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Abstract - A novel model for computing the conditional 

probability of system marginal price (SMP) is proposed to 

evaluate SMP short-term uncertainty. In the proposed 

model, SMP independent influence event sources (IIESs) 

are assumed, whose independency is obtained by 

Independent Component Analysis (ICA). According to the 

independency of these IIESs, the complicated joint 

probability, which are the key puzzle for computing 

conditional probability (CCP), are decomposed into 

corresponding probability and one-event conditional 

probability of each IIES. Examples show that our approach 

is well adapted to evaluate SMP short-term uncertainty. 
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1 INTRODUCTION 

In recent years, the deregulation of the electricity 

power industry becomes a trend throughout many 

countries, in order to enhance the efficiency of power 

industry. As one of the focused problems in the markets, 

system marginal price (SMP) of electric power is more 

complicated than the price in other kinds of markets, due 

to the specialty of electricity commodity, which need the 

balance of supply and demand in real time. Generally 

SMP is related to the supply-demand situation, the 

generation cost of the units, bidding strategies and other 

relative market factors. All these make SMP change 

intricately and bring to the market participants and the 

supervisors with many new challenges, which create the 

need of an efficient tool to evaluate SMP uncertainty, 

especially short-term uncertainty.   

- For the market participants 

In the competitive market environment, the market 

participants search their ways to improve their returns. 

But SMP uncertainty makes their decision-making face 

great risk. Naturally SMP short-term uncertainty that can 

provide the probability information on SMP change in the 

near future, is very useful to conduce them to proper SMP 

forecasting and risk evaluation.  

- For the supervisors 

The supervisors analyze SMP changing trend, and then 

regulate the electricity trades to ensure the healthy and 

stable development of the electricity market.  

In the past several years, some methods for analyzing 

SMP uncertainty have been studied. As a direct and 

mathematical tool, SMP probability has been computed 

by various ways, which can be classified into two 

mainstreams. On the Gaussian model side, SMP is 

assumed to be Gaussian, and SMP probability is 

computed according to Gaussian probability density 

function (PDF). On the other computation side, SMP 

probability is computed directly by frequency method 

without any assumption of SMP PDF. And most efforts 

have been in acquiring the uncertainty of SMP influence 

factors during the near trade periods. 

In [1], the authors used SMP bivariate probability 

distribution model to introduce SMP short-term status 

and proposed a stochastic model by simulating the 

stochastic characteristics of spot market.  

In [2], the authors computed SMP probability based on 

the bidding uncertainty by using the sequence operation 

theory. However this model only considered single 

influence factor - the bidding of the units.  

On the whole, the previous methods can hardly be 

applied to multi-event conditional probabilities. Taking 

above limitation into account, this paper aims at 

providing a practical method to compute multi-event 

conditional probability for evaluating SMP short-term 

uncertainty more comprehensively. In the proposed 

model, SMP independent influence event sources (IIESs) 
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are assumed, whose independency is obtained by 

Independent Component Analysis (ICA). According to 

the independency of these IIESs, the complicated joint 

probabilities, which are the key puzzles for computing 

conditional probability (CCP), are decomposed into 

corresponding probability and one-event conditional 

probability of each IIES. Examples show that our 

approach is well adapted to evaluating SMP short-term 

uncertainty. 

This paper includes the following parts. In section 2, the 

conditional probability model for evaluating SMP 

short-term uncertainty is defined, whose corresponding 

novel computation method is proposed based on the 

assumption of SMP IIEs. Besides, Section 3 testifies the 

validity of the proposed model, and compares it with 

SMP probability. Section 4 explains the conclusion based 

on case studies. 

2 PROPOSED MODEL FOR EVALUATING 

SMP SHORT-TERM UNCERTAINTY 

2.1 Model Definition 

Firstly SMP multi-event conditional probability is 

defined as below to evaluate SMP short-term uncertainty: 
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where,  

z: the observed SMP at the future trade period, whose 

uncertainty is to be evaluated.  

xi (i=1,2,…,n): SMP original influence event, having 

zero mean and unit variance. And x1,x2,…,xn constitute a 

set of influence events, written in the vector x=(x1, x2,…, 

xn)
T ∈ Rn, which is used to introduce the short-term 

market information, including loads and SMPs during the 

near previous periods. Here the recent data are used to 

consider short-term effect and to avoid wrong effect of 

long-term market data on the model.  

