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Abstract – The effectiveness of shunt reactive power 

compensation for long-distance radial transmission is re-
examined. Distributed parameter line model is used in the 
analysis, in which it is shown that the amount of shunt 
reactive power compensation required is higher if line 
losses are included. By extending the investigation to in-
clude sending-end and receiving-end impedances, general-
ized expressions on the power transfer limit across the 
transmission system have been obtained. Steady-state sta-
bility limit of the transmission system through mid-point 
compensation can be readily evaluated using the analytical 
expressions obtained. Accuracy of the stability analysis is 
verified through digital simulation studies.  

Keywords: transmission line, shunt compensators, 
maximum power transfer, stability limit. 

1 INTRODUCTION 
A fundamental requirement in AC power transmis-

sion is the maintenance of appropriate network voltage 
levels. Modern power systems are not very tolerant of 
abnormal voltages, even for short periods. Whereas 
active power is generated and absorbed at specific points 
in the system, reactive power is generated and absorbed 
in significant quantities throughout the whole system. It 
also tends to vary with system conditions [1]. In situa-
tions where it is difficult to install new transmission 
circuits, existing facilities are relied on to transfer ever 
more power. The voltage control problem is exacerbated 
and the electrical networks are even more stressed. Thus 
research in AC transmission is centered on how to in-
crease power transfer limit in the most economical man-
ner. 

A lossless line operating at its surge impedance load-
ing (SIL) has a flat voltage profile; that is, the voltage 
magnitude is the same everywhere along the line. No 
reactive power flow will be observed on the line and the 
power delivery system is most efficient in term of the 
delivery of real power. However, as it is not practicable 
to force the load on a transmission line to coincide with 
the line SIL at all time, the alternative is to control the 
SIL so that it matches exactly with the load. Reference 
[2] describes very well this concept of modifying the 
surge impedance of a transmission line through rapid 
shunt compensation control so that the corresponding 
line SIL equals to the actual loading. Practical shunt 
compensation scheme would consist of reactive compen-
sators being connected at line ends and at strategic in-
termediate nodes along the line. Fast-acting shunt com-
pensators such as Static VAr Compensators (SVC) are 
used to realize the scheme. Voltage support capability 

can be exploited and the transmission distance is reduced 
artificially. As pointed out and theoretically proven in 
[3, 4], it is well known a mid-point compensated line can 
transmit up to 2 times the power of the uncompensated 
line while maintaining steady-state stability. However in 
a recent article [5], Huang and Ooi presented results of 
digital simulation studies of such a mid-point compen-
sated transmission system and showed that the ratio is 
actually close to 1.59. The authors attributed the reduc-
tion in term of the distributed capacitance of the line and 
the finite source-end and receiving-end reactances used 
in their studies. 

In most studies reported in the literature, lossless 
transmission line models were used. While reference [5] 
has also attributed the presence of line resistances in 
contributing toward the reduction in the steady-state 
stability limit, the authors have not provided any quanti-
tative evidence to support the claim. In the present work, 
the exact long-line model would be used in the analysis. 
The purpose is to determine the required shunt compen-
sation to achieve a given power transfer. It is shown that 
line resistance can affect the accuracy of the line reactive 
compensation calculation significantly, especially when 
the transmitted power is above the line natural load and 
as the line length increases. On the prediction of maxi-
mum power transfer (Prmax), although Prmax may be ob-
tained using the approach based on simplified line model 
[6, 7], generalized expressions with exact representation 
of the transmission line have yet to be obtained. Such 
expressions will be included in this paper. The results 
are obtained by including the sending-end (SE), receiv-
ing-end (RE) impedances and the application of mid-
point compensation. The accuracy of the analysis is 
supported through digital simulation studies which show 
that steady-state stability limit can indeed be predicted 
more accurately compared to previous works. The analy-
sis provides an improved evaluation of the contribution 
made by midpoint shunt compensator in enhancing net-
work stability. It quantifies the extent of the improve-
ment in stability through mid-point compensation, as it is 
affected by such factors as line losses, line length, and 
SE and RE terminal impedances.  

2 ANALYSIS  

2.1 Compensation at Line Terminals 
  As explained earlier, practical compensation scheme 
would include shunt compensators connected at the 
terminals of long-lines. The problem thus becomes one 
of predicting the amount of reactive power needed at 
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each line terminal so as to maintain the terminal voltage 
at its nominal value. In previous works [2-7], the authors 
used various types of approximated line model in their 
analysis. Of course, physical transmission lines do con-
tain resistances and shunt capacitances. Hence, the so-
called exact long-line model which includes line loss 
would be the starting point of the investigation. 
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Figure 1:  Transmission line model. 
  The long-line model is as shown in Figure 1, where 

=R+jωL is the series impedance per unit length/phase, 
and 
zv

yv = G+jωC is the shunt admittance per unit 
length/phase of the line. The physical meanings of the 
various parameters are described in [9]. Line length is l. 
The focus of the present work is on the behavior of the 
network at fundamental frequency. Mutual coupling 
between phases has been ignored.  

