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Abstract - This paper studies the possible gains of rep-
resenting hydropower systems with a new model consisting
of two stations instead of the usual one station representa-
tion. The equivalent is obtained by solving an optimization
problem where the aim is to find parameters which mini-
mizes the difference in the production plans obtained from
the two optimization problems corresponding to the original
system and the equivalent respectively. This is in it self an
uncommon optimization problem type. The paper also pro-
vides numerical examples.
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1 Introduction

When planning the energy production of a hydropower
system or simulating such a system, good models are es-
sential. However, using too exact models can result in
large mathematical problems which are simply too time
consuming to solve. In, e.g. Sweden there are about 200
hydropower plants with an installed capacity greater than
10 MW. When considering systems of this magnitude or
greater, a common technique is to reduce the size of the
problem by representing plants in the same river system or
in several river systems with a single aggregated plant. Al-
though this is effective in reducing the size of the problem,
the approach has its drawbacks. The model only deals
with the total energy in the system and the total production
of the system and therefore fails to accurately represent
the bottlenecks within the system. For example, if all wa-
ter inflow to the reservoirs in the river is stored, sooner or
later one of them will be spilled and energy will be forced
to be produced in the hydro plant with the full reservoir.
Unless all reservoirs are filled simultaneously, the aggre-
gated plant will not be forced to produce energy since the
total system is not full. This illustrates a case when the
result from using a simpler model might diverge from the
result obtained with a more detailed model.

The aim of this paper is to examine the possible gains
of using a model with not one but two stations linked to-
gether to represent a larger system. For example, the agg-
regated representation could consist of two plants with one
large and one small reservoir compared to the inflow of
water. This would result in a model, which more often
would be forced to produce energy because of the small
reservoir.

The aim of the two-station equivalent is to make a
model that gives a production plan as close as possible to
that of the original system, when supplied with the same
input data. This data being the spot price of energy each
time-step during the planning period and a value for stored

energy at the end of the planning period. The idea used in
the paper is to try to find values for the design flows and
the storage capacities of two virtual plants, which achieves
this. This will be formulated as an optimization problem
where the aim is to find parameters which minimizes the
difference between the result of two optimization prob-
lems.

There is not so much published concerning equivalents
for hydro system, but there are some papers. The most
common method is to make a one-station representation
of a given system (see [1] or [2]). The station representing
the whole system receives, stores and releases potential
energy instead of water. At each hydroplant in the origi-
nal system, the water stored there is converted to its total
energy generating capability. Total generating capability
takes into account that discharged water at each plant of
the actual system also can be used to generate energy at
plants located downstream. The sum of all the generating
capabilities is the total energy in the one-station equiva-
lent. In the same way, the inflows and outflows from the
system is converted to potential energy. The model could
then be completed by a statistical description of energy in-
flow and a generation function, which based on statistical
data, converts the one-stations released potential energy
into actual production [1]. In section 3, a version of this
composite model will be constructed to be compared with
the two-station equivalent.

In the last two decades, many commercial models for
production planning in complex power systems have been
developed. Two of the most widely used in the nordic
electricity market, are theEMPSand theEOPSmodels
from SINTEF [3]. They can be used for generation
scheduling (both long- and mid-term) and are designed
mainly for electrical systems with a significant part be-
ing hydropower. The minimum time step is one week and
the maximum planning period is three years. TheEOPS
model is especially designed for planning by the individ-
ual producer, while theEMPSmodel is specialized for an-
alyzing larger systems.

Since these programs are commercial, obviously no
exact information is available about how the simplified
models of the detailed systems are constructed. But both
theEMPSand theEOPSmodels use, what they call, stan-
dard plant/reservoir modules for modelling hydropower.
Several hydropower plants are put together to form mod-
ules. Each of these modules can then have the following
characteristics (plus a few not in the list):

• a reservoir

• inflow, both storable and non-storable
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• a plant, with discharge capacity and generation cor-
rection for water head

• separate destinations for plant discharge (spillage
and plant discharge)

• constraints on reservoir levels and water flow

Modules of this kind can then be linked together. Al-
though the specifics are unknown, the approach seems
similar to that of the composite model, where several
power plants are put together to form one single unit.

In section 2 the original hydro system model is pre-
sented and in section 3 the common one-station equivalent
is examined. In section 4 the theory of the new two-station
equivalent is developed and in sections 5-7 some numeri-
cal examples are shown.