Generally conditional probability is computed directly 

by the traditional method — frequency, which uses the 

number ratio of the samples that satisfy the same 

conditions of the observed probability to the whole 

samples. But due to the short development of electricity 

market, the foregone data are often insufficient for CCP 

in (1).  

First we convert the conditional probability as below: 
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where, 
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is the joint probability of x1, x2,…, xn in their intervals 

without conditions; 
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is the joint probability of x1, x2,…, xn in their intervals, 
under condition of ba zzz ≤< , also called one-event 

joint conditional probability.  

One of the main difficulties for computing joint 

probabilities of (3) and (4) is the correlation among SMP 

original influence events. So far, there exists no model 

that would ideally compute those joint probabilities.  

To solve that problem, we assume that x1,x2,…,xn are 

the mixing results of unknown independent signal 

sources, among which there are not more than one 

Gaussian signal, as defined in (5). 

Asx =      (5) 

where, 

x: SMP original influence event set, x=(x1, x2,…, 

xn)
T∈Rn; 

s: unknown independent signal source set, s=(s1, s2,…, 

sn)
T∈Rn; 

A: mixing matrix. 

According to FastICA[3], s can be well estimated by 

finding the right linear combinations in (6).  

Wxy =         (6) 

where, 

W: de-mixing constant transformation matrix. The term 

‘detW’ is the determinant of W, and detW?0. 

y: estimation of s, called SMP independent influence 

event source (IIES) set, whose components are 
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statistically independent from each other. And y=(y1, 

y2,…, yn)
T∈Rn. 

Based on that assumption, new model for computing 

SMP conditional probability is presented in the following 

section. 

2.2 Building New Computation Model 

In the proposed model, it is noticeable that x1,x2,…,xn 

are defined as the previous loads and SMPs. The other 

point here is the relation of SMP, its original influence 

events and IIESs. As defined, any of its influence event 

xi(i=1,…,n) happens earlier than z, then z has no ‘direct’ 

impact on x1, x2, …, xn. Meanwhile, z limits the values of 

xi (i=1,…,n) to some corresponding subspace. From the 

relation of xi and z shown in Figure 1, the data of z limit 

all the possible data of xi into the subset of Rn, namely OX. 

 

 
Figure 1: Relation of z and x1, x2, …, xn. 

Likewise, according to the independency of SMP IIESs, 

z limits the values of y1, y2, …, yn to the corresponding 

subspace OY. And the relation of z and the obtained IIESs 

is shown in Figure 2. 

 

 
Figure 2: Relation of z and y1, y2, …, yn. 

Now Jacobian matrix of the mapping y=Wx is  
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And  
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where, 

q(x1,x2,…,xn): joint probability density function of 

x1,x2,…,xn; 

p(y1,y2,…,yn): joint probability density function of 

y1,y2,…,yn. 

In the case of equation (8), the joint probability in (3) 

becomes  
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Considering the independency of SMP IIESs, that is, 
( ) ( ) ( ) ( )nnn ypypypyyyp LL 221121 ,,, =    (10) 

We deduce 
{ }

( ) ( ) ( )

{ } { }
{ }

{ }∏

∫∫∫

=

≤<=

≤<

≤<⋅≤<=

=

≤<≤<≤<

n

i
i,bii,a

n,bnn,a

,b,a,b,a

n

y

y

nn

y

y

y

y

bnnanbaba

yyyP

yyyP

yyyPyyyP

dyypdyypdyyp

xxxxxxxxxP

n,a

n,b

,a

,b

,a

,b

1

222111

222111

,,,22,2,11,1

det

det

det

,...,,

1

1

W

W

W
2

2

L

L

 

(11) 

where, 
( )ii yp : probability density function of yi, i=1,2,…,n.  

