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Abstract – TIn this paper, a solution to reactive power 

dispatch problem with a novel particle swarm Toptimization T 
approach based on multi-agent systems (MAPSO) is 
presented. The method integrates multi-agent system 
(MAS) and particle swarm optimization algorithm (PSO). 
An agent in MAPSO represents a particle to PSO and a 
candidate solution to the optimization problem. All agents 
live in a lattice-like environment, with each agent fixed on 
a lattice-point. In order to quickly obtain optimal solution, 
each agent competes and cooperates with its neighbors, 
and it can also learn by using its knowledge. Making use of 
these agent-agent interactions and evolution mechanism of 
PSO, MAPSO realizes the purpose of optimizing the value 
of objective function. MAPSO applied for optimal reactive 
power dispatch is evaluated on an IEEE 30-bus power 
system and a practical 118-bus power system. Simulation 
results show that the proposed approach converges to 
better solutions much faster than the earlier reported 
approaches. The optimization strategy is general and can 
be used to solve other power system optimization problems 
as well. T 

 

Keywords: Reactive power dispatch, Particle swarm 
optimization, Multi-agent system 

1 INTRODUCTION 
Reactive power optimization is a sub-problem of the 

optimal power-flow (OPF) calculation, which 
determines all kinds of controllable variables, such as 
reactive-power outputs of generators and tap ratios of 
transformers, outputs of shunt capacitors/reactors, etc., 
and minimizes transmission losses or other appropriate 
objective functions, while satisfying a given set of 
physical and operating constraints. Up to now, a number 
of techniques ranging from classical techniques like 
gradient-based optimization algorithms to various 
mathematical programming techniques have been 
applied to solve this problem [1]. Recently, due to the 
basic efficiency of interior-point methods, which offer 
fast convergence and convenience in handling 
inequality constraints in comparison with other 
methods, interior-point linear programming, quadratic 
programming, and nonlinear programming [2,3] 
methods have been widely used to solve the OPF 
problem of large-scale power systems. However, these 
techniques have severe limitations in handling non-
linear, discontinuous functions and constraints, and 
function having multiple local minima. Unfortunately, 
the original reactive power problem does have these 
properties. 

In the last decade, many new stochastic search 
methods have been developed for the global 
optimization problems, such as simulated annealing, 
genetic algorithms and particle swarm optimization. 
Particle swarm optimization (PSO) is one of the 
evolutionary computation techniques [4]. It was 
developed through simulation of a simplified social 
system, and has been found to be robust in solving 
continuous nonlinear optimization problems. Although 
the PSO seems to be sensitive to the tuning of some 
weights or parameters, many researches are still in 
progress for proving its potential in solving complex 
power system problems [5]. Generally, PSO has a more 
global searching ability at the beginning of the run and a 
local search near the end of the run. Therefore, while 
solving problems with more local optima, there are 
more possibilities for the PSO to explore local optima at 
the end of run. However, the reactive power 
optimization problem does have these properties in 
itself.  For these reasons, a reliable global approach to 
power system optimization problems would be of 
considerable value to power engineering community. 

Recently, agent-based computation has been studied 
in the field of distributed artificial intelligence and 
computer science [6]. Enlightened by multi-agent 
system and PSO, this paper integrates multi-agent 
system and PSO to form a novel multi-agent based 
particle swarm optimization approach (MAPSO), for 
solving the reactive power optimization problem. In 
MAPSO, an agent represents a particle to PSO and a 
candidate solution to the optimization problem. All 
agents live in a lattice-like environment, with each agent 
fixed on a lattice-point. In order to quickly obtain 
optimal solution, they compete and cooperate with their 
neighbors, and they can also use knowledge. Making 
use of these agent-agent interactions and evolution 
mechanism of PSO, the proposed method can find high 
quality solutions reliably with the faster convergence 
characteristics in a reasonably good computation time. 
MAPSO applied for optimal reactive power is evaluated 
on an IEEE 30-bus power system and a practical 118-
bus power system. Simulation results show that the 
proposed approach converges to better solutions much 
faster than the earlier reported approaches.  

2 PROBLEM FORMULATION 
The objective of the reactive power dispatch is to 

minimize the active power loss in the transmission 
network which can be described as follows: 
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where ( ),k i j= ; Bi N∈ ; ij N∈ . The symbols of the 
above equation and in the following context are given in 
the Appendix. The minimization of the above function 
is subject to a number of constraints: 
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where power flow equations are used as equality 
constraints, reactive power source installation 
restrictions, reactive generation restrictions, transformer 
tap-setting restrictions and bus voltage restrictions are 
used as inequality constraints. 