Let cZ z y=
v vv , yz jγ α β= = +v vv . cZ

v is called the char-
acteristic impedance of the line. γv is the line propaga-
tion constant: α being the line attenuation constant and β 
the line phase constant. These equations constitute the 
distributed parameter model of the transmission line. 
Note that line losses and shunt capacitance have been 
included. For a lossless line, cZ

v  is commonly referred 
as the line surge impedance 0Z L C=  and has the 
dimension of a pure resistance. The power delivered by 
a transmission line when it is terminated by its surge 
impedance is known as the natural load or SIL denoted 
as P0, where P0 = V0

2/ Z0, and V0 is the rated voltage of 
the line. 

Let cZ
v = Rc+jXc and the line angle θ = βl. Select rV

v
 

as the reference voltage and denote δ as the phase angle 
difference by which sV

v
 leads rV

v
. That is 0r rV V= ∠

v
, 

s sV V δ= ∠
v

. Suppose the intention is to make the SE and 
RE voltage magnitudes equal to V0. The active and reac-
tive powers at the receiving and sending ends of the line 

can be derived and expressed in term of P0. These are 
shown as equations (1) - (4), the detailed derivation is 
presented in Appendix A.   

There are now sufficient analytical expressions ob-
tained from which the reactive power requirements at 
line terminals can be determined. This is because once 
Vr, Vs, Pr (or Ps) are specified, the power angle δ can be 
obtained using (1) (or (3)) as line parameters θ and 
α are known. The required Qr and Qs can then be deter-
mined using (2) and (4) respectively.   
   The case of lossless lines becomes a special case of 
the above when R = G = 0. Equations (1)- (4) then de-
generate into (5)-(6). These are the familiar results 
shown in previous works, e.g. in [2, 8].  
   Pr /P0 = Ps /P0 = sin δ / sin θ          (5) 
  Qr /P0 = -Qs /P0 = (cos δ - cos θ) / sin θ          (6) 
  The analytical expressions obtained earlier can also be 
used to determine the required reactive power for multi-
circuit lines. In approaching the ideal practice of having 
close to a flat voltage profile across the line, the amount 
of the shunt reactive compensation at each bus is the 
sum of all the shunt compensation required of each line 
end connected to the bus. The required shunt compensa-
tion at the terminals of each line is of course governed 
by (1)-(4).  

2.2 Midpoint Compensation 
  Figure 1 provides a complete description of the volt-
age/current relationship of the transmission lines. How-
ever, for purposes of analysis involving interconnection 
with other network elements, it is more convenient to 
use equivalent circuits which only describe the charac-
teristics of the lines at their terminals. A π-circuit, as 
shown in Figure 2 can be used for this purpose [9]. It is 
also known as the Telegraph model. In term of the line 
parameters shown in Figure 2, sinh( )e cZ Z lγ=

v v v  and 
2 tanh( 2)e cY lγ= Z

v vv . 
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Figure 2:  Equivalent π circuit model of a transmission line.   
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As was described in [2-8], one practical way to in-
crease power transfer level capability of a long line is to 
apply the technique of sectioning. For example, a shunt 
reactive power compensator could be installed at the 
midpoint of the line. As shown in Figure 3(a), each half 
of the line may then be represented by its π-equivalent 
circuit. The terminal synchronous equivalent sources G1 
and G2 are ideal voltage sources and are assumed able to 
keep their respective terminal voltages constant. Sup-
pose the midpoint (m) of the line is to be connected with 
a shunt reactive power compensator whose susceptance 
is Bγ, shown as the variable shunt in Figure 3(a). As 
defined in [8], the degree of compensation of the central 
half of the line at the midpoint is  

      km = Bγ / Bc                   (7)  
km is arbitrarily taken as positive if Bγ is inductive and 
negative if Bγ is capacitive, Bc is the shunt susceptance 
of the whole line. In practical networks, however, the 
synchronous sources, the associated transformers and 
transmission systems connected to the line ends would 
have their respective impedances. The short-circuit im-
pedances at the two ends should therefore be included in 
the analysis. In Figure 3(a), the values of these imped-
ances are denoted as Rti+jXti at the respective line end 
where i = 1, 2. In this model, 1 denotes the SE whereas 2 
denotes the RE. The authors of [5] have also included 
such impedances into their analysis.  

