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Abstract – This paper proposes a new method for tran-

sient stability analysis for electric power systems. Different 
from existing methods, a minimization problem is formu-
lated for obtaining critical conditions for transient stabil-
ity. The method is based on the computation of a trajectory 
on the stability boundary, which is referred to as critical 
trajectory in this paper. The critical trajectory is defined as 
the trajectory that starts from a point on a fault-on trajec-
tory and reaches an unstable equilibrium point (UEP), in 
which the former point is called the exit point and the 
latter points, controlling UEP (CUEP). The solution of the 
minimization problem provides critical clearing time 
(CCT), exit point, and CUEP simultaneously. 

Keywords: electric power system, transient stability, 
transient energy function, unstable equilibrium  

1 INTRODUCTION 
Transient stability analysis plays an important role for 

maintaining security of power system operation. The 
analysis is mainly performed through numerical simula-
tions, where numerical integration is carried out step by 
step from an initial value to obtain dynamic response to 
disturbances. In general, such a numerical simulation 
method is effective since it easily takes into account 
various dynamic models for complex power systems as 
well as various time sequences of events. Furthermore, 
the method is useful in analyzing various kinds of com-
plex nonlinear phenomena such as in [1-3]. However, 
the numerical simulation is usually time consuming, and 
therefore, it is not necessarily suited for real time stabil-
ity assessment. 

An alternative approach, called transient energy func-
tion methods [4-16], assesses system stability based on 
the transient energy. Those methods provide fast and 
efficient stability assessment for a number of distur-
bances. Although they are practically useful, a common 
disadvantage is concerned with the accuracy of stability 
judgment. A major limitation is that they cannot deal 
with detailed models for power systems since the tran-
sient energy functions are available only for limited 
types of power system models. Another problem is that 
the most of the methods require the evaluation of critical 
energy, which affects considerably the accuracy of sta-
bility assessment. The critical energy is not necessarily 
easily calculated. 

Among various transient energy function methods, 
the Boundary Controlling Unstable (BCU) equilibrium 
point method seems to be a promising method in the 
sense that it has a theoretical background for the evalua-

tion of the critical energy [10-16]. The method evaluates 
the critical energy at CUEP. Improved techniques have 
been proposed in [12,13], while there are discussions on 
the underlying assumption for the BCU method [14-16]. 

This paper proposes a new method for transient sta-
bility analysis. In order to describe the proposed 
method, typical dynamic behaviors of a power system 
are given in figure 1, where a single machine case with-
out damping is presented as an example. Three kinds of 
trajectories are given in phase plane starting at different 
points on a fault-on trajectory (1). Trajectory (2) is for a 
stable case where the fault is cleared early enough and it 
oscillates around a stable equilibrium point (SEP). Tra-
jectory (4) corresponds to an unstable case, where the 
fault clearing is too late. Trajectory (3) corresponds to a 
critical case for stability and is referred to as critical 
trajectory in this paper. The critical trajectory is defined 
as the trajectory that starts from a point on a fault-on 
trajectory and reaches CUEP. It is generally difficult to 
compute the critical trajectory by means of conventional 
numerical simulations. In this paper, the problem is 
formulated as a minimization problem for computing the 
critical trajectory. Critical conditions for transient stabil-
ity such as CCT and CUEP are computed as the solution 
of the minimization problem. 
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Figure 1:  Trajectories in a phase plane for a single machine 

to infinite bus system without damping. 

2 PROBLEM FORMULATION 
In this section, we formulate a problem for obtaining 

critical conditions for stability of a power system repre-
sented by the following nonlinear equation. 

 
( )x f x=&   (1) 
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Letting a solution of equation (1) at time kt  be de-
noted as kx , the following equation holds using the 
trapezoidal formula. 

1 1 11 ( )( )
2

k k k k k kx x x x t t+ + +− = + −& &   (2) 

where 
( )k kx f x=&  

 
In this paper, super-script k is used for state transition 
number with respect to time.  

As is stated in the Introduction, we pay attention to 
the critical trajectory, where a system fault is cleared at 
CCT and then the state variables converge to CUEP 
with infinite time. Figure 2 shows the critical trajectory, 
where two boundary points, 0x  and ux , represent the 
initial point at CCT and CUEP. A difficulty in obtaining 
the critical trajectory is that infinite time is taken to 
reach CUEP, implying that infinite time steps are re-
quired in the conventional numerical integration with 
respect to time. To avoid the problem, the distance be-
tween the two points in (2) is defined as: 

1 1 11 ( )
2

k k k k k kx x x x t tε + + += − = + −& &  (3) 

Thus, the time duration is replaced with the distance as 
follows: 

1
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   (4) 