In the most of the nonlinear optimization problems, 
the constraints are considered by generalizing the 
objective function using penalty terms. In the reactive 
power dispatch problem, the generator bus voltages, 

PVV  and sV , the tap position of transformer, T , the 
amount of the reactive power source installation CQ , 
are control variables which are self-constrained. 
Voltages of PQ bus− , PQV , and injected reactive power 
of PV bus− , GQ , are constrained by adding them as 
penalty terms to the objective function (equation (1)). 
The above problem is generalized as follows: 
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where Viλ  and Giλ  are the penalty factors, and both 
penalty factors are large positive constants; lim
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3 A NOVEL PARTICLE SWARM 
OPTIMIZATION APPROACH 

3.1 Particle Swarm Optimization 
Particle swarm optimization (PSO) is a novel 

optimization method developed by Eberhart, et al [4,7]. 
It uses a number of particles that constitute a swarm. 
Each particle traverses the search space looking for the 
global minimum (or maximum). In a PSO system, 
particles fly around in a multidimensional search space. 
During flight, each particle adjusts its position 
according to its own experience, and the experience of 
neighboring particles, making use of the best position 
encountered by itself and its neighbors.  

Let x and v denote a particle coordinates and its 
corresponding flight speed in a search space, 

respectively. The best previous position of a particle is 
recorded and represented as pBest. The index of the best 
particle among all the particles is represented as gBest. 
To ensure the convergence of PSO, Eberhart indicate 
that use of a constriction function may be necessary [6]. 
At last, the velocity and position of each particle can be 
calculated as shown in the following formulas: 

1 1

2

( () ( )
() ( ))

d d d

d

v k w v rand pBest x
rand gBest x

ϕ
ϕ

+ = ∗ ∗ + ⋅ ∗ −
         + ∗ ∗ −

 (9) 

1 1d d dx x v+ += +                             (10) 
where d is pointer of generations, xBdB is current position 
of particle at the dth generation, vBdB is velocity of particle 
at the dth generation, w is inertia weight factor, 1ϕ  and 

2ϕ are acceleration constant, rand() is uniform random 
value in the range [0,1], k is constriction factor which is 
a function of  1ϕ  and 2ϕ  as reflected in (11). 

  
2

2

2 4
k

ϕ ϕ ϕ
=

− − −
                     (11) 

where 1 2ϕ ϕ ϕ= + and 4ϕ > . 

3.2 Multi-agent System 
Agent-based computation has been studied for some 

years in the field of artificial intelligence. Multi-agent 
systems (MAS) are computational system in which 
several agents interact or work together in order to 
achieve goals. According to [8], an agent is a physical 
or virtual entity that essentially has the following 
properties: 
(1)  Agents live and act in a given environment. 
(2)  Agents are able to sense its local environment, and 
to interact with other agents in its local environment. 
(3)  Agents attempt to achieve particular goals or 
perform particular tasks. 
(4)  Agents are able to respond in a timely fashion to 
changes that occur in it based on their learning ability. 

MAS technology provides an opportunity to compute 
and optimize many complicated problems. Hence, this 
paper combines PSO and MAS to form a novel optimal 
algorithm. In general, the following four elements 
should be defined when MAS are used to solve 
problems.  
(1)  The meaning and the purpose of each agent. 
(2)  An environment where all agents live. 
(3)  The definition of a local environment. 
(4)  A set of behavioral rules, governing the interaction 
between the agents and their environment.  

In the following, the definitions of the above four 
elements and the implementation of MAPSO are 
described in detail. 

3.3 Multi-Agent Based Particle Swarm Optimization  
In MAPSO, an agent represents not only a candidate 

solution to the optimization problem but also a particle 
to PSO. Firstly, a lattice-like environment is 
constructed, with each agent fixed on a lattice-point. In 
order to quickly obtain optimal solution, each agent 
competes and cooperates with their neighbors, and they 
can also use knowledge to obtain high-quality optimal 
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solution by self-learning. Making use of evolution 
mechanism of PSO, it can speed up the transfer of 
information among agents, and MAPSO can realize the 
purpose of optimizing the value of objective function. 