2 Original system

The ”original system” consists of a detailed descrip-
tion of the system that is to be optimized. The aim is to
find a plan that maximizes profits of the system during a
period ofT hours. Energy can either be sold during each
of the hours to the spot price corresponding to that hour
or stored in the reservoirs at the end of the planning pe-
riod to a specified value. Some important simplifications
of reality assumed in the description here are:

- A linear model for power generation

- No delay time for water flowing from one plant to a
plant directly downstream

- Deterministic inflow, spot price and water value

The linear model implies that the production planning
becomes a standard linear optimization problem. Since a
linear program is always convex, an optimal point for the
problem is sure to be found, not necessarily unique how-
ever. The linear model for power generation is here used
instead of the common used piecewise-linear to simplify
the description.

The variables for this problem areuit, xit and sit.
uit represents the discharge from planti during hourt.
sit is the spillage from planti during hourt. xit repre-
sents the stored water in planti at the beginning of hour
t. The variables are all measured in hour equivalents, (HE
or m3/s · h). The objective function is the total profit.
spott is the spot price during hourt (SEK/MWh). val is
the value of the energy in reservoirs at the end of the plan-
ning period (SEK/MWh).γi is the production equivalent
of planti (MWh/HE).

With these simplifications, the production planning
problem for a system of 3 stations located in a river after
each other, can be expressed mathematically as the opti-
mization problem in equation 1.

max
∑T

t=1

∑3
i=1 spottγiuit+

+val((γ1 + γ2 + γ3)x1T+1 + (γ2 + γ3)x2T+1+
+γ3x3T+1)

x1t+1 = x1t − u1t − s1t + flow1,
t ∈ {1, ..., T}
x2t+1 = x2t − u2t − s2t + u1t + s1t + flow2−
flow1, t ∈ {1, ..., T}
x3t+1 = x3t − u3t − s3t + u2t + s2t + flow3−
flow2, t ∈ {1, ..., T}
xi1 = δistorei, ∀i
0 ≤ uit ≤ desflowi, ∀i, t ∈ {1, ..., T}
0 ≤ xit ≤ storei, ∀i, t t ∈ {1, ..., T + 1}
0 ≤ sit ≤ spilli, ∀i, t ∈ {1, ..., T}
i ∈ {1, 2, 3}

(1)

The first three sets of constraints set the amount of wa-
ter in the reservoirs the following hour.flowi is the total
inflow upstreams planti (HE). The next set of constraints
see to that the reservoirs all are filled toδi/100% at the
beginning of the planning period.storei is the storage
capacity in reservoiri (HE). The following three sets of
constraints ensures that the variables stay in their allowed
domains. desflowi andspilli is the maximum level of
discharge and spillage possible at planti (HE).

There are available methods (e.g. [4, 5, 6]) that pro-
vides better plans than the one obtained with the formu-
lation in equation 1. The aim here is though to evaluate
the performance of the equivalent and because of that it is
enough to use the simplified model.

3 Composite system

For a two-station equivalent to be of any use, it must
give more accurate results than a simpler one-station
model, such as the composite model. Because of this, a
composite representation is created to serve as a reference
when evaluating the accuracy of the two-station model.

The system can be transformed to a single plant con-
taining potential energy. The level of energy is determined
by how much energy the water in the system at the start of
the period could produce. In the same manner, the flow of
water into the original system is converted into an amount
of potential energy entering the system in each period of
time. This plant can then release potential energy to sat-
isfy an objective such as maximizing profits or minimizing
cost while satisfying a load. In the case of trying to max-
imize profits while selling energy on the spot market the
result is the maximization problem shown below.

Here the variables arePoutt andEt which represents
the energy released during hourt and the energy stored in
the system at the beginning of hourt. The first variable is
measured in MWh/h and the latter in MWh. The parame-
ters have already been defined in the previous section.

max
∑T

t=1 spottPoutt + valET+1 (2)
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Et+1 = Et − Poutt +
∑3

i flowiγi, t ∈ {1, ..., T}
E1 =

∑3
i δistorei

∑
j≥i γj

Emax =
∑3

i storei

∑
j≥i γj

Pmin ≤ Poutt ≤
∑3

i desflowiγi, t ∈ {1, ..., T}
0 ≤ Et ≤ Emax, ∀t ∈ {1, ..., T + 1}
i ∈ {1, 2, 3}

(3)
Once again the objective represents the total profit.