G1 G2s sV δ∠ r rV δ∠

,r rI P
v

,s sI P
v

0mV ∠lR1tjX 2tjX1tR 2tR
SE source equivalent RE  source equivalentTransmission Line
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(1 )c mjB k−
2

cBj 2
cBj

                           
                        (a)  
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                        (b) 
Figure 3:  Equivalent circuit of a radial line with midpoint 
compensation and source impedances.   
   At fundamental frequency and through a series of ∆-
Y transformations, the equivalent circuit shown in Fig-
ure 3(a) reduces to Figure 3(b). The equivalent imped-
ance , and for the equivalent circuit 
shown in Figure 3(b) are given in Appendix B.  

1,eq iZ
v

2,eq iZ
v

eqshY
v

The above expressions show that once the line pa-
rameters and source equivalent impedances are known 
and the degree of compensation (km) is given, the 
equivalent network impedance and admittance values of 
Figure 3(b) can be determined. 

 Suppose the midpoint voltage is treated as the refer- 

ence phasor, i.e. 00m mV V= ∠
v

. Denote s s sV V δ= ∠
v

 and 

r rV V rδ= ∠
v

. Note that in this case, the power angle δ 
referred to in Section 2.1 is given as δ =δs -δr. 

From Figure 3(b), the following basic circuit equa-
tions are obtained:  
  ( ) ( )1,1 1,2eq eq eqsh ms m m rZ Z YV V V V− =− − V

v v v vv v v v           (8) 
     ( ) 1,2 2,2r eq rm rI Z VV V= −− eqZ

v v v vv v              (9) 
From (9), Pr can be derived:    

( )*Rer rP V I= r

v v  

  ( ) (2
1,2 1,2 1,2 2,2cos sinr m eq r eq r r eq eqV V G B V G Gδ δ= + − )+ (10) 

The above expressions are too general and cannot be 
readily solved. However, Pr can be determined if the 
practical assumption is made that Vs=Vr=V0. When nor-
malized to P0, Pr is given by 

( ) ( )0 0 11 1,2 12 1,2 0 11 1,2 12 1,2cos sinr eq eq eq eqP P Z G B Z B Gα α δ α α= − − + δ   

   ( )0 21 1,2 22 1,2 1,2 2,2eq eq eq eqZ G B G Gα α+ − − −         (11) 

where the constant parameters αij, Geqk,j, Beqk,j are given 
in Appendix C and can be readily determined. 
  With dynamic network control, the mid-point com-
pensation susceptance is continuously regulated in such 
a way as to keep Vm constant such that Vm=V0. Substitute 
Vm=V0 into (8), one can show that the degree of compen-
sation km is given by  
   km = 1- ( Beqsh - Beq3,1- Beq3,2 ) / Bc             (12) 
where  
  1,1 1,1 1,2 1,2sin cos sin coseqsh eq s eq s eq r eq rB G B G Bδ δ δ δ= + + +    
       1,1 1,2eq eqB B− −                  (13)  
  Furthermore, recognizing that δ= δs- δr and since 
Vm=Vs =Vr =V0, the derivation shown in Appendix D 
allows (14) and (15) (shown below) to be solved. The 
equations for the determination of δ1, δ2 and βi are ex-
pressed in term of the known line parameters described 
in Figure 3(b). The detailed expressions are also given in 
Appendix D. 
     δr = δ2 - δ1                  (14) 
   Hence, for a given receiving-end power Pr, the fol-
lowing steps can be used to evaluate the shunt reactive 
compensation required at the midpoint of a transmission 
line in order to keep Vm = Vs = Vr = V0:  

Step 1: For a given Pr, use equation (15) to determine 
δ through numerical means as all the other parameters on 
the RHS of (15) are known. 

Step 2: Determine δ1 and δ2 using the expressions 
(D.5) and (D.6) given in Appendix D.  

Step 3: Use (14) to determine δr. δs can then be ob-
tained since δs=δ+ δ r.

Step 4: Equation (13) is used to solve for Beqsh and use 
(12) to obtain km. 

Step 5: From the definition of km in (7), reactive com-
pensation Bγ needed at the mid-point is determined as Bγ 
= km Bc. 

_______________________________________________________________________________________________

( )( ) ( )0 0 4 1,2 1,2 5 2 3 1,1 1,1 1,2 1 2 3cos sin cos sin cos sinr eq eq eq eq eqP P Z G B G B Gβ β β δ β δ δ δ β β δ β δ= − + − − + + −     