3.3.1 The purpose of each agent 
In MAPSO, an agent a represents a candidate 

solution to the optimization problem in hand. Hence, 
agent a has a fitness value to the optimization problem. 
For solving reactive power problem, its fitness value is 
the value of the active power loss, i.e., equation (1), 

( ) ( )2 2 2 cos
E

k i j i j ij
k N

f g V V VVα θ
∈

= + −∑        (12) 

The purpose of a is to minimize the real power 
transmission losses and keep all the voltages within the 
limits as much as possible.  

3.3.2 The definition of an environment 
An environment is organized as a lattice-like 

structure in Figure 1. In the environment L, each agent 
is fixed on a lattice-point and each circle represents an 
agent, the data in circle represents its position in the 
environment L. Due to representing a particle in PSO, 
each agent in its database contains two data, i.e., 
particle’s current velocity and its coordinates in the 
search space. The size of L  is size sizeL L× , where sizeL  
is an integer.  

      

1,1

2,1
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Lsize1,2

2,2 2,
Lsize

Lsize,
1

Lsize,
2

Lsize,
Lsize

⋯⋯

⋯⋯

⋯⋯ ⋯⋯⋯⋯⋯⋯
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Figure 1:  Structure of the environment 

3.3.3 The definition of the local environment 
Since each agent can only sense its local environment 

in MAS, the definition of the local environment is very 
important. In this paper, suppose that the agent 
α located at (i,j) is represented as aBi,jB, i,j=1,2,…,LBsize B, 
then the neighbors of a Bi,jB, NBi,jB are defined as follows:   

{ }1 1 2 2, , , , ,
, , ,i j i j i j i j i j

N α α α α=                   (13) 

where 1 1 1
1size

i i
i

L i
− ≠⎧

= ⎨ =⎩
,    1 1 1

1size

j j
j

L j
− ≠⎧

= ⎨ =⎩
 , 

2 1
1    

size

size

i i L
i

i L
+ ≠⎧

= ⎨ =⎩
  2 1

1     
size

size

j j L
j

j L
+ ≠⎧

= ⎨ =⎩
. 

From equation (13), each agent has four neighbors. 
They form a little local environment in which agent can 
only sense. 

3.3.4 The behavioral strategies for agents 
To achieve its purposes, each agent has some 

behaviors. In MAPSO, each agent competes and 
cooperates with its neighbors to diffuse its useful 
information to the whole environment, and it can also 
use evolution mechanism of PSO and its knowledge. On 

the basis of such behaviors, three operators are designed 
for the agents. 

 
Competition and cooperation operator: Suppose that 
the operator is performed on the agent a located at (i,j), 
and ( ), 1 2, , ,i j nα α α α= … , represented a real-valued 
vector in the search space. Suppose that 

( ), 1 2, , ,i j nm MinN m m m= = …  is the agent with 
minimum fitness value among its neighbors of NBijB, 
namely, ,i jm N∈ , and ,i jNε∀ ∈ , then ( ) ( )f f mε ≥ . 
If agent aBijB satisfies equation (14), it is a winner; 
otherwise it is a loser.  

( ) ( )ijf f mα ≤                           (14) 

If ijα is a winner, it can still live in the agent lattice, 
and its location in the search space will not change. If it 
is a loser, it must die, and its lattice –point will be 
occupied by a new agent NewBijB. The new agent 

( )' ' '
1 2, , ,ij nNew α α α= …  is determined by the following 

two strategies in MAPSO. 
Strategy 1: NewBij  Bis determined by, 

( ) ( )' 0,1   k=1,2, ,nk k k km rand mα α= + ⋅ − …    (15) 
where rand(0,1) is uniform random value in the range 
[0,1]. Suppose that ( )min min1 min 2 min, , , nX x x x= … and 

( )max max1 max 2 max, , , nX x x x= … are vector of the lower and 
upper bound of the search space, respectively. If 

'
maxk kxα ≥ , then '

maxk kxα = . If '
mink kxα ≤ , then 

'
mink kxα = . From equation (15), the strategy 1, a kind of 

heuristic crossover is in favor of reserving some useful 
information of a loser. 
Strategy 2: Enlightened by the inversion operation in 
evolutionary algorithms, MinNBijB is firstly mapped on [0, 
1] according to, 

' min

max min

( )
,   1, 2, ,

( )
k k

k
k k

m x
m k n

x x
−

= =
−

…            (16) 

