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Abstract – In the deregulated electricity market, total 
transfer capability (TTC) is a measure of the network 
capability for further commercial activity above the 
already committed uses. This paper deals with the 
development of an interior point nonlinear programming 
methodology for evaluating Dynamic TTC. By establishing 
a novel method for integrating transient stability 
constraints into conventional steady-state TTC problem, 
we have proposed the dynamic TTC solution methodology 
using a Transient Stability Constrained OPF. In the 
TSCOPF based TTC formulation, we have assumed that 
three phase to ground faults will occur in the simulation 
period. In Japan, power system operator considers more 
severe faults conditions, like 3 phases 4 lines to ground 
fault with double circuits (3φ4LG).  

In this paper, we will propose a solution of Transient 
Stability Constrained OPF with unbalanced faults, where 
three phase transmission model was considered in the 
dynamic simulation period. The proposed method has 
been implemented and tested on IEEJ WEST30 model 
systems.  

Keywords: Total Transfer Capability, Optimal 
Power Flow, Transient Stability Problem, TSCOPF, 
Unbalanced Fault 

1 INTRODUCTION 
Recent years, electric power systems are 

experiencing an epochal revolution due to an 
increasingly competitive market. Also in Japan, the 
Electric Industry Law was amended in 1995 aiming to 
deregulate the wholesale electricity supply business. 
Under such an open transmission access environment, it 
is more and more important for the system operator to 
know how much additional power can be safely 
transferred across the system. 

Available Transfer Capability (ATC) is the measure 
of the ability of interconnected electric systems to 
reliably transfer power from one area to another over all 
transmission lines or paths between those areas under 
specified system conditions. In nowadays deregulated 
market, it is a measure of the network capability for 
further commercial activity above the already 
committed uses. Until now, ATC calculation has 
predominantly focused on steady-state viability [1]. In 
the dynamic realm, evaluation of ATC including 
voltage stability limits has also been considered [2]. 
However, the integration of transient stability 

constraints into ATC calculation is still a relatively new 
development. Especially, few OPF-based dynamic ATC 
algorithms are available although they are conceptually 
rather nice [3]. 

Unlike most of the linear programming (LP) methods 
used in Static ATC, a methodology based on primal-
dual Newton interior point method for nonlinear 
programming problems is introduced to solve the 
formed Dynamic ATC optimization problem. 

In this paper, we will propose a solution of Transient 
Stability Constrained OPF with the consideration of 
unbalanced faults, where three phase transmission 
model was implemented in the dynamic simulation 
period. The proposed method has been implemented 
and tested on IEEJ WEST30 model systems with 
several unbalanced fault condition. In all cases, 
dynamic responses obtained by our TTC results are 
verified by the widely-used CRIEPI’s power system 
dynamic stability analysis program.  

2 NOMENCLATURE 

iδ  rotor angle of ith generator 

iω  rotor speed of ith generator 

0ω  rated rotor speed of generators 

iM  moment of inertia of ith generators 

iD  damping constant of ith generator 

miP  mechanic power input of ith generator 

eiP        electric power output of ith generator 

COIδ      position of the inertial center 
, ,i i ia b c    fuel cost coefficients of thermal plant i 
,gi riP Q    active and reactive power injection at bus i 
,li liP Q     active and reactive power load at bus i 

ij ijG jB+   transfer admittance between buses i and j 
ij

iV e θ      magnitude and phase of voltage iV  at bus i 
tΔ        integration time-step width 
maxT      maximum integration period 

nb        number of buses 
ng        number of active power sources 
nr        number of reactive power sources 
nt        number of integration time intervals 

GS        set of active power sources 

RS        set of reactive power sources 
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NS        set of buses 

TS        set of integration steps 
( )•        lower limits of variables and quantities 

( )•        upper limits of variables and quantities 

3 TTC MODELING 
As shown in Figure 1, an interconnected power 

system can be divided into three kinds of areas: sending 
areas, receiving areas and external areas. “Area” can be 
defined in an arbitrary fashion. It may be an individual 
system, power pool, control area, sub-region, etc. 