Note that we transform the subset of x under condition 

of z by the same matrix W. Since the whole dataset of yi 

(i=1,2,…,n) is independent from that of yj (i ≠ j), the 

subset of yi under condition of z is also independent from 

the subset of yj (i ≠ j). Thus, the following equation is 

true.  
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where, 

( )baii zzzyp ≤< :i=1,2,…,n, probability density 

function of yi under condition of z.  

By substituting (11) and (12) into (2), new model for 

CCP is derived to be 
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where, 

{ }babiiai zzzyyyP ≤≤≤< ,, :conditional probability of 

yi? (yi,a, yi,b) when ba zzz ≤< . 

{ }biiai yyyP ,, ≤< : probability of yi∈(yi,a, yi,b). 

Obviously, we have solved the problem of computing 

SMP conditional probability successfully by the 

decomposed computation model in (13).  

Since above derivation is based on the assumption of 

SMP IIESs, we will introduce how to mine these IIESs as 

follows. 

2.3 Mining SMP IIESs by ICA 

In recent years, independent component analysis has 

been an efficient technique for Blind Source Separation, 

which is typically to recover unknown independent 

sources from the received mixing signals whose method 

of mixing is unknown [4]. Aapo Hyvärinen proposed a 

rapid and simple algorithm of ICA, named FastICA, 

which has been widely applied for its appealing 

convergence properties [5].  

In the present model, x and y are firstly standardized to 

have zero mean and unit variance. According ICA theory, 

negentropy J(y) and mutual information I(y1, y2,…, yn) 

are defined individually [6,7]. 
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where, ygauss is a Gaussian random variable of the same 

covariance matrix as y. 

For random SMP IIES xwT
iiy = , non-quadratic 

function G is used to form the simpler approximations of 

above negentropy. Then the optimization objective is in 

the following general form [6,7]: 
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where, 

wi is the i-th row of W.  

Practically au
a

uG coshlog
1

)( = .  

And FastICA seeks independent components one by 

one. After w1,w2,…,wn are found, y1,y2,…,yn are obtained. 

2.4 Computing the Relative Probabilities and Conditional 

Probabilities 

According to the proposed model in (13), we 

decompose the joint probabilities in (3) and (4) into 2n+1 

probabilities and one-event conditional probabilities of 

SMP IIESs. Here the corresponding probabilities are 

computed as follows,  
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where  
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i: 1,2,…,n; 

t: interval number of yi. 

( )baii zzzyp ≤< : conditional probability density 

function of yi when ba zzz ≤< ; 

( )bakiki zzzyf ≤<,, : conditional probability density of 

yi,k when ba zzz ≤< . 
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where, 

i: 1,2,…,n; 

t: interval number of yi. 
( )ii yp :conditional probability density function of yi; 

( )kiki yf ,, :conditional probability density of yi,k. 

By utilizing the dataset of every SMP IIES and its 

subset under condition of z, we compute 

( )bakiki zzzyf ≤<,,  and ( )kiki yf ,, , k=1,2,…, t, based 

on kernel density estimator that can deal with various 

distributions.  

Finally we put the computational results of 

{ }babiiai zzzyyyP ≤≤≤< ,, and { }biiai yyyP ,, ≤< , 

i=1,2,…,n into (13), and obtain the solution of SMP 

conditional probability. 

3 CASE STUDIES 

3.1 Examples 

The approach presented above has been tested by the 

real data of New England market. In this test, we evaluate 

the short-term uncertainty of forecasted SMP, which is an 

important and unsolved problem in the research of SMP 

forecasting. We take the conditional probability of 

forecasted SMP at 15:00 on Dec. 26th 2002 for example. 

Here SMP conditional probability is defined as: 
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where, 

- z: forecasted SMP; 

- x1: forecasted load of the observed trade period; 

- x2, x3, x4: loads at 15:00 of preceding three days; 

- x5, x6, x7: SMPs at 15:00 of preceding three days.  