Equation (4) is substituted into (2) to obtain the follow-
ing form. 
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By the above equation, the numerical integration with 
respect to time is transformed into that with distance. 
This transformation makes it possible to represent the 
critical trajectory by finite points with a same distance as 
shown in figure 2. Thus, the problem for obtaining the 
critical condition for transient stability for system (1) is 
formulated as follows: 

 2

, , 0
min | |

m
k

x kε τ
µ

=
∑    (6) 

where 
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 ( )k kx f x=&  
 
with boundary conditions: 
 
 0 0 ( )x x τ=     (8) 
 1n ux x+ =    with   ( ) 0uf x =   (9) 
 

In the above equations, kµ  is ideally zero, implying 
a numerical error due to the trapezoidal approximation 
of (5). Equation (8), a boundary condition for the initial 
point, expresses a fault-on trajectory as a function of 
fault clearing time, τ . Equation (9) is the other bound-
ary condition, where ux  is UEP that satisfies equilib-

rium equation ( ) 0uf x = , which is equivalent to the 
power flow equations. It is noted that the latter boundary 
condition is additional compared with the conventional 
numerical integration formulated as an initial value 
problem. In such a conventional method, numerical 
error kµ  is accumulated as k increases so that a final 
point in general has a considerable error. On the other 
hand, the proposed method specifies the final point 
additionally as in (9), then solves the redundant equa-
tions as a minimization problem so that the individual 
errors kµ  are properly distributed. 

The solution of the problem, (6)-(9), is interpreted as 
follows. The set of points, kx , k=0 to m+1, represent 
the critical trajectory, where ε  is automatically deter-
mined when the number of integration steps, m, is speci-
fied;  CCT and CUEP are respectively obtained as τ  
and 1mx +  at the solution. Note that m is an important 
parameter that affects the accuracy and computation 
time for the proposed method. 

 

 
 

Figure 2:  Concept of the proposed method. 

 

3 APPLICATION TO ONE MACHINE SYSTEM 

3.1 A Single Machine System 
In this section, the proposed method is applied to a 

simple system in figure 3. The system has a synchronous 
machine with AVR, governor, as well as damping, rep-
resented by the following equations. 

 
sθ ω ω= −&  

sin ( )b
M s

s

EV dM P
X

ω θ ω ω
ω

= − − −&  

{ }0
1 ( ) ( )AVR ref t
AVR

E E E K V V
T

= − − + −&      (10) 

1 ( )( ) s
M M Mref GOV

GOV s

P P P K
T

ω ω
ω

 −= − − + 
 

&  

 
Parameters for this system are given in the appendix. 
The state variable vector for equation (1) is given as 
follows: 
 

[ ]T
Mx E Pθ ω=          (11) 
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Figure 3:  A single machine to infinite bus system 

 
In this examination, a 3-L-G fault occurs at one of the 
double transmission lines at t=0; the fault is cleared by 
tripping the line at t=τ . Then, CCT will be evaluated by 
analyzing the post fault system. The analysis will be 
carried out by the proposed method as well as by the 
conventional simulation method. 

3.2 Conventional Simulation Method 
The 4-th order Runge-Kutta method is used for nu-

merical integration with step time of 0.001 [s]. First, the 
fault-on trajectory is obtained numerically, which is 
stored as 0 ( )x τ  as a function of time, τ . Then,  0 ( )x τ  
with a specified τ  is selected as an initial condition to 
simulate the dynamic behavior to judge the stability of 
the system. This process is repeated by setting different 
value of τ . The binary search method is used to esti-
mate a critical value of τ , that is CCT. The obtained 
results are given in Table 1, where the time intervals in 
which CCT exists are listed as well as computation time 
for different step size of the Runge-Kutta method. Al-
though the CCT values obtained in Table 1 could con-
tain truncation errors of the Runge-Kutta method as well 
as round-off errors, the result will be used as a bench-
mark. 

 
Table 1:  CCT Obtained by Conventional Method 

step size CCT [s] CPU time [s] 
  0.01 1.37-1.38      2.7 
  0.005 1.375-1.380      6.0 
  0.002 1.378-1.380     15.4 
  0.001 1.379-1.380     50.4 
  0.0005 1.3795-1.3800    200.7 

 
 

3.3 The Proposed Method 
The proposed method is performed as in the follow-

ing manner. First, the fault-on trajectory obtained by the 
conventional method is approximated as a quadratic 
function corresponding to (8) as follows. 

0 2x a b cτ τ= + +          (12) 
Concerned with the other boundary condition, (9), we 

solve ( ) 0uf x =  to obtain ux  in advance. Namely, 
equations (10) with setting the left-hand sides to null are 
solved to obtain an UEP, which is listed in Table 2. 
Such a separate computation for CUEP should be effec-
tive in the proposed method if CUEP is reliably ob-
tained. A method of obtaining the CUEP will be exam-
ined in section 4. 
 

