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Abstract— In this paper, a new procedure based on a 

modified normal form (NF) approach is proposed for 
determining the effects of the higher-order nonlinear 
terms of the power system representation on system dy-
namic performance.  

A general nonlinear analysis technique which avoids 
the use of center manifold reduction is first developed for 
calculating the NF representation and the associated 
nonlinear transformations for resonant systems.  Using 
this representation, analytical expressions are obtained 
that provide approximate solutions to system perform-
ances and indices for interpreting nonlinearity in terms of 
modal interaction are given. The derived formulations are 
suitable for the analysis of practical systems and result in 
more accurate solutions than existing procedures. 

The application of these procedures is illustrated on a 
68-bus, 16-machine model of the NPCC system. The effi-
ciency and accuracy of this approach is demonstrated by 
comparisons to fully nonlinear computations. 

 

Keywords: Normal form analysis, nonlinear modal 
interaction 

1 INTRODUCTION  
Nonlinear power system analysis by means of per-

turbation theory has been the subject of considerable 
interest over the years. The mathematical analysis of 
nonlinear system behavior begins with the derivation of 
a nonlinear system model obtained by approximating 
the center manifold of the power system model at an 
equilibrium point by a truncated power series [1]. 

Conventional analysis techniques which are based on 
a second-order approximation of the system model may 
fall short of providing adequate information for the 
detection and quantification of nonlinear behavior. In 
systems where nonlinearities are strong, or highly 
stressed, the higher degree terms can not be neglected, 
and the low-order approximation may yield inaccurate 
results. 

Recent studies suggest that higher dimensional rep-
resentations may be needed to fully extract system 
nonlinear power system behavior especially under 
heavy stress operating conditions [2,3]. The approxima-
tion of nonlinear systems to higher degrees by linear 
systems has been treated in [4] and more recently in [5] 
using NF analysis. 

In the literature several approaches to this problem 
have been developed. The techniques used for the de-

termination of the NF system representation can be 
broadly classified into recursive [6] and non-recursive 
depending on whether center manifold reduction is used 
or not [7]. The latter approach is explored here. 

 The present work builds upon the NF procedure de-
veloped by Martínez et al. [5] and the non-recursive 
approached developed in [7]. This approach has been 
successfully used for the analysis of second-order de-
gree systems exhibiting the inter-area mode phenome-
non. The extension of this approach to deal with higher-
dimensional systems, however, is very challenging.  

A general nonlinear analysis technique which avoids 
the use of center manifold reduction is first developed 
for calculating the NF representation and the associated 
nonlinear transformations for resonant systems.  Using 
this representation, analytical expressions are obtained 
that provide approximate solutions to system perform-
ances and indices for interpreting nonlinearity in terms 
of modal interaction are given. The derived formula-
tions are suitable for the analysis of practical systems 
and result in more accurate solutions than existing pro-
cedures. 

The application of these procedures is illustrated on 
68-bus, 16-machine model of the NPCC system. Atten-
tion is restricted to the study of the influence of third-
order effects in the series expansion of the power sys-
tem representation on system behavior, but the theory 
and analysis methods can be easily generalized to ac-
count for more general system models.  

This technique is shown to be effective and useful 
for nonlinear modeling even though some practical 
limitations arise when the order of the system is too 
large 

2 HIGHER ORDER NF ANALYSIS 
The method of NF enables to study the behavior of a 

vector field near a singularity by reducing it via a suit-
able change of coordinates to a simpler form.   

Consider an n -dimensional nonlinear dynamical 
system described by the differential equation 

)(xfx =&                                    (1) 
Without loss of generality, we assume that f  can be 

expressed as 

∑ +++==
=
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where x  is an n -dimensional vector of system 
states; )(1 xf  contains the linear part of the original 
vector field and )(xkf , qk ,...,2=  contains the nonlin-
ear part; q  represents the desired order of approxima-
tion and )1( +qO  are the terms in x  of order 1+q  and 
higher. It is assumed that the function f  is continually 
differentiable up to order q , and that the system in (1) 

has an equilibrium point at oxx = , such that 0xf =)( o . 
Higher order NF methods may be obtained from this 
basic representation, but the complexity of the resulting 
model depends directly on the structure of the funda-
mental model.  