Then, ( )' ' ' '
1 2, , ,ij nNew β β β= …  is determined by 

1 2 2

1 1 2 2

' ' ' ' ' '
, 1 2 1 1,

' ' ' ' '
1, , 1, 2,

( , , , , ,

, , )
i j i i i

i i i i n

New m m m m m

m m m m m
− −

+ + +

=

               

…

… …
       (17) 

where 11 i n< < , 21 i n< < , and 1 2i i< . Finally, ijNew  

is obtained by mapping '
ijNew  back to [ ]min max,X X  

according to  
( )' '

min max min  ,  k=1,2, ,nk k k k kx x xα β= + ⋅ − …       (18) 
From strategy 2, it has a function of random search 

and is better than random search in that it makes use of 
the information of a winner. 

According to the above analysis, strategy 1 puts 
emphasis on exploitation while strategy 2 puts emphasis 
on exploration. Generally, strategy 2 is employed in the 
first iterative process in order to explore the global 
search space. With the process of iteration, MAPSO 
makes use of the strategy 1 to further exploit the local 
search space. 
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PSO operator: After competition and cooperation 
operator, MAPSO integrates evolution mechanism of 
PSO to quickly obtain the optimal solution. Since each 
agent can only sense its local environment, its behaviors 
of competition and cooperation can only take place 
between the agent and its neighbors. An agent interacts 
with its neighbors so that information is transferred. 
Owing to the ability to interact with its neighbors, the 
information is slowly diffused from the local agent 
lattice to the whole agent lattice. In order to quickly 
diffuse information to the whole agent lattice and 
enhance computational efficiency, MAPSO assimilates 
evolution mechanism of PSO. Hence, each agent adjusts 
its position in the search space according to its own 
experience, and the experience of the best agent among 
all the agents in the environment. Each agent renews its 
position by equations (9) and (10), and sets its position 
at the bound of the search space if having any violation. 
 
Self-learning operator: Each agent is able to learn by 
using its knowledge in order to further enhance its 
ability for solving the problems. Enlightened by the 
reference [9], this paper proposes the self-learning 
operator which uses a small scale MAPSO to realize the 
behavior of using knowledge. 

In self-learning operator of agent ( ), 1 2, , ,i j nα α α α= … , 
first of all, a lattice-like environment, sL, is constructed. 
The size of sL  is size sizesL sL× , where sL Bsize B is an 
integer, and all agents, saBi’j’ B, i’,j’=1,2,…,sLBsize B, are 
generated according to 

' '
' '

' '
,

,
,

1, 1i j

i j
i j

i j
s New

α
α

α
      = =⎧⎪= ⎨

⎪⎩ otherwise
              (19) 

where ( )' ' ' ' ' ' ' ', , ,1 , ,2 , ,
, , ,

i j i j i j i j n
New e e eα = …  is determined by, 

( )
( )

( )
' '

min min

max max, ,

1 ,1
1 ,1

1 ,1    

k k k

k k ki j k

k

x rand sR sR x
e x rand sR sR x

rand sR sR

α
α

α

∗ − + <⎧
⎪= ∗ − + >⎨
⎪ ∗ − +⎩ otherwise

(20)  

1,2, ,k n= …          
where [ ]0,1sR ∈  represents the search radius.  

Next, the neighborhood competition and cooperation 
operator with evolution mechanism of PSO is iteratively 
performed on sL. Finally, aBijB is replaced by the agent 
with minimum fitness value found during the above 
process. Figure 2 describes the details of self-learning 
operator. In Figure 2, sGen is the number of 
generations, and sBest(r) is the agent with the minimum 
fitness value in the rth generation. 

3.4 Mixed-Variable handing methods 
In its basic form, the proposed MAPSO method can 

only handle continuous variables. To handle mixed 
variables, simply truncating the real values to discrete 
variables to calculate fitness value will not effect the 
search performance significantly. The truncation is only 
performed in evaluating the fitness function. That is, the 
swarm will ‘fly’ in a continuous search space regardless 
of the variable type. 

input 

construct environment          and generate 
neighborhood agents according to (19) 

and (20)

perform the neighborhood competition 
and cooperation operator on each agent

Y

N

adjust its position according to PSO 
operator on each agent

compute the fitness value of each agent  
and find the agent                in                        

ijα

at          set parameters          ;         ;      .         