  ( )( ) ( ) ( )0 4 1,2 1,2 5 2 3 1,1 1,1 1,2 1 2 3 0 1,2 2,2cos sin sin cos sineq eq eq eq eq eq eqZ B G G B cos B Z G Gβ β β δ β δ δ δ β β δ β δ− + + − + + + − − +   (15) 
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  Equation (11) allows Pr/P0 to be determined as a func-
tion of δ for a given km. A series of curves with varying 
amplitudes, each corresponds to a fixed value of Bγ, can 
be constructed. These curves are as shown in Figure 4. 
The controlling effect of the midpoint compensator con-
strains the operating point to move along the locus given 
by Equation (15), passing smoothly from one constant Bγ 
curve to another as Pr varies. With a practical compensa-
tor, of course, there is a limit to Bγ. When the limit is 
reached the compensator ceases to maintain constant 
voltage at its terminals and behaves instead like a fixed 
susceptance. The operating point then leaves the charac-
teristic curve (15) and moves onto the constant Bγ curve 
under its maximum value Bγmax. The corresponding 
maximum power that can be transmitted represents the 
steady-state stability limit. This corresponds to the point 
A in Figure 4. If source resistances, line losses and ca-
pacitances have been excluded from (15), one can re-
evaluate the Pr - δ curve. This is shown as curve (e) in 
Figure 4. From the figure, it can also be seen that with 
the same maximum level of compensation Bγmax, the Pr – 
δ curve derived using the simplified line model (curve 
(e)) is above that for the exact line model (curve (d)).  
Hence the predicted maximum power transfer level 
based on the lossless line assumption, such as that de-
scribed in [3]-[8], would be slightly over-optimistic.   

        
Figure 4:  Pr –δ characteristics of a shunt-compensated line 
with Vs = Vr = V0: (a) Bγ = 0; (b) Bγ = 0.5/Z0; (c) Bγ = Bγmax; (d) 
exact line model with variable Bγ and Vm = V0 ;  (e) lossless 
line model with variable Bγ, Vm = V0.  

2.3 Maximum Power Transfer 
In order to determine the steady-state stability limit of 

a midpoint compensated line, one can make use of (15) 
by differentiating Pr with respect to δ and set the result-
ing equation to zero. The resulting expression f(δ) is 
rather tedious and is shown in Appendix E. No analyti-
cal solution to it can be readily found unless some as-
sumptions are made. Instead, it is proposed that through 
numerical means such as that based on the Bisection 
method [10], one solves for the angle δ by which the 
limit occurs. This angle is denoted as the critical angle, 
δcr. Essentially the numerical iterative procedure is used 
to find the roots of f(δ)=0.  

The maximum power that can be transferred is de-
noted herewith as . It can be obtained by replacing δ 
with δ

1
m

rP
cr in (15). As described in Section 2.2, in practice 

there is an economic limit placed on the reactive power 
rating of the compensator. When the limit is reached the 

compensator ceases to maintain constant voltage at its 
terminals and behaves like a fixed susceptance. The 
operating point then moves on to the constant Bγ curve 
corresponding to the maximum value of Bγ, i.e., Bγmax. 
The corresponding maximum power can be evaluated by 
reversing the numerical procedure described in Section 
2.2. As shown in Figure 4, note that even without a limit 
on Bγ, maximum power does not occur at δ =180° when 
line losses are included, unlike the case under the loss-
less line assumption described in [3-8].  

3 NUMERICAL EXAMPLES 
The following examples are based on the 500-kV 

transmission line used in [11] where R = 0.01755 Ω/km, 
L = 0.0008737 H/km, C = 0.01333 uF/km and G = 0. 
For convenience, it is also assumed that the terminal 
impedances are identical, i.e. 1 2t t tZ Z Z tθ= = ∠

v v
. 

3.1 Effect of Terminal Impedances on Power Transfer 
The total impedances appearing at the end(s) of the 

line add to the series transfer impedances and alter the 
phase angle difference between the SE and RE voltages. 
The effect of the impedances is therefore to increase δ 
for a given Pr, as illustrated in Figure 5(a). Figure 5(b) 
shows the ratio of the maximum power transfer with 
mid-point compensation ( ) to that without midpoint 
compensation ( ). This ratio is plotted against Z

1
m

rP

0
m

rP t under 
varied line length. It can be seen that Zt will reduce the 
benefit obtainable from the midpoint compensator. The 
reduction increases more significantly with the increase 
in line length. For example, Figure 5(b) shows that with 
the common practice of mid-point shunt compensation at 
a regular 350-km (200-miles) interval, a 700-km line 
would see its maximum power level at about 1.6 times 
that without compensator and if Zt = 0.11 Z0. 

 
            (a)                      (b)  
Figure 5:  Effect of line terminal impedances on (a) the Pr –δ 
characteristic and (b) the steady-state stability limit of a mid-
point compensated line.   

3.2 Effect of Line Losses on Steady-state Stability Limit 
Figure 6 shows the Pr- δ characteristic of the 700-km 

line when it is assumed that Zt = 0.11Z0  and has an 
impedance angle of 890 [11]. From Figure 6(a), it can be 
seen that as the line becomes more resistive, Prmax1 re-
duces. For the same level of power transmission, δ tends 
to increase as Rl /Xl increases. Furthermore, the line 
resistance will reduce the benefit that can be derived 
from the midpoint compensator. The larger the Rl /Xl  
ratio, the larger reduction in the benefit of the mid-point 
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compensation is observed. This is indicated clearly in 
Figure 6(b). 