2.1 Reduction to the NF: Conventional Approach 
Existing approaches to higher normal form analysis 

are based on recursive computation of the NF coeffi-
cients and the associated nonlinear transformations. 
Conventional NF analysis (CNF) uses the k -th order 
near identity transformation to remove the k -th order 
nonlinear terms. The derivation of higher-order terms is 
described in [5,6] and is summarized here for complete-
ness. 

To obtain the NF system the following steps are 
taken: 
1). Substitute the linear transformation Uyx =  into 

(2). Upon this transformation the system in (2) be-
comes 

∑
=

+++==
q

k
k qO

2
)1()()( yFΛyyfy&          (3) 

 where nC∈y  is the vector of Jordan form coordi-

nates; matrix UfUΛ 1
1−=  is the diagonal matrix of 

system eigenvalues; )1( +qO  are the terms in y  of 
order higher to 1+q  and the vectors 

)()( 1 UyfUyF kk

−
=  are complex-valued polyno-

mial vectors of order k  in y . 
2). Use the kth -order nonlinear transformation to 

simplify the kth -order nonlinear terms of the sys-
tem. Starting with 2=k  consider a formal nonlin-
ear near-identity coordinate change of the form 

)( 222 zhzy +=  

where z is the vector of normal form coordinates and 
)( 22 zh  is a complex vector-valued function whose 

components are homogeneous polynomials of order 2 
with coefficients to be determined so that the system in 
(3) becomes as simple. 

The vector field (3) now becomes 

∑++=
=

q

k
k

3
22222  )(ˆ)(ˆ zFzFΛzz&           (4) 

where the first few terms are given by 
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and use has been made of the approximation 

 2
2222

1
22 ] )( [)()]([ zhzhIzhI DDD +−≈+ −    (5) 

3). Determine the second order normal form coeffi-
cients, )( 22 zh , by solving the homological equation 

)()()( 222222 zΛhΛzzhzF −= D  . Under this ap-
proximation the second order NF system becomes 

)4()(ˆ)( 232222 Or +++= zFzFΛzz&         (6) 

where the term )(ˆ
23 zF  indicates third-order terms 

that have been affected by the transformation in Eq. (4), 
)( 22 zF r  represents the second order resonant terms and 

the terms )4(O represent fourth-order and higher terms 
introduced by the nonlinear transformation.  

In an analogous fashion, third- and higher-order 
terms are removed by using the nonlinear transforma-
tion )(1 kkkk zhzz +=− , qk ,...,3= .  
4). Repeat the process order by order and choose the 

components of the q -th transformation succes-
sively to eliminate or simplify as many terms as 
possible. Details of this recursive procedure are 
given in Ref. [4]. 

At q -th order the approximate NF representation 
for the system in (3) may be written as 

)1()(
2

++∑+=
=

qO
q

k
k

r
kqq zFΛzz&              (7) 

where ],...,,[ 21 ndiag λλλ=Λ , r
kF  are resonance terms 

that can not be eliminated by the nonlinear transforma-
tions and  )1( +qO  denotes an expression containing 
residual terms in qz  of order 1+q  and higher.  

This approach has several disadvantages: 
• At each step of the NF computation, higher order 

terms are generated which are not fully accounted 
for in successive computations. 

• It is difficult to determine the exact order at which to 
truncate (5). 
Further, finding the explicit formulas for the normal 

form coefficients in terms of the original nonlinear 
system is difficult and time consuming. To overcome 
these limitations we next explore the use of a non-
recursive approach which avoids the center manifold 
reduction. 
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3 A NON-RECURSIVE APPROACH TO 
NORMAL FORM ANALYSIS 

Let the system be represented by (3). Assume fur-
ther that the system is truncated at order q . Consider 
now the nonlinear transformation 