computer the fitness value of each agent 
in      and find the agent         

Y

N

sL

sGen sR0r =

( )sBest r

(0)sBest

( ) ( 1)sBest r sBest r← −

( )ij sBest rα ←

1r r= +

sizesL

r sGen<

sL

sL

( )( ) ( )( )1f sBest r f sBest r− ≤

 
Figure 2:  Flow chart of self-learning operator 

For discrete variables of the ith particle xBiB, the most 
straightforward way is to use the indices of the set of 
discrete variables with n BD B elements: 

,1 ,2 ,[ , , , ]
D

D D D D
i i i i nx x x x= …                        (21) 
Let xBiPB

C
P denote the continuous variables with nBCB 

elements:  
,1 ,2 ,[ , , , ]

C

C C C C
i i i i nx x x x= …                     (22) 

then particle i is denoted by [ , ]C D
i i ix x x= . For particle 

i, the index value j of the discrete variable ,
D
i jx  is then 

optimized instead of the discrete value of the variable 
directly. In the population, the indices of the discrete 
variables of the ith particle should be the float point 
variables before truncation. That is, 1[1, )Dj n +∈ , Dn is 
the number of discrete variables. Hence, the objective 
function of the ith particle xBiB can be expressed as 
follows: 

( )if x   1,2, ,i M= …                     (23)            
where 

, ,

, ( ) , ( )

                  1, ,

     [1, 1)

C
i j i j i c

i D
i INT j i INT j i D

x x x j n
x

x x x j n

∈ =⎧⎪= ⎨
∈ ∈ +⎪⎩

…
      (24)          
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where CnC
ix ∈\ and DnD

ix ∈\ denote the feasible 
subsets of continuous and discrete variables of particle 
xBiB, respectively. INT(x) denotes the greatest integer less 
than the real value x. 

3.5 Implementation of MAPSO for Reactive Power 
Optimal Dispatch 

In order to reduce the computational cost, the self-
learning operator is only performed on the agent with 
the minimum fitness value in each generation, but it has 
an important effect on the performance of MAPSO. The 
details of the overall algorithm are as follows. 

Step 1: Input parameters of system, and specify the 
lower and upper boundaries of each variable. 

Step 2:Generate a lattice-like environment L, and 
initialize randomly each agent. 

Step 3: Evaluate the fitness value of each agent based 
on the Newton-Raphson power flow analysis results and 
the proposed mixed-variable handing methods.. 

Step 4: Update the time counter t=t+1. 
Step 5:Perform the neighborhood competition and 

cooperation operator on each agent. 
Step 6: Execute the PSO operator and further adjust 

its position on each agent according to (9) and (10). 
Step 7: Evaluate the fitness value of each agent based 

on the Newton-Raphson power flow analysis results and 
the proposed mixed-variable handing methods.. 

Step 8: Find the best agent with the minimum fitness 
value, and then perform the self-learning operator. 

Step 9: If one of the stopping criteria is satisfied then 
go to Step 10. Otherwise, go to Step 4. 

Step 10: Output the agent with the minimum fitness 
value in the last generation. 

4 NUMERICAL RESULTS 
To verify the effectiveness and efficiency of the 

proposed MAPSO based reactive power optimization 
approach, two power systems are used as the test 
systems. The MAPSO has been implemented in Matlab 
6.5 programming language and numerical tests are 
carried on a Pentium IV 2.0G computer. 

Some parameters must be assigned before MAPSO is 
used to solve reactive power optimization dispatch. 
L Bsize B × L Bsize B is equivalent to the population size in 
traditional PSO, so LBsize B can be chosen from 5 to 10. In 
self-learning operator, with consideration of the 
computational cost, it is better to let sLBsize B be smaller 
than 5 and sGen range from 5 to 10. In all study 
systems, the following MAPSO parameters are used: 
L Bsize B =6, i.e. the members of a particle are 36, 
generations=300, sLBsize B=3, sR=0.25, sGen =10, inertia 
weight factor w=0.7298, acceleration constant 

1 2 2.05ϕ ϕ= = , both penalty factors in equation (8) are 
chosen, 500Vi Giλ λ= = . 

4.1 IEEE 30-Bus Power System 
The system data and the variable limits are given in 

the reference [10]. The network consists of 48 branches, 
6 generator-buses and 22 load-buses. Four branches, 
(6,9), (6,10), (4,12) and (27,28), are under load tap 

setting transformer branches. The possible reactive 
power source installation buses are 3, 10 and 24. Six 
buses are selected as PV-buses and V θ -buses as 
follows: PV-buses: bus 2, 5, 8, 11,13, Vθ -bus: bus 1. 
The transformer taps and the reactive power source 
installation are discrete variables with the changes step 
of 0.01 p.u.. 