 
             (a)                       (b)  
Figure 6:  Effect of line resistances on (a) the δ-Pr 
characteristic and (b) reducing the benefit under dynamic 
midpoint compensation 

3.3 General Observation on the Benefit of Midpoint 
Compensation 

Steady-state transfer capability of long transmission 
lines and the extent such capability can be enhanced 
through midpoint shunt compensation can now be elabo-
rated on. Table 1 summarizes the maximum power trans-
fer calculated using the expressions contained in Section 
II for the same 700-km, 500-kV line and terminal condi-
tions as given in Section 3.2. Assume that the compensa-
tor is able to maintain the midpoint voltage at V0 with 
ideal instantaneous response. Four line models have 
been considered. Using the simplified line model in 
which only the line series reactance has been included, it 
has been shown earlier that with mid-point compensa-
tion, the maximum power that can be transmitted with 
respect to the steady-state stability limit is increased by a 
factor of 2. This can be seen by examining the results of 
Case 1 in Table 1. However this factor is an overly op-
timistic assessment in predicting the beneficial effect of 
the shunt compensator. When line losses are included 
(Case 2), this factor reduces to 1.87. In Case 3 in which 
the equivalent π-circuit model with no losses shows that 
the steady-state stability limit is 2.2976P0 as against 
2.2208P0 shown in Case 1. The difference is due to the 
presence of the line capacitance: the capacitance pro-
vides additional support on the power transfer, an effect 
the simplified line model does not take into considera-
tion. Hence the simplified line model over-estimates the 
beneficial effect of mid-point compensator on improving 
steady-state stability limit. With the line losses included 
in the model, it predicts a further decrease of the limit by 
some 13%. This can be seen by comparing the results of 
Cases 3 and 4. 

The most accurate line model amongst the four would 
be the one based on the Telegraph equations. When the 
terminal impedance is included in the example, a further 
reduction of the limit is obtained, as shown in Cases 5- 
8. Case 8 shows that the beneficial effect of the mid-
point compensation is about 1.59 times that without the 
compensation. This agrees fairly closely with that ob-
tained in [5]. Unlike the observations shown in [5] 
which were based on computer simulation, the predicted 
values shown in Table 1 were obtained using the ana-
lytical expressions derived in Section 2.2. Hence the 

analytical expressions shown are most useful: they pro-
vide the theoretical basis in quantifying the various fac-
tors that could affect the steady-state stability limit of a 
compensated line. 

Table 1:  Effect of line model representation on steady-state 
stability limits. 

In order to verify the accuracy of the earlier analysis, 
time-response simulation studies have to be carried out. 
Further work will be needed in extending the above 
results for more complex networks. 

Case 0 0
m

rP P  1 0
m

rP P  1 0
m m

r rP P  

1: Simplified loss-
less line model 1.1104 2.2208 2 

2: Simplified line 
model with losses 1.0498 1.9582 1.87 

3: Telegraph loss-
less line model 1.2760 2.2976 1.80 
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4: Telegraph line 
model with losses 1.2161 2.0338 1.67 

5: Simplified  
lossless line model 0.8884 1.7768 2 

6: Simplified line 
model with losses 0.8465 1.5911 1.88 

7: Telegraph loss-
less line model 1.0947 1.8637 1.70 
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8: Telegraph line 
model with losses 1.0522 1.6774 1.59 

4 CONCLUSIONS 
Shunt compensation of a long-line at terminals and at 

mid-point has been considered. By utilizing the exact 
long-line model which includes line losses, the results of 
the analysis allow the effect of line resistance on the 
amount of the reactive compensation needed for power 
transfer to be determined much more accurately. Imped-
ances of the line terminal synchronous sources have 
been included in the determination.   

An important application of the results of the analysis 
is that the reactive power needed at the line midpoint at 
any given power transfer level can be determined using 
the computational procedure described. Re-evaluation of 
the contribution of the midpoint shunt compensator to 
enhance stability shows that whereas in previous works 
based on simplified line model, the improvement in 
power transmissibility with respect to the steady-state 
stability limit is predicted to increase by a factor of 2, the 
present analysis indicates that the improvement is only 
by a factor of 1.67. The decrement is accounted for due 
to the presence of line resistances and the distributed 
nature of the line shunt capacitances. If the terminal 
impedances at the end(s) of the line are also included, 
there is a further reduction in the factor to around 1.59. 

