilities of the 

units is not achievable. Therefore, the mismatches be-
tween hourly energy programs and feasible generation 
schedules must be compensated in following balancing 
market sessions. 

The proposed linear programming approach aims at 
providing a tool for the definition of a feasible genera-
tion schedule that satisfies the given hourly energy 
program as much as possible, and, at the same time, 
allows the minimization of the operating production 
costs. 

As the Italian market rules require also that generat-
ing companies provide a refined energy scheduling with 
shorter time steps (15 minutes) – used by the independ-
ent system operator performing usual security assess-
ments – the proposed approach is structured in two 
coordinated linear programming optimization problems. 

The objective function of the first problem contains 
the relaxed energy constraint and a function that takes 
into account other objectives, such as the minimization 
the production costs. It provides the power generation 
schedule, which is forced to meet all the operating con-
straints of the generating unit. 

The output of the second problem is the refined en-
ergy program; it is forced to respect the hourly-energy 
productions defined by the electricity market. Its objec-
tive function provides the coordination between the two 
problems, by requiring the minimization of the energy 
mismatches between the output and the feasible produc-
tion schedule, obtained as a solution of the first prob-
lem. 

The paper has three additional sections. 
Section 2 describes the model relevant to the first 

problem as a multiobjective optimization problem. Both 
a linear weighted sum strategy and the ε-constraint 
method are used to solve the problem. The ε-constraint 
method allows to easily assess if the hourly energy 
program can be satisfied without violating the ramp 
constraints, or to identify the minimum amount of en-
ergy that cannot be satisfied and a number of noninfe-
rior solutions. Section 3 presents the second problem 
linear formulation. Section 4 presents a sensitivity 
analysis of the results, obtained by considering typical 
cases of thermoelectrical power plants in different con-
ditions – although also hydro power plants may be 
characterized by complex constraints, such as restricted 
operating zones and discharge ramping constraints [5]. 

The concluding section reviews the main points of 
the paper and the aspects that require an additional 
research effort. 
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2 TRANSITION FROM MARKET-
GENERATED HOURLY ENERGY PROGRAMS 

TO FEASIBLE POWER GENERATION 
SCHEDULES 

With reference to a single power unit scheduled for 
the entire next day, the problem of the transition from 
the market-generated hourly energy programs to a fea-
sible power generation schedule can be formulated as a 
multiobjective optimization problem. In particular, three 
objectives can be recognized: 1) the minimum produc-
tion cost, 2) the smoothest output power plant profile 
for the minimization of the stress on the plant compo-
nents, and 3) the minimum unbalance between the 
hourly energy program and the energy produced with 
the feasible schedules. 

As already mentioned, it is convenient, and often re-
quired by the market rules, to define the feasible gen-
eration schedules at time intervals shorter than an hour: 
typically each 15 minutes. 

Moreover, for the calculation of the energy produced 
in each 15-minutes interval, one must also set the power 
profile within each period. In order to take into account 
realistic profiles other than the linear one (e.g. profile b) 
of Figure 1), while preserving the linearity of the model, 
a one-minute time-step discretization has been chosen. 
Note that, such a thin discretization is adopted only to 
let the optimization model deal with typical power plant 
non-linear behaviors between consecutive load-
reference changes, which, it is worth reminding, are set 
by plant operators at intervals of 15 minutes.  
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Figure 1 Examples of power profiles within 15-minutes peri-
ods: a) linear profile, b) maximum allowed ramp followed by 
constant level. 

We here therefore consider the minimization prob-
lem of the following vector of three objective functions 
F(p)={F1(p), F2(p), F3(p)}, where p is the vector of 
active output levels pk at the end of each 1-minute time 
step k (k=1,…, 60·24), p0 being the known value of the 
initial power level. 