E E

SS

S R

 
 S - Sending Area ; R - Receiving Area 
E - External Area ; ---- Transfer Paths 

Figure 1:  A simple interconnected power system 

For ATC evaluation, first a base case transfer 
including existing transmission commitments is chosen, 
then a transfer-limited case is determined. 
Mathematically, ATC is defined as: 

 = Total Transfer Capability 
-Existing Transmission Commitments 
-Transmission Reliability Margin 
-Capacity Benefit Margin

ATC (TTC)
(ETC)

(TRM)
 (CBM)

 (1) 

TTC is defined as the amount of electric power that 
can be transferred over an interface or a corridor of the 
interconnected transmission network in a reliable 
manner while meeting all of a specific set of defined 
pre- and post-contingency system conditions. TRM is 
defined as that amount of transmission transfer 
capability necessary to ensure that the interconnected 
network is secure under a reasonable range of 
uncertainties in system conditions. CBM is defined as 
that amount of transmission transfer capability reserved 
by load serving entities to ensure access to generation 
from interconnected systems to meet generation 
reliability requirements. Since TRM and CBM are very 
system dependent, in the following, we address the 
calculation of TTC, which is at the basis of ATC 
evaluation. 

The objective of a TTC problem is to determine the 
maximum real power transfers from sending areas to 
receiving areas through the transfer paths. And the 
physical and electrical characteristics of the system 
limiting the transfer capability include: 

- Generation limits: Generation should not be over 
the rated output of each generation unit. 

- Voltage limits: Voltages over the transmission 
system should be within acceptable operation 
ranges. 

- Thermal limits: Constrain the amount of transfer 
that transmission line can be safely handled 
without overload. 

- Stability limits: Voltage stability and angle 
stability must be maintained. 

In short, the TTC is given by: 
Generation Limits
Voltage LimitsTTC Minimumof Thermal Limits
Stability Limits

⎧ ⎫
⎪ ⎪

= ⎨ ⎬
⎪ ⎪
⎩ ⎭

 (2) 

In most Japanese electric systems, angler stability 
constraints for dynamic stability are the crucial factors 
to determine transmission limits. On considering this 
point, to simplify TTC calculation, we assume that bus 
voltage limits are reached before the system reaches the 
nose point and loses voltage stability. Hence, voltage 
stability limits are neglected in this study. The power 
transfer can be formulated as the sum of power flows 
between the area: 

,
2 ( cos sin )

SA RA

T ij
i S j S

ij ij i i j ij ij ij ij

P P

P G V VV G Bθ θ
∈ ∈

=

= − +

∑
 (3) 

 

4 TTC CALCULATION BY MEANS OF 
TRANSIENT STABILITY CONSTRAINED OPF 

4.1 Transient stability model in TSCOPF 

4.1.1 Classical Generator Model 
In this study, the classical generator model for 

transient stability analysis is adopted. It allows the 
transient electrical performance of the machine to be 
represented by a simple voltage source of fixed 
magnitude E′  behind an effective reactance dx′ . This 
model offers considerable computational simplicity. 

( )
0

0

i i

i i i i mi ei

G

M D P P
i S

δ ω ω
ω ω ω
= −

= − + −

∈

 (4) 

2

1

sin cos
ng

ei i ii i j ij ij i j ij ij
j

i

P E G E E B E E Gδ δ
=
≠

′ ′ ′ ′ ′ ′ ′ ′⎡ ⎤= + +⎣ ⎦∑  (5) 

In the above equations, ij ij ijY G jB′ ′ ′= +  is the 
driving point admittance (i=j) and the transfer 
admittance (i≠j). ijY ′  have to be changed only in the 
case that there is a change in the configuration of the 
network because of fault or switch operation. 

4.1.2 Center of inertia (COI) 
In describing the transient behavior of the system, it 

is convenient to use inertial center as a reference frame. 
The generators’ angles with respect to COI are used to 
indicate whether or not the system is stable. For an ng-
generator system with rotor angles iδ  and inertia 
constant iM , the position of COI is defined as: 
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1 1

ng ng

COI i i i
i i

M Mδ δ
= =

=∑ ∑  (6) 

 

4.2 Formulation of TSCOPF problem 

4.2.1 Objective Function 
 Maximize 

,SA RA

T ij
i S j S

P P
∈ ∈

= ∑  (7) 

4.2.2 Equality Constraints 
a) Power flow equations:  

 The polar coordinate form power flow equations are 
used: 

( )