∑+=
=

q

k
k

2
)(zhzy                             (8) 

where, by definition, 
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Introducing (8) in (3) gives the normal form system  
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In conventional normal form theory, the nonlinear 
transformation coefficients, kh , in (8), are obtained by 

approximating the term 1

2
])([ −

=
∑+
q

k
kD zhI  by a truncated 

power series [4]. A more accurate approach is obtained 
herein by using Eq. (7) instead. Substituting Eq. (7) in 
(9) and rearranging, one obtains the modified homo-
logical equation 
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Carrying out the operations indicated in (10), and 
collecting terms up to third order degree, we obtain 
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or, equivalently, 
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for j=2,3, where )()( )1(

1

2
zFzh r

kj

j

k
kD −−

−

=
∑ , is a residual term  

which contains information regarding the resonant 
terms that can not be annihilated by the previous 
nonlinear coordinate change,  1−jh . We remark that 
these terms arise only for third (and higher) NF repre-
sentations. 

From (11) the terms of the transformation higher to 
three are dependent upon the resonance conditions of 
previous order.  

Equating terms of like order, the corresponding sec-
ond and third order resonant terms become 

j
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In the equations above,  rj
2lm and rj

3lmp are the coeffi-
cients of the resonant polynomials )(2 zF r ,  and )(3 zF r  

respectively; the terms j
lmc2ˆ  and j

lmpc3ˆ  are the coeffi-

cients of the polynomials )(ˆ
2 zF  and )(ˆ

3 zF  respec-

tively, and j
lmpr3̂  is a coefficient of the residual resonant 

polynomial (z)(z)Fh rD 22 . 
Note that, in this approach, nonlinear terms in the 

equations are assumed to be small but not negligible. 
Essentially, the technique is able to give an enhanced, 
more accurate, third-order estimate of the system solu-
tion.  

In the particular case of non-resonance conditions, 
i.e., )( mlj λλλ +≠  and )( pmlj λλλλ ++≠ , the terms 
of the transformation for the j -th state are determined 
in conventional form, and are given by 
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This agrees with the results obtained in [4,9] for the 
particular case in which the nonlinear terms are ne-
glected.  

3.1 Determination of the third order NF transformation 
under resonance conditions 
The analysis above shows that it is possible to de-

termine the NF transformation coefficients in terms of 
the resonance conditions and the previously determined 
second-order relationships.  

Three cases are of particular interest in this study: 
second order resonances, third order resonances and the 
simultaneous occurrence of second and third-order 
resonance conditions.   

For the first case, )( mlj λλλ +=  and 

)( pmlj λλλλ ++≠ . Assume that the above conditions 
hold the corresponding terms of the second and third-
order transformation are then 

0
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Note that, in this representation, second-order reso-
nant terms give rise to third order-terms, j

lmpr3̂ , which 
are accounted for by the respective transformation. The 
other two cases of resonance are treated in a similar 
manner.  

3.2 Analysis of residual terms 
The residual terms in (11) arise from the use of the 

second-order nonlinear transformation (8) in the NF 
procedure. In the derived formulation, the third-order 
terms in (11) are of the form 

 
)(2)(ˆ

2233 zhFz(z)FzF T+=              (16) 
 
 To clarify the nature of these terms, Table 1 com-

pares the expressions for third-order residual terms 
using CNF theory as a function of the approximate 
expression (5).  

Observe that, by neglecting higher-order terms, 
2

2 )]([ zhD , important information may be lost. Whilst 
increasing the number of terms in the series expansion 
(5) increases accuracy, this becomes highly unpractical 
especially as the dimension of the system increases. 
This limits the accuracy of the conventional approach to 
assess dynamic behavior under stressed conditions. 
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Table 1: Nature of NF coefficients as a function of (5) 

The discussion of these effects postponed until sec-
tion 4. 

3.3 Third order closed-form time-domain solutions 
Closed-form solutions are determined by following 

the approach in [8]. Assume that via a suitable change 
of coordinates the system in (3) is taken to the normal 
form 

)4()()( OΛzz += tt&                         (17) 

Neglecting higher order terms, one obtains that 
t

jj
jeztz λ0)( =  , nj ,...,1= . Substituting these solutions 

in (8) yields 
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where the terms o
jz  are the initial conditions in the 

normal form space. 
 Note that Eq. (18) reduces to the conventional the-

ory when, in particular,  03 =i
klmh  for low stress condi-

tions. 
 Normal form solutions in (18) are then transformed 

back into the original physical domain by using the 
linear transformation. 