The analysis provides a more accurate assessment of 
the beneficial contribution of shunt reactive power com-
pensation. Additional insights into the steady-state trans-
fer capability of long transmission lines have therefore 
been gained.  
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Appendix A 
Derivation of Equations (1)- (4)  

  From [6], assume that voltage and current rV
v

rI
v are  

known at the RE ( 0x = ), thus the general expressions 
for voltage and current at a distance x from the RE are  
  ( ) ( ) 2x

x r c r r c rV V Z I e V Z I eγ − xγ⎡ ⎤= + + −⎣ ⎦
v vv v v v v v v        (A.1) 

  ( ) ( ) 2x
x r c r r c rI V Z I e V Z I eγ − xγ⎡ ⎤= + − −⎣ ⎦

v vv v v v v v v        (A.2)  

  From (A.1), with x = l, (A.3) can be obtained. 
( ) ( ) 2l

s r c r r c rV V Z I e V Z I eγ − lγ⎡ ⎤= + + −⎣ ⎦
v vv v v v v v v          (A.3) 

  Hence, the current at the RE of a transmission line 
can be written as: 
  2 ( ) (l l l l

r s r cI V V e e Z e eγ γ γ γ− )−⎡ ⎤ ⎡ ⎤= − + −⎣ ⎦ ⎣ ⎦
v v v v          (A.4) 

  From Equations (A.2) and (A.4), with x = l, (A.5) 
can be obtained. 
  ( ) 2 (l l l l

s s r cI V e e V Z e eγ γ γ γ− )−⎡ ⎤ ⎡ ⎤= + − −⎣ ⎦ ⎣ ⎦
v v v vv v v v

       (A.5)         

  Since θ = βl, equations (A.4) and (A.5) can be 
rewritten as (A.6) and (A.7), respectively: 

2 [ (cos sin ) (cos sin )]
( )[ (cos sin ) (cos sin )]

l l
s r

r l l
c c

V V e j e jI
R jX e j e j

α α

α α

θ θ θ θ
θ θ θ

−

−

− + + −
=

+ + − − θ

v v
v  (A.6)  

[ (cos sin ) (cos sin )] 2
( )[ (cos sin ) (cos sin )]

l l
s r

s l l
c c

V e j e j VI
R jX e j e j

α α

α α

θ θ θ θ
θ θ θ

−

−

+ + − −
=

+ + − − θ

v v
v  (A.7) 

  It can be derived that the active and reactive powers 
at the RE and SE of a transmission line are given by 
Equations (A.8) and (A.9) (shown below), respectively. 
The normalized values with respect to P0 of Pr ,Qr, Ps 
and Qs can be obtained as shown in Equations (1) –(4). 

Appendix B 
Expressions for the Equivalent Impedances and Admit-
tance of Figure 3 (b) 

( )( )1, 2eq i ti ti l l c ti ti l lZ R jX R jX jB R jX R jX= + + + + + +
v ; 

( ) ( )2, 2 2eq i ti ti c ti ti c l lZ R jX j B j R jX B R jX= + − − + +⎡ ⎤⎣ ⎦
v

; 

,1 ,21 1 (1eqsh eqm eqm c mY Z Z jB k= + + − )
v v v ; 

( ) ( ), 2 2eqm i l l c l l c ti tiZ R jX j B j R jX B R jX= + − − + +⎡ ⎤⎣ ⎦
v

. 

_______________________________________________________________________________________________ 
2

*
2 (cos sin ) (cos sin ) (cos sin )

( ) (cos sin ) (cos sin )

l l
s r r

r r r r r l l
c c

V V j V e j e j
S P jQ V I

R jX e j e j

α α

α α

δ δ θ θ θ

θ θ θ θ

−

−

⎡ ⎤− − − + +⎣ ⎦= + = =
⎡ ⎤− − − +⎣ ⎦

v v v θ     

  
2 2 2 2

2 2 2 2

2 cos( ) 2 cos( ) ( ) 2 sin( ) 2 sin( ) 2 sin 2

( )( 2cos 2 )

l l l l l l
c s r s r r c s r s r r

l l
c c

R V V e V V e V e e X V V e V V e V

R X e e

α α α α α α

α α

θ δ θ δ θ δ θ δ

θ

− − −

−

⎡ ⎤ ⎡− − + + − − − + + −⎣ ⎦ ⎣=
+ + −

θ ⎤⎦  

 
2 2 2 2

2 2 2 2

2 cos( ) 2 cos( ) ( ) 2 sin( ) 2 sin( ) 2 sin 2

( )( 2cos 2 )

l l l l l l
c s r s r r c s r s r r

l l
c c

X V V e V V e V e e R V V e V V e V
j

R X e e

α α α α α α

α α

θ δ θ δ θ δ θ δ

θ

− − −

−

⎧ ⎫⎡ ⎤ ⎡− − + + − + − + + −⎪ ⎪⎣ ⎦ ⎣+ ⎨ ⎬
+ + −⎪ ⎪⎩ ⎭

θ ⎤⎦     

                                                                                           (A.8) 
2

*
(cos sin ) (cos sin ) 2 (cos sin )