( )

cos sin 0

cos sin 0

i j ij ij ij ij li gi
j i

i j ij ij ij ij li ri
j i

V V G B P P

V V G B Q Q

θ θ

θ θ
∈

∈

+ + − =

− + − =

∑

∑
 (8) 

b) Swing equations: 
 By the adoption of any implicit integration rule, 

equation (4) can be discretized at each time step. The 
differential swing equations (4) can be converted to the 
following numerically equivalent algebraic equations 
using the trapezoidal rule: 

( ) ( )

( )

( )

1 1
0 0

1 0

1 10

0
2

2

0

,

t t t t
i i i i

t t t t
i i i i mi ei

i

t t
i i mi ei

i

G T

t

t D P P
M

D P P
M

i S t S

δ δ ω ω ω ω

ω
ω ω ω

ω
ω

− −

−

− −

Δ ⎡ ⎤− − − + − =⎣ ⎦
⎡Δ

− − − + −⎢
⎣

⎤
+ − + − =⎥

⎦
∈ ∈

 (9) 

where 

{ }2

1
sin cos

ng
t t t t

ei i ii i j ij ij i j ij ij
j

i

P E G E E B E E Gδ δ
=
≠

′ ′ ′ ′ ′ ′ ′ ′= + +∑  

c) Initial-value equations: 
 In order to obtain the initial values of rotor angle 

0
iδ  and constant voltage iE′  in the swing equations, 

the following initial-value equations are introduced: 
( )
( )

0

2 0

sin 0

cos 0

i gi i gi di gi

gi i gi i gi di ri

E V x P

V E V x Q

δ θ

δ θ

′ ′− − =

′ ′− − + =
 (10) 

4.2.3 Inequality Constraints 
 For the sake of convenience, inequality constraints 

are divided into two groups Guc and Gc. Guc group 
contains all the inequality constraints as that in 
conventional OPF, while Gc group consists of the 
transient stability constraints. 
a) Inequality constraints Guc: 

gi gi gi G

ri ri ri R

i i i N

P P P i S
Q Q Q i S
V V V i S

≤ ≤ ∈
≤ ≤ ∈
≤ ≤ ∈

 (11) 

b) Stability constraints Gc: 
 As mentioned, generators’ angles with respect to 

COI are used to indicate whether or not the system is 

stable: 
0 0

,

i COI
t t
i COI

G Ti S t S

δ δ δ δ
δ δ δ δ
≤ − ≤
≤ − ≤
∈ ∈

 (12) 

4.3 Primal-Dual Interior Point Optimal Power Flow 
Assume that x  is defined as a 1n×  vector: 

 
Tcontrol state nx x x R⎡ ⎤≡ ∈⎣ ⎦  

Then, a dynamic TTC problem may be formulated as 
the following non-linear programming problem: 

    ( )
   ( ) 0

                 ( )

minimize f x
subject to h x

g g x g
=

≤ ≤
 (13) 

where 1( ) [ ( ), , ( )]T
mh x h x h x≡ , 

1( ) [ ( ), , ( )]T
rg x g x g x≡ . 

By introducing slack variable vectors , rl u R∈ , 
system (9) can be transformed to: 

    ( )
   ( ) 0

                ( ) 0 ; ( ) 0
                 ( , ) 0

minimize f x
subject to h x

g x g l g x g u
l u

=
− − = − + =
≥

 (14) 

Define a Lagrangian function associated with (10) as: 
( , , ; , , , , ) ( ) ( ) [ ( ) ]

                                   [ ( ) ]

T T

T T T

L x l u y z w z w f x y h x z g x g l
w g x g u z l w u

≡ − − − −
− − + − −

    (15) 
where my R∈  and , , , rz w z w R∈  are Lagrange 
multipliers. ,z z w w= = − . 

Based on the perturbed Karush-Kuhn-Tucker (KKT) 
optimality conditions, we have the following equations: 

( ) ( ) ( )( ) 0
0
0

( ) 0
( ) 0
( ) 0

( , ) 0, 0, 0 & 0

x

l

u

y

z

w

L f x h x y g x z w
L LZe e
L UWe e
L h x
L g x g l
L g x g u
l u y z w

μ
μ

≡ ∇ −∇ −∇ + =
≡ − =
≡ + =
≡ =
≡ − − =
≡ − + =
≥ ≠ ≥ ≤

  (16) 

where , , , r rL U Z W R ×∈  are diagonal matrices with 
the element , ,i i il u z  and iw . 0μ >  is a perturbed 
factor. [1,...,1]T re R= ∈ . 

