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Abstract – In this paper, a new approach for the opti-

mal scheduling of cogeneration systems is presented. Co-
generation plants deal with the simultaneous production of 
heat and electricity, leading to a better global efficiency of 
energy systems and a decrease in polluting emissions. 
Nevertheless, complexity of such plants can be a serious 
disadvantage. Thus, the short term optimization of these 
systems has become a crucial point for Energy Industries. 
The initial issue is a huge, non linear mixed integer pro-
gramming problem. Due to high computation times, a 
meta-heuristic based method has to be used to compute a 
very often suitable solution. A new approach is presented 
here. The main idea is to reformulate the global problem, 
to obtain a well suited model for which the exact solution 
remains tractable. Considering heat and electricity de-
mands, the optimization problem is divided into smaller 
ones, allowing the use of exact mixed integer methods. In 
order to have reasonable computation times, the problem 
is reformulated in a linear frame with the help of extra 
variables. The approach is tested on a benchmark cogene-
ration system designed by ‘Electricité de France’. Results 
show that a very convenient solution can be computed, 
with low computation times. 

Keywords: Cogeneration, Short term scheduling, 
Reformulation, Mixed integer programming 

1 INTRODUCTION 
Short term optimal scheduling of power systems has 

appeared to be of great interest for Energy Industries. It 
can be explained by the following motives. First, energy 
markets are more and more open and competitive: each 
producer has to find a convenient and coordinated man-
agement of its production units, so as to produce with 
the lowest costs and/or to earn the maximum income. 
Secondly, new technologies have been developed (co-
generation, load predictors, energy storage tanks…), 
which potentially allow a better management of power 
systems. Finally, environmental laws compel producers 
to decrease polluting emissions. It can also be achieved 
with a suitable management of production sites. 

In such a technical, economical and environmental 
context, the short term scheduling of cogeneration 
plants has emerged as a crucial point for Energy Indus-
tries. Due to high global efficiencies of such production 
sites, it is possible to produce electric and thermal 
power with lower costs. High efficiencies lead also to a 

decrease in fuel consumption and so in polluting emis-
sions. 

The short term optimization of cogeneration systems 
is a mixed integer programming problem, similar to the 
classical “Unit Commitment” problem. Integer variables 
refer to the on/off status of production units during the 
temporal horizon. Real variables are the amounts of 
energy they produce. The main difficulty is the number 
of binary optimization variables in the global problem, 
which leads to the highly intractability of the exact full 
problem. 

Many methods have already been applied to get a 
suitable solution to the “Unit Commitment” problem. 
For example, they are listed in [1]. The exact methods 
such as extensive enumeration, priority list, exact mixed 
integer programming ([2]) or dynamic programming 
([3]) suffer from the curse of combinatory complexity. 
It is also very difficult to take into account temporal 
constraints such as minimum time up and minimum 
time down constraints. A classical method to deal with 
this question is Lagrangian relaxation. This method is 
well depicted and successfully applied in [4] and [5]. 
Nevertheless, the minimization of production costs is 
obtained via the maximization of the dual optimization 
problem. Because of integer variables, the objective 
function of the optimization problem is non convex, and 
no guarantee can be given for the duality gap, and so for 
the actual quality of the solution. 

For tractability purposes, stochastic methods have 
also been applied. For example, genetic algorithms ([6]) 
or simulated annealing ([7]) are used to solve the “Unit 
Commitment” issue. With such methods, computation 
times can become relatively low, but there is no guaran-
tee on the optimum quality. Furthermore, as tentative 
solutions are randomly tried, tests have to be made to 
provide the feasibility of the solution. 

In this paper, a new approach is presented. The main 
idea is to use a priori knowledge of the system to get an 
efficient reformulation of the initial optimization prob-
lem. Thus, instead of looking for an approximate solu-
tion of the initial optimization problem, an approximate 
problem is established for which the computation of the 
exact solution remains tractable. Thus, to validate opti-
mization results, it is no use checking the algorithm 
behavior anymore. 
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Figure 1:  Schematic picture of a cogeneration system 

The validation can be made through the validation of 
the approximate model, which can be done from a priori 
knowledge and physical comments about the system.  