1. Minimization of the absolute values of the dif-
ferences between consecutive power levels 
within each hour i 

 ( )
24 60

1
1 60( 1) 2

h

k k
h k h

1F p p
⋅

−
= = − +

= ∑ ∑p −

0

 (1) 

Note that, for the case of a single unit and for a given 
hourly energy program, this requirement means, in turn, 
the minimization of production costs. Indeed, whatever 
concave cost function is adopted, the cost minimization 
of hourly production is reached when the unit works at 

the same marginal cost and therefore, as far as possible 
depending on schedule and unit constraints, at constant 
output level in every sub-periods of each one-hour in-
terval. 

The occurrence in the objective of the absolute value 
of function a (i.e. |a|) can be replaced with a nonnega-
tive slack variable s, subject to inequality constraints: 

 0 anda s a s+ ≥ − ≤  (2) 
As in our case a is linear, this transformation allows 

to handle (1), and similar cases that will be shortly in-
troduced, as linear models. 

2. Minimization of the slope variations inside 
each 15-minutes interval j (j=1,…, 4·24): 

 ( )
15 124 4

2 1
1 15( 1) 1

2
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⋅ −⋅
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= = − +
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To a certain extent, this minimization completes ob-
jective function 1 as it forces to distribute the differ-
ences between power levels among the various 1-
minute intervals, throughout the 15-minutes interval. 

3. Minimization of the unbalance between the 
hourly energy program E={E1,…, E24} and the 
energy produced with the feasible schedules 
inside each hour h 
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⋅
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The power generation schedules must be feasible, i.e. 
must respect the operating requirements of the generat-
ing unit. The problem formulation is thus completed by 
the following hard constraints: 

⎯ power level pk can never be lower than a given 
value Pmin, nor higher than a given value Pmax: 

 min maxkP p P k≤ ≤ ∀  (5) 
⎯ the absolute value of the difference between 

two consecutive power levels cannot exceed a 
given maximum ramp-up value Δu (if the 
power is increased), or a given maximum 
ramp-down value Δd (if the power is de-
creased): 

 1d k k up p k−−Δ ≤ − ≤ Δ ∀  (6) 
A weighted sum strategy converts the multiobjective 

problem of minimizing the vector into a scalar problem 
by constructing a weighted sum of all the objective 
components Fi. In our case, we can write: 

 ( )min i i
i

w F
∈Ω

⋅∑p
p  (7) 

where Ω is the feasible region that satisfies constraints 
(5)-(6), and wi denotes the weight assigned to compo-
nent Fi. 

In general, hourly energy programs have not flat pro-
files. Therefore, in particular when the energy unbal-
ances (4) cannot be cancelled out due to the ramp con-
straints, F1 and F2 components of the objective are 
competing with F3. Thus, the solution of the multiobjec-
tive problem is not unique, but significantly depends on 
the choice of the various weighting coefficient values, 
which is not straightforward. 

Instead to try to define an optimal solution, for this 
first problem of the proposed two-steps linear pro-
gramming approach we are looking to non inferior 
solutions [6], i.e., in our case, solutions in which an 
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improvement in objectives F1 and F2 requires a degra-
dation of objective F3. 

In order to simply identify a number of noninferior 
solutions, the so-called ε-constraint method is applied, 
minimizing objective components F1 and F2, and ex-
pressing the other objective, F3, in the form of inequal-
ity constraints. 

  (8) ( ) ( ){ 1 1 2 2min w F w F
∈Ω

⋅ + ⋅
p

p }p

subject to 
 ( )3F ε≤p  (9) 

First of all, we find the minimum value ε* of the 
nonnegative variable ε that allows a feasible solution of 
problem (8)-(9). If such a value is ε*=0, it means that at 
least one feasible power generation schedule can be 
obtained from the market-generated hourly energy pro-
gram. If ε*>0, ε* is the minimum level of energy un-
balance that cannot be avoided due to the operating 
constraints of the power plant. 

As already mentioned, the problem can be formu-
lated as a linear program: 

  (10) 

min
s.t.

T ⋅
⋅

≤ ≤bounds bounds

c x
A x = b
l x u

where x is the column vector of n variables, c is a col-
umn vector of n constants, b is column vector of the 
known quantities of m equality constraints (m<n), A is 
the m⋅n matrix of the coefficient relevant to the equality 
constraints, lbounds and ubounds are the column vector of n 
lower and upper bounds, respectively. Superscript T 
indicates a transposed vector. 