By applying Newton’s method to the perturbed KKT 
equations (11), the correction equation can be expressed 
as: 

2 2 2

1 1

0

0

0

0

0

0

( ) ( ) ( ) ( )

                     ( ) ( )( )

( )
( )
( )

m r

i i j j j
i j

x

l

u
T

y
T

z
T

w

y h x z w g x f x x

h x y g x z w L
Z l L z L
W u U w L

h x x L
g x x l L
g x x u L

μ

μ

= =

⎡ ⎤
∇ + + ∇ −∇ Δ⎢ ⎥

⎣ ⎦
+∇ Δ +∇ Δ + Δ =

Δ + Δ = −
Δ + Δ = −

∇ Δ = −
∇ Δ −Δ = −
∇ Δ + Δ = −

∑ ∑

 (17) 

where 0 0 0 0 0 0( , , ; , , )x l u y z wL L L L L Lμ μ  are the values at a 
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point of expansion and denote the residuals of the 
perturbed KKT equations. 2 2( ) , ( )if x h x∇ ∇  and 

2 ( )jg x∇  are Hessian matrices of ( ) , ( )if x h x  and 
( )jg x . 
In order to handle inequality constraints efficiently, a 

reduced correction equation is introduced. This 
reduction method is very effective for Dynamic TTC 
problem. By eliminating ( , , , )l u z wΔ Δ Δ Δ  from (12), 
we can derive the following reduced correction 
equation: 

( , )( ) ( )

( ) 0

T xH J x

yJ x

ψ μ

φ

Δ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥Δ⎣ ⎦ ⎣ ⎦⎣ ⎦

ii
 (18) 

where 

2 2 2

1 1

1

1 1 1 1
0 0

( ) ( ) ( ) ( ) ( )

                           ( ) ( ) ( )

( ) ( )
( , ) ( ) ( )

             ( )[ ( ) ]
( )

m r

i i j j j
i j

r
j j T

j j
j j j

T

w z

H y h x z w g x f x

w z
g x g x

u l
J x h x

h x y f x
g x U WL L ZL U L e

h x

ψ μ
μ

φ

= =

=

− − − −

⎡ ⎤
≡ ∇ + + ∇ −∇⎢ ⎥
⎣ ⎦

+ − ∇ ∇

≡ ∇
≡ ∇ −∇
+∇ − − −

≡

∑ ∑

∑

i

i

 

It is obvious that the reduced correction equation has 
eliminated both variable inequality constraints and 
functional inequality constraints. The size of (18), 
which is determined only by the number of variables 
and equality constraints, is much smaller than that of 
(17). 

 
Algorithm of the Method 
Initialization: Set iteration counter 0k = ; define 
centering parameter (0,1]σ ∈  and tolerance 610ε −= ; 
chose a starting point for primal variables and dual 
variables. 
 
Begin 0,1,...k = : 

 

Step 1: (Test for Convergence) 
Compute complementary gap: 

1

( )
r

k m m m m
m

CGAP l z u w
=

≡ −∑  (19) 

If the operating point satisfied the convergence 
criteria ( )kCGAP ε< , then output the optimal solution 
and stop. Otherwise, do Step 2 to Step 5. 

 

Step 2: (Compute the Perturbed Factor) 

2
k

k
CGAP

r
μ σ≡  (20) 

 

Step 3: (Compute the Perturbed Newton Correction) 
Solve the reduced correction equation (18) for 

( , )k kx yΔ Δ , then the following equations for 
( , ; , )k k k kl u z wΔ Δ Δ Δ : 

0

0
1

1

 ( )

( )
( )

( )

T
k k z

T
k k w

k k

k k

l g x x L

u g x x L
z L Z l LZe e

w U W u UWe e

μ

μ

−

−

⎧ Δ = ∇ Δ +⎪
⎨
Δ = −∇ Δ −⎪⎩
⎧ Δ = − Δ − +⎪
⎨
Δ = − Δ − −⎪⎩

 (21) 