This strategy can be summarized as follows. Consid-
ering the spatial partition (electric/thermal) of cogenera-
tion systems, the optimization problem is first divided 
into smaller ones. Using suited reformulation, estima-
tions of parts of the objective function, and extra vari-
ables, costs and temporal constraints (such as minimum 
time down/time up) can be expressed in a linear frame. 
Thus, each sub problem is a linear mixed integer pro-
gramming problem, with few integer variables (com-
pared with the initial problem), which can be quickly 
and exactly solved with an exact mixed integer pro-
gramming method (“Branch and Bound” for example). 

The proposed optimization strategy is fully presented 
in section 2. This strategy has been tested on a bench-
mark example designed by ‘Electricité de France’. This 
case study is depicted in section 3. Numerical results are 
then given in section 4. They show that a convenient 
solution can be computed by the proposed optimization 
strategy with very low computation times compared 
with the size of the optimization problem. A discussion 
about the advantages and drawbacks of the method is 
the core of section 5. Finally, conclusions are drawn in 
section 6. 

2 OPTIMIZATION STRATEGY 

2.1 Nomenclature 
The following notations will be used in this paper: 
• N: length of the temporal horizon (hours). 
• n (superscript) : time interval [n-1,n]. 
• Q: thermal power. 
• P: electric power. 
• B: number of steam boilers. 
• T: number of turbo alternators. 
• n

elc : price of sold electricity. 
• n

ku : on/off status of production unit k. 
• n

SBb
m : steam mass flow produced by steam boiler b.  

• n
TAt

m : steam mass flow through turbo alternator t. 

2.2 Initial optimization problem 
A schematic picture of a cogeneration system is 

drawn on figure 1. Steam boilers are brought together in 
a primary network, labeled “Q level”. This level is made 
of heat-only units. A part of the produced thermal 
power is given to the “P level” where the electric power 
is produced and then sold to the electric network. 

The initial optimization problem can be stated as the 
minimization of production costs: 
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In this objective function, 
• ( )n

SB
n
SB

prod
SB bbb

umc ,  is the thermal production cost of 
steam boiler b. 
• ( )1/ , −n

SB
n
SB

offon
SB bbb

uuc  is the start up and shut down cost 
of steam boiler b. 
• ( )n

TA
n
TA

prod
TA ttt

umc ,  is the electrical production cost of 
turbo alternator t. 
• ( )1/ , −n

TA
n
TA

offon
TA ttt

uuc  is the start up and shut down cost 
of turbo alternator t. 
• ( )n

TA
n
TA

prod
TA ttt

umP ,  is the electric power produced by 
turbo alternator t. 

Optimization problem constraints are: 
• Capacity constraints of production units, which can 
be expressed for unit k as: 
 

maxmin
k

n
k

n
kk

n
k mummu ≤≤  (2) 

 
• Minimum time up and time down constraints of 
production units. 
• Network constraints (steam balance), as steam 
boilers and turbo alternators are brought together in 
primary networks. 
• Satisfaction of heat demand (and in some cases of 
electricity demand): 
 

n
dem

n
s mm ≥  (3) 

 
 The initial optimization problem is a mixed integer 

programming one. The objective function is non linear 
(start up costs for example), and so are some of the 
constraints (minimum time up/time down constraints for 
instance). Furthermore, there are numerous binary vari-
ables: N(B+T). For tractability purposes, this optimiza-
tion problem has to be reformulated and divided up. 