As inequality constraints can be transformed in 
equality constraints by the addition of slack variables, 
for the considered problem (8)-(9), the n components of 
vector x are: 

⎯ 60·24 variables, bounded between Pmin and 
Pmax, as required by (5), corresponding to the 
elements of vector p; 

⎯ 60·24 nonnegative slack variables relevant to 
the absolute values present in (1) (objective 
F1); 

⎯ 60·24-1 nonnegative slack variables relevant to 
the absolute values present in (3) (objective 
F2); 

⎯ 24 nonnegative slack variables relevant to the 
absolute values present in (4) (objective F3); 

⎯ 2·60·24 nonnegative slack variables needed to 
transform inequality constraints of type (2) in 
equality constraints, for the case of the abso-
lute values present in (1); 

⎯ 2·(60·24-1) nonnegative slack variables needed 
to transform inequality constraints of type (2) 
in equality constraints, for the case of the abso-
lute values present in (3); 

⎯ 2·24 nonnegative slack variables needed to 
transform inequality constraints of type (2) in 
equality constraints, for the case of the abso-
lute values present in (4); 

⎯ 60·24 variables, bounded between -Δd and Δu, 
as required by (6), corresponding to the differ-
ences between two consecutive power levels; 

⎯ 1 nonnegative slack variable needed to trans-
form inequality constraint (9) in an equality 
constraint. 

The m constraints, which define the m rows of matrix 
A and the m elements of vector b, are: 

⎯ 2·60·24 constraints of type (2) , for the case of 
the absolute values present in (1) (objective 
F1); 

⎯ 2·(60·24-1) constraints of type (2) , for the case 
of the absolute values present in (3) (objective 
F2); 

⎯ 2·24 constraints of type (2) , for the case of the 
absolute values present in (4) (objective F3); 

⎯ 60·24 constraints, given by (6); 
⎯ 1 constraint, given by (9). 

The non-zero elements of vector c are equal to w1 or 
w2: in particular, those multiplying, in (10), the slack 
variables associated to F1 are equal to w1; those ele-
ments multiplying the slack variables associated to F2 
are equal to w2. 

2.1 Example of computational results 
The proposed approach has been implemented in two 

computer codes, for comparison purposes: one imple-
mented in the model development environment MPL 
[7], using the CPLEX solver [8], and the second imple-
mented in Matlab, using the LIPSOL solver [9]. The 
two codes give equivalent results. 

Figure 2 shows the results obtained for the thermoe-
lectric power unit whose data are summarized in Table 
1. The figure shows the given market-generated hourly 
energy program, the calculated feasible power schedule 
and the relevant hourly energy production. The results 
have been obtained for ε*= 30 MWh, and the energy 
unbalances relevant to such a value of ε can be ob-
served in the 4th (excess of 4.2 MWh) and 5th hours 
(lack of 25.8 MWh), due to the ramp-up constraint. 
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Figure 2 Example of a feasible power level profile of a ther-
moelectric unit (whose data are shown in Table 1) and the 
hourly energies corresponding to the power schedules, ob-
tained from a given market hourly energy program (for w1=1 
and w2=1). 

Table 1 Data of the considered generating unit. 
P0 

(MW) 
Pmax 

(MW) 
Pmin 

(MW) 
Δu 

(MW/min) 
Δd 

(MW/min) 
120 300 120 2.5 3 
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By gradually increasing the value of parameter ε, we 
obtain different feasible power schedules corresponding 
to higher energy mismatches with respect the original 
market-generated hourly energy program. Figure 3 
shows the hourly energy schedule obtained for 
ε*=30 MWh, for ε=45 MWh and for ε=80 MWh. 
Figure 3 also shows the market clearing prices, in a 
generic monetary unit (m.u.), for each hour. Such a 
clearing price profile and the unit operating costs1 have 
been used to calculate the costs and revenues, for dif-
ferent ε values, shown in Figure 4 as a percentage to the 
values obtained for ε* (i.e. 175.1·103 m.u. for the costs 
and 225.2·103 m.u. for the revenues). The revenue asso-
ciated to the original, market-generated, hourly energy 
program is 225.8·103 m.u.. Figure 4 also shows the 
values of objective function (8) obtained for different ε 
values, as a percentage of the value obtained for ε* 
(740.3). 