)()( tt Uyx =                              (19) 

Figure 1 illustrates the nature of the analytical solu-
tions using this procedure. 

 

z(t)
E

y(t) x(t)

U

I

q

h 2

h
 

 
Figure 1:  Block diagram illustrating the computation of 

closed-form solutions 

The following approach is used to compute initial 
conditions in the oz  coordinates: 

1. Given an initial operating condition ox , determine 
the initial conditions in the Jordan space from 

010 xUy −= , and  

2. Compute  oz  by solving the nonlinear equations 

0yzhzhz)f(z 0 =−++= )()( 32
oooo  

using a Newton-based iterative technique. 

Once the initial conditions oz have been determined, 
compute approximate time-domain closed-form solu-
tions by using (18). 

3.4 Quantification of higher- order nonlinearities 
The proposed procedure can be used to generalize 

the notion of nonlinear interaction indices. Following 
[8,9] a third-order index of modal interaction can be 
defined as 
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Large solutions for the second and third parts in (18) 
compared to the linear part ( o

jz ) are identified to exhibit 
strong interactions between mode j and modes ml, , 
and modes pml ,, , respectively in the Jordan form 
variables. These expressions are used in this work to 
assess nonlinear behavior and modal interaction. 
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4 SIMULATIONS OBTAINED: APPLICATION 
TO A LARGE POWER SYSTEM WITH 

CONTROLS 
The normal form method was tested on the 16-

machine 68-bus NPCC system [10]. A one-line diagram 
of the study system is given in Fig. 2 showing major 
coherent area.  

The NPCC system consists of five coherent areas 
designated as Area 1 (A1), Area 2 (A2), Area 3 (A3), 
Area 4(A4), and Area 5 (A5).  

 
Figure 2:  One line diagram of the five-area sixteen 

generators test system. 

For the purpose of this analysis, all machines are rep-
resented by a fourth order model and a simple gain dc 
exciter. The system operating conditions and machine 
data are taken from [10]. 

The NPCC system exhibits four lightly damped in-
ter-area modes. Table 2 lists the main characteristics of 
these modes showing their oscillation patterns and 
damping ratios. For the case base only exist interchange 
of generation from Area 5 to Area 2 through the inter-
tie 50-51 and 46-49 of around of 1200 MW. In these 
simulations, a base case condition with modifications on 
major inter-tie power flows to increase system stress 
was used.  The loads are represented as constant imped-
ances. 

4.1 Small Signal Analysis  
Eigenvalue analysis of the linear system model iden-

tifies five lightly damped inter-area modes with damp-
ing ratios below 5%. Table 2 lists the five slowest ei-
genvalues along with swing pattern and their associated 
swing frequency. 

 
Eigenvalue 

(Mode) 
Freq. 
(Hz) 

Dominant machines 

-0.0686±j2.66 (48) 0.424 9A1 13A2 vs 14A3 15A4 16A5 
-0.1230±j3.47 (46) 0.553 14A3 vs 16A5 
-0.0819±j4.62 (44) 0.735 9A1 vs 12A2 13A2 
-0.2360±j5.04 (42) 0.802 14A3 15A4 vs 16A5 
-0.2436±j6.75 (40) 1.075 2A1, 3A1, 5A1 

Table 2: Swing pattern for the five slowest modes of the 
system 

4.2 Third order normal form analysis 
Normal form analyses were conducted to investigate 

the potential for nonlinear behavior arising from the 
interaction of the major inter-area modes as well as to 
assess the influence of higher order terms on system 
dynamic performance.  