( ) (cos sin ) (cos sin )

l l
s s r

s s s s s l l
c c

V e j e j V V j
S P jQ V I

R jX e j e j

α α

α α

θ θ θ θ δ

θ θ θ θ

−

−

⎡ ⎤− + + − +⎣ ⎦= + = =
⎡ ⎤− − − +⎣ ⎦

v v v δ      

  
2 2 2 2

2 2 2 2

( ) 2 cos( ) 2 cos( ) 2 sin 2 2 sin( ) 2 sin( )

( )( 2cos 2 )

l l l l l l
c s s r s r c s s r s r

l l
c c

R e e V V V e V V e X V V V e V V e

R X e e

α α α α α α

α α

θ δ θ δ θ θ δ

θ

− − −

−

⎡ ⎤ ⎡− − + + − − − + − −⎣ ⎦ ⎣=
+ + −

θ δ ⎤⎦           

2 2 2 2

2 2 2 2

( ) 2 cos( ) 2 cos( ) 2 sin 2 2 sin( ) 2 sin( )

( )( 2cos 2 )

l l l l l l
c s s r s r c s s r s r

l l
c c

X e e V V V e V V e R V V V e V V e
j

R X e e

α α α α α α

α α

θ δ θ δ θ θ δ θ δ

θ

− − −

−

⎧ ⎫⎡ ⎤ ⎡− − + + − + − + − −⎪ ⎪⎣ ⎦ ⎣+ ⎨ ⎬
+ + −⎪ ⎪⎩ ⎭

⎤⎦

                                                                     (A.9) 
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Appendix C 
Determination of Pr for line with fixed midpoint shunt 
compensator 
  Equation (8) can be rewritten as, 

( ) ( )11 12 21 22cos sin cos sinm s s s r r rV V Vα δ α δ α δ α δ= +
v

- -  

( ) (11 12 21 22sin cos sin coss s s r rj V V )rα δ α δ α δ α δ+ + + +⎡ ⎤⎣ ⎦ (C.1)  

where ( )11 1,2 1,1 1,2 1,2 1,1Re eq eqsh eq eq eq eqZ Y Z Z Z Zα ⎡ ⎤⎦= + +⎣
v v v v v v ;  

( )12 1,2 1,1 1,2 1,2 1,1Im eq eqsh eq eq eq eqZ Y Z Z Z Zα ⎡ ⎤= +⎣ ⎦
v v v v v v

+

)
; 

(21 1,1 1,1 1,2 1,2 1,1Re eq eqsh eq eq eq eqZ Y Z Z Z Zα ⎡= +⎣
v v v v v v

⎤+ ⎦ ;  

( )22 1,1 1,1 1,2 1,2 1,1Im eq eqsh eq eq eq eqZ Y Z Z Z Zα ⎡= +⎣ ⎦
v v v v v v

⎤+ . 

Equating the real and imaginary parts of (C.1),  
( ) ( )11 12 21 22cos sin cos sinm s s s r r rV V Vα δ α δ α δ α δ= +- - (C.2) 

( ) (11 12 21 22sin cos sin cos 0s s s r r rV Vα δ α δ α δ α δ+ + + ) =

rV

(C.3)     

 Since δ=δs-δr, (C.2) cos δr + (C.3) sin δr becomes   
   11 12 21cos cos sinm r s sV V Vδ α δ α δ α= − +       (C.4) 
 Also (C.2) sin δr - (C.3) cos δr becomes 
   11 12 22sin sin cosm r s sV V V rVδ α δ α δ α= − − −      (C.5) 
 From Figure 3( b), 
   ( ) 1,2 2,2r eq rm rI Z VV V= −−

v v vv v
eqZ
v               (C.6) 

 Hence, for a given km, power at the receiving end is 
given by  

( )*Rer r rP V I=
v v

                                            

  (C.7)  ( ) (2
1,2 1,2 1,2 2,2cos sinr m eq r eq r r eq eqV V G B V G Gδ δ= + − )+

where ( ), ,Re 1eqk i eqk iG Z=
v

; ( ), ,Im 1eqk i eqk iB Z=
v

. 

Substitute (C.4) and (C.5) into (C.7), and if Vs=Vr 
=V0, the value of Pr normalized to P0 is 

( ) (0 0 11 1,2 12 1,2 0 11 1,2 12 1,2cos sinr eq eq eq eqP P Z G B Z B G )α α δ α α= − − + δ

)⎤⎦
)V

          (C.8) ( )0 21 1,2 22 1,2 1,2 2,2eq eq eq eqZ G B G Gα α+ − − −

Appendix D  
Determination of Pr of loss line with dynamic network 
control 

Equation (8) can be rewritten as, 
( ) (1,1 1,2 1,1 1,2eq eq eqsh eq eq eqsh mG G G j B B B V⎡ + + + + +⎣

v    

           (D.1) ( ) (1,1 1,1 1,2 1,2eq eq s eq eq rG jB V G jB= + + +
v v

where 
  ( ) ,1 ,2Reeqsh eqsh eqm eqmG Y G G= = +

v
; 

  ( ) ,1 ,2Im (1 )eqsh eqsh eqm eqm c mB Y B B B= = + + − k
v

.         