In the cases in which there is not a feasible power 
generation schedule that complies with the market-
generated hourly energy program, the results shown in 
Figure 3 and Figure 4 provide an indication on the 
choice of the most convenient level of energy unbalance 
that should be compensated in following balancing 
market sessions. 
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Figure 3 Assumed market clearing price and hourly energy 
programs associated to feasible schedules obtained for differ-
ent values of parameter ε, for the same case of Figure 2. 
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Figure 4 Percentages of costs, revenues and values of the 
objective function for different ε values with respect to the 
values for ε*, for the same case of Figure 2 and Figure 3. 

                                                           
1 The operating costs are represented by a quadratic function of the 

power level, with coefficients c0 = 1023 m.u./h, c1 = 29,63 m.u./MWh 
and c2 = 5,39·10-3 m.u./MW2h. 

3 REFINED 15-MINUTES ENERGY PROGRAM 
The Italian market rules also require that the generat-

ing companies provide a refined energy for each power 
unit that complies exactly with the market hourly en-
ergy program. The duration of the time steps of the 
refined energy program is 15 minutes. Such a program 
is used by the system operator in order to carry out the 
preventive security assessments. 

It is therefore convenient to build this refined energy 
program with 15-minutes time steps so that the operat-
ing constraints of the power unit are taken into account, 
as much as possible. It is moreover convenient that the 
15-minutes energy program conforms to the feasible 
power schedule obtained with the procedure described 
in section 2. 

The problem can be seen as the second part of a co-
ordinated two step problem. Also this second part can 
be formulated as a multiobjective problem, set out by 
the following vector of two objectives F’(p’)={F1’(p’), 
F2’(p’), F3’(p’)}, where p’ is the vector of active output 
levels p’k at the end of each 1-minute time step k 
(k=1,…, 60·24) corresponding to the 15-minutes energy 
program. 

The objectives in this case are: 
1. Minimization of the absolute values of the dif-

ferences between the feasible power schedule 
p obtained as a solution of the first problem 
and the power schedule relevant to the refined 
energy program: 

 ( )
60 24

1
1

' ' 'k k
k

F p p
⋅

=

= −∑p  (11) 

This objective provides the coordination be-
tween the solution of this second problem and 
the feasible schedule p. 

2. Minimization of the slope variations inside 
each 15-minutes interval j (j=1,…, 4·24), as in 
the first problem: 

 ( )
15 124 4

2 1
1 15( 1) 1

' ' ' 2 ' '
j

k k k
j k j

F p p
⋅ −⋅

−
= = − +

= −∑ ∑p 1p ++

d

 (12) 

3. Minimization of the violations of the maxi-
mum up and down ramp constraints, that can 
be formulated as a linear model: 

 

60 24
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∑
 (13) 

The new power generation schedule p’ corresponds 
to a 15-minutes energy program that must comply with 
the Pmin and Pmax constraints and with the market gener-
ated hourly energy program: 

 { }
60

1

60( 1) 1

' '1 1,..., 24
60 2

h
k k

h
k h

p p E h
⋅

−

= − +

⎛ ⎞+
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⎝ ⎠
∑ (14) 

The problem has been implemented as a linear pro-
gram (10). The n variable components of vector x are: 

⎯ 60·24 variables, bounded between Pmin and 
Pmax, corresponding to the elements of vector 
p’; 
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⎯ 60·24 nonnegative slack variables relevant to 
the absolute values present in (11) (objective 
F1’); 

⎯ 60·24-1 nonnegative slack variables relevant to 
the absolute values present in (12) (objective 
F2’); 

⎯ 60·24 nonnegative slack variables sk present in 
(13) (objective F3’); 

⎯ 2·60·24 nonnegative slack variables needed to 
transform inequality constraints of type (2) in 
equality constraints, for the case of the abso-
lute values present in (11); 

⎯ 2·(60·24-1) nonnegative slack variables needed 
to transform inequality constraints of type (2) 
in equality constraints, for the case of the abso-
lute values present in (12); 

⎯ 2·60·24 nonnegative slack variables needed to 
transform inequality constraints (13) in equal-
ity constraints. 