Table 2:  SEP and UEP for single machine system 

x SEP UEP 
ω 376.9911 376.9911 
δ 0.2339 2.8189 
E 1.1 1.0722 

PM 0.85 0.85 
 

Now that equations (6) - (9) are defined, the Newton's 
method is used to solve the least square minimization 
problem. Table 3 lists CCT, the number of iterations for 
convergence, CPU time for various cases where m is 
changed as a parameter from 1 to 100. As is observed, 
enough accuracy is obtained in CCT value even for a 
small number for m. For example, even a case with m=1 
provides CCT with error around 0.01 [s] only. 
 

Table 3:  Performance of the proposed method 

m CCT[s] iteration CPU[s] 
1 1.374 19 0.390 
2 1.380 15 0.291 
3 1.382 18 0.300 
4 1.383 16 0.291 
5 1.384 18 0.310 
6 1.384 17 0.300 
7 1.384 20 0.331 
8 1.384 19 0.320 
9 1.385 17 0.321 

10 1.385 17 0.310 
20 1.385 19 0.461 
30 1.385 17 0.591 
40 1.385 20 0.951 
50 1.385 19 1.242 
60 1.385 22 1.752 
70 1.385 21 2.333 
80 1.385 27 3.766 
90 1.385 22 3.725 

100 1.385 54 10.896 
 
 

4 APPLICATION TO BCU METHOD 

4.1 Introduction 
In the previous section, it has been confirmed that the 

critical trajectory is successfully obtained when CUEP is 
directly specified in a single machine to infinite bus 
system. Then, we are interested in an extension of the 
method to a multi-machine system. However, since a 
direct extension of the method may cause complexity, 
we should start with a case with a simple power system 
model for (1). In this sense, a simple but meaningful 
approach can be an application to the BCU method 
[10,11]. Although there are discussions on the underly-
ing assumption for the BCU method [14-16], the method 
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utilizes a simplified system model called the gradient 
system in order to obtain CUEP. This implies that, if the 
gradient system is used as (1), the proposed formulation 
provides an alternative solution method for the same 
problem. 

As is known, the problem of finding CUEP is a tough 
problem, but is an important subject for the transient 
energy function methods. Among various approaches, an 
effective approach seems to be the shadowing method 
[12] based on the BUC method. In the following, the 
proposed formulation is applied to the BCU method to 
develop a new approach for obtaining CUEP for multi-
machine systems. 

4.2 Power System Model 
We consider n-machine power system model as fol-

lows: 
 ( )m ei i i iM P Pω θ= −&  
 i i sθ ω ω= −& ,  i=1..n  (13) 
where 

 
1

( ) sin( )
n

ei ij i j i j ij
j

P Y E Eθ θ θ α
=

= − +∑  

 
 The energy function corresponding to this system is 

given as: 
 

2

1 1

1 ( ( ) ( ))
2

s
i

i

n n
i

e mi i i i coa i
i i T

MV M P P P d
M

δ

δ
ω δ δ δ

= =

= + − +∑ ∑∫%                                           

 ( ) ( )K PV Vω δ= +%     (14) 
where 

1

1 n

i i i i
iT

M
M

δ θ θ
=

= − ∑ ,  
1

1 n

i i i i
iT

M
M

ω ω ω
=

= − ∑%  

1
( ) ( ( ))i

n

coa m ei
i

P P Pδ δ
=

= −∑ , 
1

n

T i
i

M M
=

=∑  

 
In order to compute CUEP, the following system 

called the gradient system has been proposed to be used 
in the BCU method [10,11]. 

 

 ( )PV δδ
δ

∂=
∂

&          (15) 

4.3 A Method for Obtaining CUEP 
The proposed method is applied to the BCU method 

to develop an alternative method for the computation of 
a CUEP. The system (1) to be analyzed is now given by 
the gradient system, (15), which is equivalently ex-
pressed as follows. 

( ) ( )i
m e coai i i

T

MP P P
M

δ δ δ= − −& ,   i=1...n       (16) 

Namely, the state vector in (1) is: 
1 2, , ],[ T

nx δ δ δ δ= ⋅ ⋅ ⋅⋅=         (17) 
 
For an initial point corresponding to conditions (8), we 
use a fixed point as follows. 

0 exitδ δ=          (18) 

where exitδ  is the exit point detected as the first local 
maxima of the potential energy, PV , on the fault-on 
trajectory. For the condition for UEP, we use the follow-
ing form of the power flow equations, corresponding to 
(9).  

( ) 0
i i

u i
m e

T

MP P Pcoa
M

δ− − = ,  i=1...n       (19) 

Thus, the problem (6)-(9) is defined. Then, we will 
use the Newton’s method to solve the condition of 
minimizing the least square error for the set of equa-
tions. 