Separating the real and imaginary parts of (D.1) 
leads to the following identities: 
( ) ( )1,1 1,2 1,1 1,1cos sineq eq eqsh m eq s eq s sG G G V G B Vδ δ+ + = −  

       ( )1,2 1,2cos sineq r eq r rG Bδ δ+ − V    (D.2) 

( ) ( )1,1 1,2 1,1 1,1sin coseq eq eqsh m eq s eq s sB B B V G B Vδ δ+ + = +   

               ( )1,2 1,2sin coseq r eq r rG Bδ+ + Vδ    (D.3) 

Equation (D.2) can be rewritten as: 

( )1,1 1,2 1,1 1,1 1,2cos sin coseq eq eqsh eq eq eq rG G G G B Gδ δ δ+ + = − +   

        ( )1,1 1,1 1,2sin sineq eq eq rG B cos Bδ δ− + + δ

)

    (D.4) 

Define the following two intermediate variables 

( )
( ) (

1,1 1,1 1,21
1 2 2

1,1 1,1 1,2 1,1 1,1 1,2

cos sin
cos

cos sin sin

eq eq eq

eq eq eq eq eq eq

G B G

G B G G B cos B

δ δ
δ

δ δ δ δ

−

⎡ ⎤− +⎢ ⎥=− ⎢ ⎥
− + + + +⎢ ⎥⎣ ⎦

          

                                        (D.5) 

( )
( ) ( )

1,1 1,21
2 2 2

1,1 1,1 1,2 1,1 1,1 1,2

cos
cos sin sin

eq eq eqsh

eq eq eq eq eq eq

G G G

G B G G B cos B
δ

δ δ δ δ

−

⎡ ⎤+ +⎢ ⎥=− ⎢ ⎥
− + + + +⎢ ⎥⎣ ⎦

 

                                        (D.6) 
Substitute (D.5) and (D.6) into (D.4) and express the 

resulting equation in term of δ1, δ2 and δr. Then the 
following equation can be obtained: 
    2 1cos cos cos sin sinr r 1δ δ δ δ δ= −            (D.7) 

Substitute Equations (D.5), (D.6) and (D.7) into 
(10), (15) can be obtained. Where,  

2 2 2 2
1 1,1 1,2 1,1 1,2eq eq eq eqG G B Bβ = + + + ;   ; ( )2 1,1 1,2 1,1 1,22 eq eq eq eqG G B Bβ = +

( )3 1,1 1,2 1,1 1,22 eq eq eq eqB G G Bβ = − ; 4 1,1 1,2eq eq eqshG G Gβ = + + ;  
2 2 2

5 1,1 1,2 1,1 1,2 1,1 1,22 2 2eq eq eqsh eq eq eq eqsh eq eqshB B G G G G G G Gβ = + − − − − . 

Appendix E 
Determination of critical angle δcr of a midpoint com-
pensated line with dynamic network control 
  From (15), the following expression (E.1) can be 
obtained:  

_______________________________________________________________________________________________ 

( )
( )( )

( )

2
0 1,1 1,2 1,1 1,2 3 4 2 5 2 3 1 5 2 3 1 4

2
1 2 3

cos sin cos sin cos sin

cos sin

eq eq eq eqr
V G G B BdPf

d

β β β β β δ β δ β β β δ β δ δ β β δ
δ

δ β β δ β δ

− − + − − + − −
= =

+ −
 

        ( ) ( )
( )

2 2 2
0 2 3 4 1,2 1,2 1,2 1,2 5 2 3

2
1 2 3

sin cos 2 cos sin

cos sin

eq eq eq eqV G B G Bβ δ β δ β β β δ β δ

β β δ β δ

⎡ ⎤+ − − + −⎣ ⎦+
+ −

 

        ( ) ( )
( )

2
0 1,1 1,2 1,2 1,1 2 4 3 5 2 3 1 4 1 5 2 3

2
1 2 3

cos sin cos cos sin sin

cos sin

eq eq eq eqV G B G B β β β β β δ β δ β β δ β β β δ β δ δ

β β δ β δ

+ + + − + − + −
−

+ −
     

        ( ) ( ) ( )
( )

2
0 2 3 1,1 1,2 1,1 1,2 1,2 1,1 1,1 1,2 1,2 1,2

1 2 3 5 2 3

sin cos sin cos 2

2 cos sin cos sin
eq eq eq eq eq eq eq eq eq eqV G G B B G B G B Gβ δ β δ δ δ

β β δ β δ β β δ β δ

B⎡ ⎤+ − + + +⎣ ⎦+
+ − + −

              (E.1) 
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