The m constraints, which define the m rows of matrix 
A and the m elements of vector b, are: 

⎯ 2·60·24 constraints of type (2) , for the case of 
the absolute values present in (11) (objective 
F1’); 

⎯ 2·(60·24-1) constraints of type (2) , for the case 
of the absolute values present in (12) (objec-
tive F2’); 

⎯ 2·60·24 constraints (13) (objective F3’); 
⎯ 24 constraints, given by (14). 

The no null elements of vector c are equal to w1’ or 
w2’ or w3’: those multiplying, in (10), the slack vari-
ables associated to F1’ are equal to w1’, those elements 
multiplying the slack variables associated to F2’ are 
equal to w2’, and those elements multiplying the slack 
variables associate to F3’are equal to w3’. 
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Figure 5 Comparison between the feasible schedule of Figure 
2 and the power schedule p’, solution of the second problem 
(for w1’=1, w2’=103, w3’=1), with its ramp rates. 

As done for the first problem of section 2, also this 
problem has been implemented in a computer code. 
Figure 5 shows the new power schedule p’ correspond-
ing to the 15-minutes energy program, solution of this 
second problem, for the case of the power unit of Figure 
2. Figure 5 also show the comparison between p’ and 
the feasible schedule p, as well as the ramp rates of p’, 
which violate limit Δu in the last quarter of the 4th hour 

and the first quarter of the 5th hour, and violate limit Δd 
in the first quarter of the 6th hour. 

4 SESTITIVITY ANALYSIS 

This section presents some of the results concerning 
instances of the problem of interest different to those 
already analyzed, as an example, in the previous sec-
tions. 

Section 4.1 presents the results obtained considering 
the same technical characteristics of the power unit of 
Table 1, with a different profile of the market hourly 
energy program. 

Section 4.2 shows the comparison of the results ob-
tained for various values of the maximum ramp-up and 
ramp-down limits. 

4.1 Variation of the market hourly energy program 
Figure 6 shows the considered market hourly energy 

program and the obtained feasible power schedule for 
the unit whose data are reported in Table 1. The figure 
shows also the hourly energy program associated to the 
feasible power schedule. Significant energy unbalanc-
ing occurs at 6th, 14th and 22nd hour, corresponding to a 
total value ε*=22.8 MWh, the minimum value that 
allows the convergence of the solution of problem (8)-
(9). We note that, differently to what examined in the 
previous sections, the original revenue corresponding to 
the market hourly energy program is 243.7·103 m.u., 
lower than the revenue associated with the feasible 
power schedule, equal to 244.5·103 m.u.. This is due to 
the fact that, in this case, the enforcing of the ramp 
constraints results in an increase of the output energy, 
with a filling of the profile valleys, rather than a cut of 
the peaks. 
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Figure 6 Feasible power level profile of a thermoelectric unit 
(whose data are shown in Table 1) and the hourly energies 
corresponding to the power schedules, obtained from a given 
market hourly energy program (for w1=1 and w2=1). 

For the same case, Figure 7 shows the results of the 
second problem, i.e. the development of the refined 15-
minutes energy program, described in Section 3. In 
particular, the figure shows the comparison between the 
feasible power schedule p and the power schedule p’ 
corresponding to the refined 15-minutes energy pro-
gram with the associated ramp rates. The violation of 
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the maximum ramp rate limits occur in the intervals 
between hours 6-9, 12-15 and in the last quarter of the 
21st hour. 
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Figure 7 Comparison between the feasible schedule of Figure 
6 and the power schedule p’, solution of the second problem 
(for w1’=1, w2’=103, w3’=1), with its ramp rates. 