 

4.4 Numerical Examinations 
Numerical examinations are carried out using 3-

machine 9-bus system [18] and IEEE 6-machine 30-bus 
system as shown in figures 4 and 5, respectively. 

 

 
 

Figure 4:  Anderson & Fouad 3-machine 9-bus system. 

 

 
 

Figure 5:  IEEE 6-machine 30-bus system 

 
It is assumed that every transmission line consists of 

double parallel circuits, and that a 3-L-G fault occurs at 
a point very close to a bus on one of parallel lines; after 
a while the fault is cleared by opening the faulted line. 
For this condition, CUEP will be obtained to evaluate 
CCT using the transient energy function (14). For this 
condition for examinations, the proposed method is 
compared with the Shadowing method [12]. 
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The obtained CCTs are listed in Tables 4 and 5 for 
various cases for different fault locations. The tables 
also show the fault location and the number of iterations 
required for the proposed method, where max |dxi|<10-3 
is used as a convergence criterion for the Newton’s 
method. It is observed that both the methods provide the 
same CCTs except for case G in Table 4 and cases A 
and D in Table 5. In these cases, the Shadowing method 
cannot provide the CUEPs, while the proposed method 
yields the right solutions confirmed by the numerical 
simulation for the original system of (13). 
 
 

Table 4:  CCT [s] obtained for 3-machie system 

falut point open line BCU-Shadowing proposed method iteration
A 1-4 0.33 0.33 6
B 2-7 0.21 0.21 3
C 3-9 0.27 0.27 4
D 4-5 0.32 0.32 7
E 4-6 0.32 0.32 7
F 5-7 0.21 0.21 18
G 7-8 × 0.23 20
H 6-9 0.45 0.45 8
I 8-9 0.33 0.33 2  

 
 

Table 5:  CCT obtained for 6-machie system 

falut point open line BCU-Shadowing proposed method iteration
A 1-2 × 0.82 2
B 2-4 0.75 0.75 4
C 5-7 1.15 1.15 2
D 8-6 × 0.84 3
E 11-9 0.93 0.93 3
F 13-12 0.98 0.98 3  

 
 
It is noted that m=2 is used in the proposed method 

for all the cases except for case G for 3-machine system, 
where m=18 is set. Under the setting for m, the iteration 
numbers in Tables 4 and 5 were obtained. We should 
mention that case G is an unusual case, where conver-
gence is only obtained for m ≥ 18 and a larger number of 
iterations are required. In order to examine the above 
results, case G is studied in the following. 

For the 3-machine system, selecting case B as a rep-
resentative normal case, cases B and G are compared in 
figure 6 and 7, respectively, where equipotential con-
tours are described around CUEP and the exit point. It is 
observed in figure 6 that the potential energy surface 
shows a simple shape around the exit point and CUEP. 
This is a quite typical shape where the Shadowing 
method successfully works as well as the proposed 
method. On the other hand, a more complicated shape 
for potential energy is observed in figure 7, where the 
critical trajectory obtained by the proposed method 
shows relatively a long and winding curve. It is under-
stood the reason why the proposed method requires a 
larger number for m. It is observed that the Shadowing 
method followed a ridge for wrong direction and could 
not find the UEP. 

 

 
 

Figure 6:   A Normal Case B for 3-Machine System 

 
 

 
 

Figure 7:  Unusual Case G for 3-Machine System 

 

5 CONCLUSION 
 
This paper proposes a new formulation for transient 

stability analysis for electric power systems. Different 
from conventional simulation methods, a critical condi-
tion for stability such as a critical clearing time (CCT) is 
directly obtained as a solution of a minimization prob-
lem. The method is based on the computation of critical 
trajectory that represents a critical case for stability. It is 
demonstrated that CCT is computed without major ap-
proximations for a single machine to infinite bus system, 
where damping effect, AVR and governor are taken into 
account. 

 
As another application of the proposed formulation, 

the paper presents a method for computing a controlling 
UEP (CUEP) based on the BCU method. The CUEP is 
useful for transient stability assessment by the energy 
function method as well as for the future extension of 
the proposed method to obtain exact CCT. The effec-
tiveness of CUEP computation is demonstrated in 3-
machine 9-bus system and 6-machine 30-bus system. It 
has been confirmed that the computation time is reason-
able as well as the accuracy of the solution. 
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APPENDIX 

 
The system parameters for single machine system are 

given as follows: 
M =0.5, X = '

dx + lx , '
dx =0.2, lx =0.1 (pre-fault), 

bV =1.0, d =0.05, AVRK =10, AVRT =2, GOVK =20, 

GOVT =3, E =1.1, ω =100π, MP =0.85 
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