To demonstrate the superiority of MAPSO, optimal 
results have been compared with various techniques 
available in literature, namely, standard genetic 
algorithm (SGA), adaptive GA (AGA) in Ref. [10], EP 
method in Ref. [11], Broyden’s non-linear programming 
method [12] and PSO method. The initial conditions for 
all the methods are same and are given as follows: 

2.834loadP =  p.u.     1.262loadQ =  p.u. 
The initial generator bus voltages and transformer 

taps are set to 1.0. The total generations and power 
losses are obtained as follows: 

2.893857GP =∑  p.u.  0.980199GQ =∑  p.u. 
0.059879lossP =   p.u.  0.064327lossQ = −  p.u. 

The voltages outside the limits on three PQ-buses are 
given as follows: 

26 0.932V = ; 29 0.940V = ; 30 0.928V =  
Table 1 summarizes the results of the optimal settings 

as obtained by different methods. These results show 
that the optimal dispatch solutions determined by the 
MAPSO lead to lower active power loss than that found 
by other methods, which confirms that the MAPSO is 
well capable of determining the global or near-global 
optimum dispatch solution. Moreover, these results 
show that maximum saving is obtained by the MAPSO 
method. At the same time, the MAPSO succeeds in 
keeping the dependent variables within their limits. 

 
 GP∑  GQ∑  lossP  

Broyden   2.88986 0.93896 0.055860 
SGA 2.88380 1.02774 0.049800 
AGA 2.88326 0.66049 0.049260 
EP 2.88362 0.87346 0.049630 

PSO 2.88330 0.82500 0.049262 
MAPSO 2.88270 0.81950 0.048747 

 lossQ  SAVEP  % SAVEP  
Broyden -0.32304 0.00402 6.71000 

SGA -0.23426 0.01008 16.8400 
AGA -0.60151 0.01062 17.7400 
EP -0.38527 0.01025 17.1200 

PSO -0.22920 0.01062 17.6200 
MAPSO -0.22836 0.01113 18.5900 

 
Table 1:  Comparison of optimal transmission loss for 
different methods (p.u.) 

Owing to the randomness in MAPSO, SGA and PSO, 
these algorithms are executed 50 times when applied to 
the test system. The best and worst reactive power 
dispatch solutions together with the associated power 
loss found by the three methods are tabulated in Table 
2. MAPSO shows good consistency by keeping the 
difference between the best and worst solutions within 
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1%. In addition, the average execution times 
summarized in Table 2 show that MAPSO is faster than 
SGA and PSO in speed. Table 3 lists the best control 
variables found by the above three methods in the 50 
run times. The optimization search procedures by SGA, 
PSO and MAPSO are shown in Figure 3. It can be seen 
that, by using the MAPSO method, system losses are 
drastically reduced at the early iterations and the total 
iterations for convergence can be reduced greatly. 
 

Compared item SGA PSO MAPSO
Best    P Bloss B 0.049800 0.049262 0.048747
Worst  P Bloss B 0.052140 0.050769 0.048759
Average P Bloss B 0.050810 0.049973 0.048751

Average  
time (sec) 156.34 59.21 41.93 

 
Table 2:  Comparison of simulation results in the IEEE 30-
bus System (p.u) 

 Bus SGA PSO MAPSO 
V B1B 1 1.0751 1.0725 1.0780 

V B2B 2 1.0646 1.0633 1.0689 

5V  5 1.0422 1.0410 1.0468 

8V  8 1.0454 1.0410 1.0468 

11V  11 1.0337 1.0648 1.0728 

13V  13 1.0548 1.0597 1.0642 

1T  6~9 0.94 1.03 1.04 

2T  6~10 1.04 0.95 0.95 

3T  4~12 1.04 0.99 0.99 

4T  28~27 1.02 0.97 0.97 

3Q  3 0.00 0.00 0.00 

10Q  10 0.37 0.16 0.16 

24Q  24 0.06 0.12 0.12 

 
Table 3:  The values of control variables after optimization 
by SGA, PSO and MAPSO (p.u) 

 
Figure 3:  Optimization procedure by SGA, PSO and 
MAPSO for IEEE 30-bus system 

4.2 Practical 118 Bus Power System 
The proposed MAPSO method is applied to a 

practical 118-bus power system. The power system has 

181 transmission elements, 17 generators for AVR 
control, 9 transformers with 9 to 25 positions and 14 
reactive power source installation buses. At initial 
operating condition, system losses are 141.84 MW and 
represents about 2.72% of the total real-power 
generation in the system. There exist 11 deviations at 
the initial operating point. SGA, PSO and MAPSO are 
compared in 300 searching iterations.  