Then an interesting question is on earth what is the 

advantage of the proposed method with comparison to 

traditional frequency method. Our experiments show that 

the number of historical samples that meet the conditions 

in (19), is so few, even none. Considering the 

insufficiency of traditional methods, we use the proposed 

method for CCP. First the samples of x and x under 

condition of z are plotted in Figure 3 and Figure 4. After 

that, SMP IIES vector y and y under condition of z are 

mined and shown in Figure 5 and Figure 6 respectively.  

 

Figure 3: Samples of SMP original influence events 

 
Figure 4: Samples of SMP original influence events under 

condition of z 
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Figure 5: Samples of SMP IIESs 

 

Figure 6: Samples of SMP IIESs under condition of z 

Besides, the kurtoses of SMP IIESs defined in (20) are 

listed in TABLE 1, which proved the validity of the 

assumption on SMP IIESs. 
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IIES Ckurt IIES Ckurt 

y1 32.0021 y5 1.4543 

y2 32.1549 y6 1.7246 

y3 24.7970 y7 0.4620 

y4 1.9355   

 

TABLE 1: KURTOSES OF SMP IIESs. 

By the proposed model, the relative probabilities and 

conditional probabilities of SMP IIESs are computed and 

listed in TABLE 2, when SMP is forecasted to be 

43$/MWh.  

IIES 












≤≤

≤<

ba

biiai

zzz

yyy
P

,,
Number 

of 

Samples 

{ }biiai yyyP ,, ≤<  
Number 

of 

Samples 

y1 0.53354 10 0.28539 57 

y2 0.68326 10 0.52931 69 

y3 0.36343 5 0.20471 51 

y4 0.46135 20 0.30562 161 

y5 0.55456 23 0.52653 154 

y6 0.60901 26 0.63071 210 

y7 0.44168 23 0.34596 170 

 

TABLE 2: PROBABILITIES AND CONDITIONAL 

PROBABILITIES OF SMP IIESs WHEN SMP IS 

FORECASTED TO BE 43$/MWh. 

Finally, we obtain SMP conditional probability: 
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3.2 Discussion   

TABLE 2 tells us another fact that SMP conditional 

probabilities are compared with its probabilities to verify 

the representation ability of short-term uncertainty. Here 

TABLE 3 lists the relative probabilities and conditional 

probabilities of different forecasted SMPs at 15:00 on 

Dec. 26th, with the actual SMP being 41.9$/MWh. 

 

Forecasted 

SMP 

($/MWh) 

{ }ba zzzP ≤≤  
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51.2 0.04809 0.24 

43.0 0.092366 0.775619 

37.0 0.09313 0.203637 

 

TABLE 3: PROBABILITIES AND CONDITIONAL 

PROBABILITIES OF DIFFERENT FORECASTED SMPs 

WHEN ACTUAL SMP IS 41.9$/MWh 
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It is obvious in TABLE 3 that the probabilities and 

conditional probabilities of the forecasted SMPs are 

different. As the accuracy of forecasted SMP increases, 

its conditional probability becomes more. For actual SMP, 

the closest forecast value is 43$/MWh, whose conditional 

probability is the most. Contrastively, the conditional 

probabilities of 37$/MWh and 51.2$/MWh are so low, 

which reflects that these two forecasted SMPs are a little 

far from the real SMP.  

On the contrary, SMP probability data have not shown 

that trend. In detail, the probabilities of forecasted SMPs 

being 43$/MWh and 37$/MWh are adjacent, though 

these SMPs differ in their forecast errors. So above 

analysis explains that conditional probability can reflect 

the short-term uncertainty of the observed SMP to some 

extent.  

4 CONCLUSIONS 

As a reasonable and efficient tool, SMP conditional 

probability is presented to evaluate SMP short-term 

uncertainty by considering short-term market 

information.  

For the complexity of CCP, this paper breaks though 

the old traditional computation methods and invents a 

new way that decomposes the impalpable joint 

probabilities by seeking latent SMP independent 

influence event sources. Finally, the method is proved to 

be applicable and efficient.  

Moreover, the proposed model takes the public 

information, such as previous SMPs and loads, as the 

influence events of the observed SMP. On the basis of 

such information, the model considers more 

comprehensive market status and has a wide application 

scope.  
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