The first set of constraints give the energy in the system
the following hour. The next two equations calculate the
total starting energy in the system and the total storable
energy in the system. The next two sets of constraints see
to that no more energy can leave the system than when
all plants are working at full capacity and finally that no
more energy can be contained in the system than when the
reservoirs are full. As stated in the equation there may
be a lower limit,Pmin, corresponding to non-storable en-
ergy in run-of-the-river plants. In the examples below this
parameter will though be set to zero. Although the solu-
tion of this problem results in a production plan, it does
not give a plan on how to operate each single hydro plant
just the total amount of energy that all the plants combined
should produce each hour.

4 Two-station equivalent

The aim of the two-station equivalent is to make a
model that gives a production plan as close as possible to
that of the original system, when supplied with the same
input data. This data are the spot price of energy each
time-step during the planning period and a value for stored
energy at the end of the period. The idea used here is to
try to find values for the design flows and the storage ca-
pacities of the two virtual plants which achieves this.

Given a specific spot price series and a value of stored
water, the production planning problem for a setup of three
adjacent hydro plants on the same river is shown in equa-
tion 1.

flow1
flow2

flow3

original
system

two-station
equivalent

γ1, x11
γ2, x21

γ3, x31
flow1

flow2

γ1, x11
γnew, xnew1

Figure 1: Formation of two-station equivalent

One way of constructing a two-station model of
the system is by putting station 2 and 3 together to
form a new imaginary station and removingflow3.
This new station receives aγ given by the formula
γnew = flow2γ2+flow3γ3

flow2
. That way, when all the plants

work as run of the river plants (i.e. plants with no reser-
voirs), the same amount of energy is produced in the 2-
station equivalent as in the original problem (flow1γ1 +
flow2γ2 + flow3γ3 = flow1γ1 + flow2γnew). Also,

to preserve initial energy the starting energy in the new
stationxnew1 is set according toxnew1 = ((γ2 + γ3 −
γnew)x11 + (γ2 + γ3)x21 + γ3x31)/γnew. This results in
the following production planning problem for the two-
station equivalent:

max
∑T

t=1

∑2
i=1 spottγiuit+

+val((γ1 + γnew)x1T+1 + γnewxnewT+1)
(4)

x1t+1 = x1t − u1t − s1t + flow1, t ∈ {1, ..., T}
xnewt+1 = xnewt − u2t − s2t + u1t + s1t+
+flow2 − flow1, t ∈ {1, ..., T}
x11 = δ1store1

xnew1 = ((γ2 + γ3 − γnew)δ1store1+
+(γ2 + γ3)δ2store2 + γ3δ3store3)/γnew

0 ≤ uit ≤ ?, ∀i, t ∈ {1, ..., T}
0 ≤ xit ≤ ?, ∀i, t ∈ {1, ..., T + 1}
0 ≤ sit ≤ spilli, ∀i, t ∈ {1, ..., T}
i ∈ {1, 2}

(5)
Now, the challenge is to set the design flows and the

storage capacity of the two new plants, so that the model
produces a production plan as similar as possible to that
of the original system. The idea for finding good values
in this paper is to use probable spot price curves to try
to calibrate the design flows and the storage capacities of
the two-station model. By finding a two-station equivalent
with design flows and storage capacities that gives a pro-
duction schedule as close to that of the original system as
possible for the given spot curve curves, the idea is that
this also will give an accurate two-station equivalent for
all other reasonable spot price curves. The procedure in
more detail is as follows:

1. Consider a set of probable spot price curves.

2. Solve the production planning problems for the
original system and obtain the total energy produc-
tion each hour corresponding to each of these spot
price curves.

3. Guess values for the design flows and the storage
capacities of the two-station equivalent

4. Solve the production planning problems for the two-
station equivalent with these values and obtain the
total energy production each hour corresponding to
each of the spot price curves.

5. Calculate the difference between the energy produc-
tion of the original system and that of the equivalent
for each hour and spot price curve. Square these
differences and calculate the sum of them.

6. Try to minimize this sum as a function of the design
flows and the storage capacities of the two-station
equivalent.

The sum of the squares of the differences is not the
only objective function that could be chosen to represent
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the deviation. For example, the absolute value could have
been chosen just as well, but the square rewards an ”even”
result, since larger deviations are penalized harder than
smaller.