The perturbed Newton correction kvΔ  is: 
 [ , , ; , , ]T

k k k k k k kv x l u y z wΔ = Δ Δ Δ Δ Δ Δ  
 

Step 4: (Determine the Maximum Step Length) 
Perform the ratio test to determine the maximum 

primal and dual step lengths that can be taken in the 
Newton direction: 

min min : 0; : 0 ,1

min min : 0; : 0 ,1

( 1,2,..., )

m m
k m m

m
m m

m m
k m m

m
m m

l u
P l u

l u
z w

D z w
z w

m r

θ

θ

− −
= Δ < Δ <

Δ Δ

− −
= Δ < Δ >

Δ Δ

⎧ ⎫⎛ ⎞
⎨ ⎬⎜ ⎟

⎝ ⎠⎩ ⎭
⎧ ⎫⎛ ⎞
⎨ ⎬⎜ ⎟

⎝ ⎠⎩ ⎭
=

 (22) 

 
Form the step length matrix: 

0.99 [ ,..., ; ,..., ]k k k k kdiag P P D Dθ θ θ θΘ =  (23) 
         
The scalar 0.99 is a safety factor to ensure that the 

next point will satisfy the strict non-negativity 
conditions imposed on the slack variables. 

 

Step 5: (Update Variables) 
Update the primal and dual variables by: 
1k k k kv v v+ = +Θ Δ  (24) 
then return to Step 1. 
 

End 

4.4 Three Phasor Model of Power System 
Normally, a power system operates under balanced 

conditions. Efforts are made to ensure this desirable 
state. Unfortunately, under fault/emergency condition, 
the system may become unbalanced state. In Japan, 
most of the utilities consider more severe condition than 
3LG-O fault, like 4LG-O with only 2 phase linked 
period. In order to apply this method to Japanese 
system, we have to incorporate three phase model. 

In this paper, we assumed that all the transmission 
line consists of double circuit with three phase model, to 
consider any unbalanced fault condition.  

In general, the sequence network (symmetrical 
components) model was used to analyze unbalanced 
network. In our TSCOPF model, three phasor (abc-
network) model was adopted to express unbalanced 
power system to avoid complexity for setting up 
unbalanced fault conditions. 

4.4.1 Three Phasor Transmission Line Model 
In the Japanese power system, all the transmission 

line and generator parameters are supplied with the 
sequence network based values. In order to adopt these 
parameters to our TSCOPF, we have to convert the 
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obtained data to the phasor representation using the 
following equations: 

[ ] 2

2

1 1 1
1
1

a a
a a

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 
1 3

2
a

j
=
− −

 (25) 

[ ] [ ] [ ]
0

1

2

1
0 0

0 0
0 0

1
3

p q r

r p q

q r p

abc

Y Y Yy
y Y Y Y

y Y Y Y
Y A A −

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥= = ⎜ ⎟⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎝ ⎠

 (26) 

0 1 2pY y y y= + + , 2
0 1 2qY y ay a y= + + , 2

0 1 2rY y a y ay= + +  
Figure 2 shows the system admittance matrix Y with 

double circuit in each node/lines. The size of Y matrix 
was 6n x 6n (n : the number of nodes). In this figure, 
heavy boarded parts       correspond to the mutual 
admittance between different routed transmission lines 
and double bordered parts      correspond to the 
mutual admittance between the same routed circuits. 

 
  bus1  bus n 
  a b c a’ b’ c’  a b c a’ b’ c’

a 
b 
c 11

abcY  11M   1
abc
nY  1nM

bu
s 1

 

a’ 
b’ 
c’ 11M  11

a b cY ′ ′ ′   1nM  11
a b cY ′ ′ ′

       
a 
b 
c 1

abc
nY  1nM   abc

nnY  nnM

bu
s n

 

a’ 
b’ 
c’ 

1nM  1
a b c

nY ′ ′ ′   nnM  a b c
nnY ′ ′ ′

 
Figure 2:  Y matrix considering abc-phasors 

In our formulation, we assumed that the mutual 
admittance between the different route would be 
negligibly small. On the other hand, the mutual 
admittance between the same nodes can be calculated 
with the following simplified equations: 

0
0

m
m

Z Z
Z Z

L
−

= +  (27) 

where 0Z  : zero-sequence admittance for each line,  

 mZ : zero-sequence mutual admittance between lines,  
 L : the number of lines. 