4.2 Sensitivity analysis to ramp constraints 
This section presents the results obtained for various 

values of the ramp limits. Δd and Δu are taken equal to 
each other and taken as a fixed percentage of the maxi-
mum output of the unit (Pmax): the values 0.5%, 1%, 
1.5%, 2% are investigated. 
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Figure 8 Comparison between the feasible schedules obtained 
for different values of the ramp rate limit Δ=Δu=Δd: 0.5%, 1%, 
1.5% and 2% of Pmax. Results obtained for two market hourly 
energy programs: a) profile 1, b) Profile 2. (w1=1, w2=1) 

Figure 8 shows the comparison between the feasible 
power schedules obtained for various values of maxi-
mum ramp limits, both for the hourly energy program 
examined in sections 2 and 3 (profile 1) and for the 
hourly energy program taken into consideration in sec-
tion 4.1 (profile 2). 

Assuming, for both profile 1 and profile 2, the same 
market clearing prices of section 2, Table 2 presents the 
results of the sensitivity analysis, with the values of 
minimum energy unbalance ε* for the various values of 
Δ. Also the operating costs, revenues and objective 
values (for w1=1 and w2=1) are reported, as a percent-
age of the values obtained for Δ=2%, i.e. for the case in 
which the ramp constraints are (quite always) not ac-
tive, namely: 

⎯ profile 1 
operating cost = 175.8·103 m.u. 
revenue= 225.8·103 m.u. 
objective value= 741,1 

⎯ profile 2 
operating cost = 184·103 m.u. 
revenue= 243.7·103 m.u. 
objective value= 766.8 
 

Table 2 Sensitivity analysis results for various values of the 
maximum ramp limit Δ=Δu=Δd: 0.5%, 1%, 1.5% and 2% of 
Pmax. The values of costs, revenues and objective values are in 
% of the values obtained for Δ=2%. 

Δ 
(%) 

ε* 
(MWh) 

operating 
cost (%) 

revenue 
(%) 

objective 
value (%) 

hourly energy profile 1 
0.5 64.5 99,26 99,51 102,42 
1 15 99,82 99,88 110,36 

1.5 0.73 99,99 99,99 104,51 
2 0 100 100 100 

hourly energy profile 2 
0.5 141.5 101,62 101,34 96,07 
1 13.6 100,22 100,18 118,20 

1.5 2.1 100,03 100,03 107,93 
2 0.16 100 100 100 

5 CONCLUSIONS 
The paper has presented a two-step linear program-

ming model for the transition from hourly energy pro-
grams, defined by day-ahead market auctions, to feasi-
ble power schedules and refined 15-minutes energy 
programs. 

The first step is conceived to show the most conven-
ient level of energy unbalances with respect the market 
hourly energy program that should be accepted in order 
to guarantee the feasibility of the power schedule and 
would be compensated in following balancing market 
sessions. 

The second step allows obtaining the refined 15-
minutes energy program required by the Italian market 
rules, in order to allow the security assessment proce-
dures. 

The results of the sensitivity analysis show the appli-
cability of the proposed linear programming procedure 
in realistic cases. 
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At present, the Italian market rules does not allows to 
consider the various groups of a thermoelectric power 
plant as a single production unit for maximum output 
values of the plant exceeding some restricted limits. 
However, if the market rules would allow this opportu-
nity, the proposed procedure is immediately applicable 
to the case of a power plant with several identical units 
and, with some minor modification, to the case of units 
with different efficiency and production costs. This 
would be the case, for instance, of power plants origi-
nally equipped with several conventional fossil-fired 
steam units, some of which have been revamped in gas-
steam combined-cycle groups. Note that, if the assumed 
cost-output function is quadratic, the linearity of the 
model is preserved. Additional modeling effort, involv-
ing the adoption of non linear and mixed integer mod-
els, is required, however, in order to take into account 
more complex cost functions and to exploit the possibil-
ity to adopt self unit-commitment decisions. Also, more 
specific models are required for the case of hydroelec-
tric systems with several hydraulically coupled plants 
and reservoirs. 
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