In the problem formulated belowui, xi represent the
maximum allowed discharge and the storage capacity of
planti for the two-station equivalent.u andx are the vec-
tors(u1 u2) and(x1 x2). The extra indexs on all vari-
ables andspott represents the different spot price scenar-
ios. This means that the discharge and reservoir contents
can differ for different spot price curves but their maxi-
mum values can not. For each spot price curve and given
values forui, xi a production plan (values forusit and
xsit) that maximizes profits is found.Paimst is the total
energy production of the original three-station problem,
during hourt with spot curves.

The problem can now be formulated as:

minu,x

∑
st(Paimst −

∑
i γiusit)2 (6)





maxusit,xsit,ssit

∑T
t=1

∑2
i=1 spotstγiusit+

+val((γ1 + γnew)xs1T+1 + γnewxsnewT+1)

xs1t+1 = xs1t − us1t − ss1t + flow1,
t ∈ {1, ..., T}
xsnewt+1 = xsnewt − us2t − ss2t + us1t+

+ss1t + flow2 − flow1, t ∈ {1, ..., T}
xs11 = δ1store1

xsnew1 = ((γ2 + γ3 − γnew)δ1store1+
+(γ2 + γ3)δ2store2 + γ3δ3store3)/γnew

0 ≤ usit ≤ ui, ∀i, t ∈ {1, ..., T}
0 ≤ xsit ≤ xi, ∀i, t ∈ {1, ..., T + 1}
0 ≤ ssit ≤ spilli, ∀i, t ∈ {1, ..., T}
i ∈ {1, 2}

(7)
Although this might look like an ordinary optimiza-

tion problem at first glance, it is not. It is actually several
optimization problems (one for each spot curve) within an
optimization problem. Unfortunately, no literature dealing
with this subject has been found. Unlike multi-objective
optimization where different, and often conflicting, ob-
jective functions are considered simultaneously, here we
want to minimize a function that depends on several opti-
mization problems.

To find values for design flow and maximum storage
that results in a two-station equivalent that gives good ap-
proximation to the desired production plan, the following
method has been applied:

1. Given starting values foru andx and a set of spot
price curves, the program calculates the production
plans for the equivalent and then obtains the value
for the objective function.

2. The program takes a step in each direction inu1

and u2, solves these new optimization problems

and checks if the new value of objective function
is lower than the original one (the step length is set
before the program starts and is the same for allu-
andx-directions).

3. The direction inu1 andu2 which gives the lowest
value of the objective is then saved (including the
direction 0). If a step in bothu1 andu2 results in
a decrease in the objective, the value when moving
in those two directions at the same time is checked
(moving diagonally).

4. The movement that results in the lowest value of the
objective is chosen to be the starting point for an it-
eration inx-space. The same procedure, as foru, is
used for this iteration.

5. If the objective has not been lowered after a search
in both u- and x-space the program terminates,
otherwise a new iteration starts. The most recent
moving directions are kept track of to avoid unne-
cessary checking of points that have already been
checked in the previous iteration.

It is important to realize that, although the objective
function is derived from linear programs, which are both
concave and convex and therefore have global maximums,
the problem to minimize the objective, which depend on
these convex linear programs, is not a convex function.
Therefore many different starting points has to be tried to
find a local minimum with a good value for the objective.
Once a local minimum i found there is no way to confirm
if it is indeed a global minimum.

For the practical solution of the problem, an in-house
used MATLAB-routine based on the SIMPLEX-method
has been used for the linear optimization problems in step
2 (i.e. the constraint eq. 7), while the MATLAB routine
fminsearch [7] has been used for the solution of the
whole optimization problem with the objective eq. 6.

5 Example of basic model

All of the parameters except the spot price and value
of stored energy are listed below.

flow = (147 148 148)
desflow = (300 300 300)
store = (1 1 2) · 106/3600
spill = (760 760 600)
γ = (.2 .2 .2)
δ = (.5 .5 .5)

In the example described in this section three spot price
curves were used to calibrate the two-plant model. In
figure 2, the three spot curves can be seen together with
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Figure 2: The three different spot price curves and the value of saved
energy

the value of the energy stored at the end of the planning
period (the horizontal line). A producer trying to maxi-
mize profits will try to discharge water when price is over
the horizontal line and store the water in reservoirs when
the price is under the horizontal line. Remember that the
aim is to minimize the function

min
ui,xi

∑
st

(Paimst −
∑

i

γiusit)2 (8)

subjected to constraints.Paimst is the total production
of the original three station system during hourt and price
scenarios and

∑
i γiusit is the total production of the two-

station equivalent. To find a local optimum for this func-
tion, iterations were started from different values ofu and
x using fairly large step lengths (5-10 HE). Then, when an
area was found which seemed to contain a globally opti-
mal point, smaller steps (1 HE) were taken in that area to
find a local optimum.
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Figure 3: Production plans for the different models corresponding to the
three spot price curves. Setup 1.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

50

100

150

200

hour

M
W

h/
h

Paim
2−stat
comp

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

50

100

150

200

hour

M
W

h/
h

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

50

100

150

200

hour

M
W

h/
h

Figure 4: Production plans for the different models corresponding to the
three spot price curves. Setup 2.