To avoid any hazardous interpretation of optimization 
results, related to the choice of particular initial agents, 
we performed the simulation 50 times, starting from 
different agents randomly generated in the search space. 
Table 4 shows the best and worst loss values and the 
computational time. From Table 4, it can be seen that 
MAPSO can generate better solution with the bigger 
possibility than SGA and PSO. The average loss value 
by MAPSO is smaller than the best results by SGA and 
PSO. Figure 4 shows convergence characteristic for the 
118-bus system by the three methods. It is clear for the 
figure that the solution obtained by MAPSO converges 
to high quality solutions at the early iterations (about 30 
iterations). The average iteration to the best result by the 
MAPSO is about 35. However, the average iterations by 
SGA and PSO are 72 and 288, respectively. The 
average execution time by MAPSO is about 3 times 
faster than that by SGA. At the same time, the average 
execution time of MAPSO is 21% less than that of PSO. 
Considering together the characteristics of MAS and 
PSO, MAPSO performs better than PSO, both in the 
quality of the solution discovered and in the velocity of 
convergence, and simulation results show that MAPSO 
outperforms SGA and PSO, and is competent for the 
practical reactive power optimization problems. 

 
Compared item SGA PSO MAPSO

Best  P Bloss B 1.332694 1.310471 1.26513
Worst P Bloss B  1.414267 1.348792 1.30147

Average P Bloss B 1.375215 1.321843 1.28215
Average  

time (sec) 335.54 144.46 119.35 

 
Table 4:  Comparison of simulation results in the practical 
118-bus system (p.u.) 

 
Figure 4:  Optimization procedure by SGA, PSO and 
MAPSO for the practical 118-bus system 
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5 CONCLUSION 
A MAPSO method has been developed for 

determination of the global or near-global optimum 
solution for optimal reactive power dispatch. The 
proposed method benefits mainly from the environment 
of the agent lattice and the behaviors of agents. In the 
environment, each agent can compete and cooperate 
with its neighbors, and further adjust its position in the 
search space according to PSO. Thus, each agent can 
quickly transfer its useful information to the global 
environment, and all agents can share the information 
after a process of diffusion. Owing to the three 
operators, the advantage of the MAPSO method is its 
ability in finding high quality solutions reliably with the 
faster convergence properties The performance of the 
proposed method demonstrated through its evaluation 
on the IEEE 30-bus power system and a practical 118-
bus power system shows that MAPSO is able to 
undertake global search with a fast convergence rate and 
a feature of robust computation. From the simulation 
study, it has been found that MAPSO converges to the 
global optimum. The optimization strategy is general 
and can be used to other power system optimization 
problems as well. 

6 APPENDIX 
Nomenclature: 

ijθ    voltage angle difference between buses i and j 
(rad) 

ij B    transfer susceptance between bus i and j (p.u.)       

Qf    active power loss in network (p.u.) 

ijG    transfer conductance between bus i and j (p.u.)   

kg    conductance of branch k (p.u.) 

0N    set of numbers of total buses excluding slack bus     

BN    set of numbers of total buses 

CN    set of numbers of possible reactive power source 
installation buses 

DN    set of numbers of power demand buses            

EN    set of numbers of network branches 

GN    set of numbers of generator buses  

iN    set of numbers of buses adjacent to bus i, 
including bus i 

PQN   set of numbers of PQ buses              

PVN   set of numbers of PV buses 
limNQ

   set of numbers of buses on which injected 
reactive power outside limits 

TN    set of numbers of transformer branches     
limNV

   set of numbers of buses on which voltages 
outside limits 

DiP    demanded active power at bus i (p.u.)           

giP    injected active power at bus i (p.u.)      

CiQ    reactive power source installation at bus i (p.u.)   

DiQ    demanded reactive power at bus i (p.u.) 

GiQ    injected reactive power at bus i (p.u.)                  
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