The above mutual admittance should be converted to 
phasor representation. Fortunately, the mutual 
admittance would appear only in diagonal block of the 
system admittance matrix Y. 

4.4.2 Reduction of admittance matrix from double 
to single circuit model 

In order to reduce the admittance matrix from double  
to single circuit, we will simply add abcY  with a b cY ′ ′ ′  
to obtain reduced matrix. This desirable characteristic 
comes from the mutual admittance model given by the 
equation (25). 

 

bus1  bus n 

bu
s1

 

11 11
abc a b cY Y ′ ′ ′+  1 1

abc a b c
n nY Y ′ ′ ′+

    

bu
s n

 

1 1
abc a b c

n nY Y ′ ′ ′+  abc a b c
nn nnY Y ′ ′ ′+

 
Figure 3:  Reduced Y matrix from double to single circuit 
model 

The size of obtained reduced Y matrix was 3n x 3n, 
which is the 1/4 of the original matrix. 

4.4.3 Electric Generator Output eP  from Three 
Phasor model  

For the single phasor model, the electric generator 
output eP  can be calculated from equation (5). 
However, for the three phasor model, we have to 
calculate the electric outputs of generator separately for 
each phasor. 

 
G E iI Y E′ ′=    (28) 

[ ]
1

0
0

G GG GL G

E G G

LG LL

Y Y Y Y
Y Y Y

Y Y

−

′

+ −⎡ ⎤ ⎡ ⎤
= − − ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
 (29) 

2 2 1

3
ia ia ib ib ic ic iE E a E a E aE aE E′ ′ ′= = = = = =  (30)  

Electrical output of each generator is the sum of 
product of each phasor voltage and current. Equation 
(28)~(30) shows the electric output for each phasor, 
where the admittance EY ′  in these equations can be 
obtained from the equation . 

{

( ) ( )
( ) ( )}

1

1 cos sin
3

2 2cos sin
3 3
2 2cos sin
3 3

ng

j

ij

a aa aa
ei i j ij ij ij ij

ab ab
ij ij ij ij

ac ac
ij ij ij

P V V G B

G B

G B

δ δ

δ π δ π

δ π δ π

=

= +

+ + + +

+ − + −

∑

 (31) 

( ) ( ){

( ) ( )}
1

1 2 2
3 3 3

cos sin

cos sin
2 2cos sin
3 3

ng

ij
j

ij

b ab ab
ei i j ij ij ij

bb bb
ij ij ij ij

bc bc
ij ij ij

P V V G B

G B

G B

δ π δ π

δ δ

δ π δ π

=

= − + −

+ +

+ + + +

∑
 (32) 

( ) ( ){
( ) ( )

}

1

1 2 2cos sin
3 3 3

2 2cos sin
3 3

cos sin

ng

i j ij ij
j

ij ij

ij ij

c ac ac
ei ij ij

bc bc
ij ij
cc cc
ij ij

P VV G B

G B

G B

δ π δ π

δ π δ π

δ δ

=

= + + +

+ − + −

+ +

∑
 (33) 
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5 SIMULATION RESULT 

5.1 Simulation condition 

5.1.1 IEEJ WEST 30 Model 
In order to help other researchers to crosscheck the 

results, in this paper we present the results of public 
domain systems --- IEEJ WEST30 model system [10].  

 IEEJ WEST30 
No. node 115 
No. branch 124 
No. generator 30 (No 30 was fixed)
No. transformer 30 

Table 1:  System Outline of the IEEJ WEST30 System 
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Figure 4: IEEJ WEST30 Power System model 

In this simulation, the transient stability constraint 
was defined as the maximum relative rotor angle with 
respect to center of inertia (COI) should be in the 
specified limit. The integration step-width tΔ  is fixed 
to be 0.01 [sec] and the maximum integration period 

maxT  is set to be 2.0 [sec]. It is possible to increase the 
number of integration steps, however the solution time 
will almost proportion to the number of the step. We 
assumed that the TTC would be power transfer between 
node 90 - 91, and a fault occurs at the line near node 90. 

 

5.1.2 Fault Conditions 
The following types of contingency are considered : 

(1) A fault occurs at 0.1 [sec] then the CB open the 
faulted circuit at 0.15 [sec]. This was applied to 
1LG-O, 2LG-O and 3LG-O fault conditions 
(Figure 4(a)). 