In figures 3 and 4 the production plan of the two station
equivalent with the two best setups ofu andx found can be
seen, for each of the three used spot price curves, together
with the production plan of the original problem and the
production plan obtained with the Composite model. The
objective of equation 8 is equivalent of trying to position
the production curve of the two-station equivalent,2-stat,
exactly on that of the original system,Paim, for all spot
price curves. The fit is clearly much better for the two-
station model than the Composite model in both cases.

If we concentrate on figure 3 some of the problems
with the Composite model can be seen. Due to the fact
that the model only keeps track of total energy in the sys-
tem without regard to inner limitations both overproduc-
tion and underproduction (compared to the original sys-
tem) is made possible. In the upper picture of figure 3 the
Composite model is able to maximize production during
hour 4 even though the original system clearly can not do
this. What has happened is that at least one of the reser-
voirs in the original system does not have enough water
to maximize production the last three hours, but obviously
there is still enough energy left in the total system for the
Composite model to produce at maximum capacity. In
the middle picture of figure 3, we see that the Composite
model do not produce during hour 4 while the original sys-
tem does. Somewhere a reservoir is full, or will be full if
the plant does not produce, but the Composite model does
not recognize this fact because the total system is not yet
full.

The comparison between the two-station model and
the Composite model can be further illustrated by the fol-
lowing data:

• Setup 1

- u = (316 287), x = (300 484)

- average power production for original system
78.2 MWh/h

- average error of power production for two-
station equivalent2.88 MWh/h
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- average error of power production for Com-
posite model7.36 MWh/h

• Setup 2

- u = (317 294), x = (312 417)
- average power production for original system

78.2 MWh/h

- average error of power production for two-
station equivalent3.19 MWh/h

- average error of power production for Com-
posite model7.36 MWh/h

The results seem promising, using the Composite
model results in errors more than twice as large as using
the two-station equivalent for these spot prices.

6 Example with variable γ and starting water levels
in reservoirs

So far, the second station in the equivalent has been
made to represent the second and third station in the orig-
inal system (in terms of water inflow, amount of water at
startup and production equivalent). The amount of water
in reservoir two and three have been transferred to the sec-
ond reservoir in the equivalent. This means that the second
reservoir tend to be rather large. Also, only the production
equivalent of the second station,γnew, has been modified.
This means that station two has a large amount of water in
its reservoir at the start of the planning period it is also able
to produce more energy because of the higher production
equivalent.

This inflexibility of the two-station equivalent may re-
duce the achievable accuracy of it. For example, maybe
better results could be obtained if some of the starting wa-
ter in the second reservoir could be in the first or the other
way round. Or, maybe the upper plant which tends to have
a smaller reservoir should have most of the energy produc-
tion capabilities. Because of these questions, in this exam-
ple γi for both virtual plants as well as the starting water
levels in the reservoirs are considered as variables.γ, or
the production equivalents of the plants, combined with
theu decides how much the individual plants in the two-
station equivalent can produce. The starting water levels,
besides redistributing energy within the system, sets the
minimum level thatx can take since they must be able to
hold the starting water level.

The demand that the energy at start is preserved re-
mains. So does the demand that the energy production
when both virtual plants function as run of the river plants
is the same as for the original system. This gives rise to
the following equations:

TE = (γ1 + γ2 + γ3)x11 + (γ2 + γ3)x21 + γ3x31

EP = γ1flow1 + γ2flow2 + γ3flow3

γ̃ = β, 0 ≤ β ≤ 1,
γ̂ = (EP − γ̃f low2)/flow1

x̂1 = TEα/(γ̂ + γ̃)
x̃1 = (TE(1− α))/γ̃, 0 ≤ α ≤ 1

(9)

TE is the total energy in the original system at the
start. If α percent of this energy is placed in the up-
per reservoir at the beginning,x̂1, then(1 − α)TE must
be placed in the lower reservoir to preserve energy. In
terms of amounts of water this becomesTEα/(γ̂ + γ̃)
and(TE(1 − α))/γ̃. EP is the energy production of the
original system when used as a run of the river system.
If γ̃ = β is the production equivalent at the lower site,
then the production equivalent at the upper site,γ̂, must
be γ̂ = (EP − γ̃f low2)/flow1. Else, the condition that
the run of the river production should be the same as for
the original system would not hold.