Figures 3 through 5 furnish the second –and third-
order interaction indices for the five inter-area modes in 
Table 2, see (20). For comparison purposes, the interac-
tion indices obtained from conventional normal form 
theory are presented in Figure 3. 
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Figure 3:  Second order interaccion index. CNF theory 
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Figure 4:  Second order interaccion index. Non-recursive 

approach. 
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Figure 5:  Third order interaccion index. Non-recursive 

approach 
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A study of the second-order nonlinear interaction in-
dices in Figures 3 and 4 reveals a strong interaction 
between mode 48 and 44 and mode 56. Careful inspec-
tion of the second-order indices obtained using the 
proposed procedure, however, discloses the presence of 
control mode 55 associated with the control of the ma-
chine 15, and mode 57 involving the participation of the 
control states of machines 12 and 14.  

The analysis of third-order interaction indices in Fig-
ure 5 confirms these findings. It should be observed 
that, the magnitude of third-order interactions is of the 
same order that second-order information showing the 
presence of higher-order nonlinear modal interaction 
and increased nonlinearity. 

4.3 Validation 
The method of normal forms is used to investigate 

system performance following large perturbations in the 
neighborhood of critical operating conditions obtained 
from linear system theory.  

Based on the analysis of interaction indices, ma-
chines # 12, 14, and 15 were selected for study. Three 
system representations were considered in the study, 
namely: (1) a linear approximation xfx 1=&  obtained by 
ignoring higher terms, (2) a second order system repre-
sentation )2( =q , and (3) a third-order representation 

)3( =q  obtained from the proposed approach in this 
paper. 

Figure 6 compares the results of the proposed high-
order NF solution to the linear and second-order repre-
sentations for the machines of concern. For complete-
ness, the results are compared with those obtained from 
detailed step-by-step simulation (full system solution) 
using a commercial transient stability program. 

For machine # 12, examination of the system results 
in Fig. 6 shows that the response is given mainly by the 
linear terms; the agreement between the linear solution 
and the NF solutions is good over the entire study pe-
riod although some discrepancies are noted. It can also 
be seen that all solutions remain in phase; the linear 
solution becomes less accurate as time increases. Simi-
lar results are also obtained for other machines. 

The analysis of machines #14 and 15, on the other 
hand, shows that higher-order NF solutions provide a 
more accurate approximation for the full system solu-
tion than the lower order approximations. Of particular 
interest, simulations results show that third-order NF 
solutions are in close agreement with the full solutions 
for the entire study period thus showing the correctness 
of the proposed procedures. In contrast to this, linear 
solutions provide a poor approximation to system be-
havior both in magnitude and phase. Clearly nonlinear-
ity and nonlinear modal interaction are not uniformly 
distributed and may exhibit complex characteristics. 
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Figure 6:  Comparison of relative rotor angle swings. 

4.4 Computational aspects 
Figure 7 compares the memory storage required for 

NF analysis using the conventional approach [5,6] and 
the proposed procedure as a percentage of the total 
memory usage. 
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Figure 7:  Comparison of memory storage requirements. 

An attractive feature of the proposed procedure is 
that reduces the amount of computer memory required 
to compute the terms 3F̂ , since in the conventional 
approach, it is necessary to determine a larger number 
of residual terms; memory  requirements increase 
substantially when the order of the transformation 
increases. This, in turn, causes an increase in CPU time 
thus limiting its applicability to the study of realistic 
systems.  

5 CONCLUSIONS 
In this paper, a systematic analytical tool based on a 

modified normal form approach to assess the influence 
of third-order order terms of the power system represen-
tation on system dynamic behavior has been proposed.  
The method avoids use of center manifold reductions 
and enables the analysis of resonant conditions. 

 In comparison with conventional normal form ap-
proaches, the terms in the k -th order nonlinear trans-
formation are used to  simplify not only  the k -th order 
terms in the system, but also used to eliminate higher-
order nonlinear terms. This results in an efficient non-
recursive formulation that overcomes some of the limi-
tations of existing approaches. 

 Apart form its simplicity, the method is though to 
have potentially important applications for dynamic 
analysis of stressed behavior in nonlinear systems. 
These include the computation of normal forms and the 
associated coefficients under resonant conditions and 
the study of higher-order nonlinear modal interaction.  

The generalization of this approach to account for 
higher dimensional systems deserves further investiga-
tion and will be presented in a future paper. 
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