(2) A fault occurs at 0.10 [sec] then the CB open only 
the faulted lines at 0.15 [sec] to clear the faults. At  
0.20 [sec], only one circuit will be re-closed for 
recovering balanced operation. This was applied to 
3φ4LG-O ( Figure 4(b) ). 

 
 

0 0.1 0.15 2.0sec

open clearingfault

0 0.1 0.15 2.0sec

open clearingfault

 
(a)One-phase to Ground fault(1LG-O),Two-phases to Ground 

fault(2LG-O) and Three-phases to Ground fault(3LG-O) 

0 0.1 0.15 0.25 2.0sec

open clearingfault re-close

0 0.1 0.15 0.25 2.0sec

open clearingfault re-close

 
(b)  Three-phase Four Line to Ground fault(3φ4LG-O) 

 
Figure 5:  Transition of the fault condition 

5.2 Simulation results 
Figure 6 show the result of TTC calculation with the 

different rotor angle limits with respect to COI.  
In this simulation, the most severe condition was 

3φ4LG, because only two lines are connected between 
the nodes. The stability limit more than 60 [degree] 
gives the same TTC value, which is also the same as the 
Static TTC.  

It took about a few minutes to solve one TTC 
problem for this IEEJ WEST30 system using Sun Blade 
1500 Workstation. With the severe stability constraints, 
it requires more than a hundred iterations with several 
minutes of solution time. 
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Figure 6:  Result of TTC simulations with different angle 
constraints for each fault condition 
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Figure 7:  Convergence characteristics for the proposed 
method 

Generator output[GW] Node PGmin PGmax 70deg 50deg 30deg 
1 2.50 8.50 2.50 2.50 3.91 
2 4.70 4.70 4.70 4.70 4.70 
3 0.48 3.10 0.48 0.48 0.48 
4 0.59 3.80 2.14 0.59 2.34 
5 0.45 1.80 1.80 0.45 0.45 
6 0.86 3.40 2.68 1.93 0.86 
7 0.30 1.20 1.20 1.20 0.30 
8 2.30 2.30 2.30 2.30 2.30 
9 1.20 4.80 2.29 1.87 1.74 
10 1.33 5.30 3.07 5.30 4.16 
11 1.14 5.30 3.19 4.50 4.88 
12 1.22 5.50 3.87 3.91 3.96 
13 1.60 7.50 5.88 6.56 6.40 
14 2.30 2.30 2.30 2.30 2.30 
15 1.55 6.20 2.45 1.68 1.55 
16 3.50 3.50 3.50 3.50 3.50 
17 0.88 4.30 3.73 4.17 3.75 
18 0.86 3.40 2.09 1.92 0.86 
19 0.50 2.00 0.97 0.94 0.50 
20 1.55 6.20 3.20 3.08 2.72 
21 0.33 1.30 0.58 0.58 0.33 
22 0.50 2.30 1.86 2.23 2.06 
23 2.14 8.60 2.14 2.14 2.72 
24 0.75 0.75 0.75 0.75 0.75 
25 0.45 0.45 0.45 0.45 0.45 
26 0.59 2.40 0.59 0.59 0.81 
27 0.63 2.60 0.63 0.86 1.22 
28 1.31 5.30 1.63 1.62 2.28 
29 0.82 3.40 1.01 0.92 1.60 

Table 2:  Change of Generator Output 

Figure 7 show the convergence characteristics for 
the proposed method. It converge after 75 iterations. 
TTC was obtained at 35th iteration, while 40 iterations 
are required to reduce complimentary gap and 
mismatch. 

For IEEJ WEST30 System, it took about 2 min to 
solve one TTC calculation, using 2.8 GHz Pentium 4 
personal computer. The solution time will increase 
proportion to the number of generator and simulation 
time period. 

6 CONCLUDING REMAKS 
In this paper, first, a novel method for integrating 

transient stability constraints into TTC problem was 
presented. Then, the dynamic TTC problem with three 
phasor model was successfully formulated using 
TSCOPF method.  

The effectiveness of the dynamic TTC formulation 
and the solution algorithm was demonstrated on the 
IEEJ WEST30 model systems.  

For the future work, the generator shedding model 
will be implemented on the proposed method. 
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