To see if what gains could be made from alteringα and
β the setups found in the section 5 were used. Although,
ideally, one would like to make iterations inα- and β-
space part of the program this proved too complicated be-
cause of the increased degrees of freedom. Thereforeβ
andα were here altered manually.

The setups from the previous section were used as
starting points for iteration with a slight alteration inβ
or α. If the program terminated with a lower value of the
error than before the alteration, another step in thisβ- or
α-space was taken with the new setup (values foru andx)
as a starting point for the program. This approach resulted
in new setups with more accurate production. The results
became:

• Setup 1

– before

- u = (316 287), x = (300 484)
- average power production for original

system78.2 MWh/h

- average error of power production for
two-station equivalent2.88 MWh/h

- average error of power production for
Composite model7.36 MWh/h

– after

- u = (352 268), x = (396 353), α =
0.986, β = 0.400

- average power production for original
system78.2 MWh/h

- average error of power production for
two-station equivalent1.55 MWh/h

- average error of power production for
Composite model7.36 MWh/h

• Setup 2

– before

- u = (317 294), x = (312 417)
- average power production for original

system78.2 MWh/h

- average error of power production for
two-station equivalent3.19 MWh/h
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- average error of power production for
Composite model7.36 MWh/h

– after

- u = (300 289), x = (422 609), α =
0.687, β = 0.228

- average power production for original
system78.2 MWh/h

- average error of power production for
two-station equivalent1.14 MWh/h

- average error of power production for
Composite model7.36 MWh/h

The average error of the power production of the two-
station equivalent have been greatly reduced in both in-
stances. With the first setup as starting point, a setup with
46% less error has been found by alteringα andβ. The
reduction in error is even greater with the second setup,
where the error has decreased by64%.

7 Example with larger systems

The publication Hydro Power in Sweden [8]
contains all the necessary data about hydro power plants
in Swedish river systems, for actual river systems to be
used in this paper. Three river systems were chosen for
this test. Only parts of the rivers, which starts at outflow
into the sea and ends at the point where the river breaks
up into two several different flows, are used. This means
that no case when a plant is linked to two or more plants
directly, is considered. The simulated hydro power sta-
tions used, are from the following rivers:Ångerman̈alven,
Skelleftëalv andIndals̈alven.

These systems all had plants, which reservoirs could
be filled during a 24-hour period if no power were pro-
duced, which meant that there were bottlenecks in the sys-
tems. The size of the systems varies in size from4 to 11
stations. The number of hours in the planning period was
extended to 24.

Three different reduced models for the systems were
used, the Composite model, the two-station model of the
Composite model and the two-station equivalent. The
separation into upper and lower station for the two-station
Composite model were at the same point as for the two-
station equivalent. The reason for the use of the two-
station Composite model was to not overestimate the value
of the two-station equivalent. The results became:

River Case Composite model 2-station
1-station 2-stations equivalent

Indal 1 139 126 80.3
Indal 2 84.7 84.7 37.6
Skell 1 21.7 20.3 9.4
Skell 2 27.2 25.8 12.2
Ånger 1 42.7 17.6 13.3
Ånger 2 61.6 22.5 13.5

Table 1: Average error for 6 cases with 5 test scenarios each (MWh/h)

As shown in the table the best results, i.e. the lowest
difference between the schedule obtained with the orig-

inal model and the reduced model, is obtained with the
two-station equivalent.

8 Conclusions

There is always a trade-off between the accuracy of a
model ant the simulation time for a routine that uses the
model. This paper has presented a new method for how
to obtain a reduced model of a hydro power system. The
reduced model is in the form of a two-station equivalent.
The aim of the equivalent is to mimic a schedule for the
original system but with less computational effort.

With an equivalent the computation time of the opti-
mization can be significantly reduced. This conclusion is
not based on time comparison since the written code is not
optimized. But since a reduced model implies fewer con-
straints and fewer variables (e.g. in a two station equiva-
lent for an eleven station river), the solution time will be
significantly decreased.

The tests performed shows that the two-station equiva-
lent gives better schedules than the commonly used Com-
posite model.
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