2.3 Physical partition 
Cogeneration systems management is highly influ-

enced by the price of sold electricity: “Q level” has first 
to satisfy the heat demand of the steam network ms, but 

Q level 

P level 

… 
SB1 SB2 SBB 

To steam 
network 

To electric network 

… 
TA1 TA2 TAT 

ms 

P 

PQm →  

SB : Steam Boiler 
TA : Turbo  

Alternator
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if the price of electricity is sufficiently high, it is eco-
nomically interesting to produce more steam so as to 
produce electricity. This is the extra mass flow, feeding 
“P level” PQm → . 

Considering this physical partition, the initial optimi-
zation problem (1) is divided into 2 optimization prob-
lems: electricity production and steam production. 

To solve the electricity production problem, it is nec-
essary to have an estimated function prod

Qĉ of thermal 
production costs (“Q level”). Thus, the first problem, 
electricity production, can be stated as the following 
optimization problem: 
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The constraints of this first problem are: 
• Minimum time up and time down constraints of 
turbo alternators. 
• Network constraints in “P level”. 
• Satisfaction of heat demand (and in some cases of 
electricity demand). 
 

n
PQ

n
demQ mmm →+≥max  (5) 

 
Where max

Qm  is the maximum steam mass flow which 
can be produced by “Q level”.  

The second optimization problem, steam production, 
is a classical “Unit Commitment” problem: 
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The following constraints have to be satisfied: 
• Time up/time down constraints of steam boilers. 
• Network constraints in “Q level”. 
• Satisfaction of heat demand: n

PQ
n
dem mm →+ .  

After solution of both optimization problems, the 
“Unit Commitment” is stored, and the “Economic Dis-
patch” of the whole problem is solved again. This can 
be done quickly as there is no binary variable anymore. 

2.4  Optimization method 
To solve electricity and steam production an exact 

mixed integer programming method is used: “Branch 
and Bound” (see [2] for instance). Nevertheless, for 
tractability purposes, it is necessary to have a linear 
frame for optimization problems. The linear construc-
tion of the model is depicted in section 2.5. 

2.5 Model for optimization 
Electricity and steam production problems are quite 

similar. As mentioned above, it is necessary to have a 

linear model of the optimization problem so as to have 
low computation times. That is why production costs 
are assumed to be linearly expressed: 
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Start up costs can be expressed for unit k by the 

quadratic expression: 
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Extra binary optimization variables are added: 
 

( )11 −−= n
k

n
k

n
k uuδ  (9) 

 
Note that these binary variables can also be ex-

pressed with the following linear inequalities: 
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Similarly, shut down costs can be reformulated with 

extra binary variables defined by: 
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Time up and time down constraints can also be line-

arly reformulated, using variables k
nδ and k

nε : 
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Note that the number of binary variables has been mul-
tiplied by 3, which could be quite a disadvantage for the 
linear model. However, equations (10) and (11) show 
that k

nδ and k
nε  variables are automatically assigned to 

binary values when k
nu  variables have binary values. 

Thus, this property can be used to fight against combi-
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natory complexity, using a suited programming of 
“Branch and Bound” method.  

So, the optimization problem (4) can equivalently be 
stated as: 
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And the optimization problem (6) is: 
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Finally, the developed optimization strategy can be 

summed up by figure 2. Reformulations have been done 
for step ② and ③ for tractability purposes. 

3 CASE STUDY 
The optimization strategy is tested on a benchmark 

cogeneration system, depicted on figure 3. This is a part 
of a district heating network which has been completely 
defined, modeled and simulated in [8]. 

To illustrate the versatility of the developed method, 
this cogeneration system is a little bit more complicated 
than the generic system depicted on figure 1: 

• A third kind of unit is present: “cogen unit”. This 
unit produces both steam and electricity. It can be 
viewed as an alternator and a steam boiler in series. 
• There are two thermal demands: one for an indus-
trial consumer, n

demcm , , and one for a district heating 
network n

demdhm , . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2:  Optimization strategy 

3.1 Estimated objective functions 
In order to separate electric and thermal parts of the 

system, it is necessary to compute 2 estimated cost 
functions: one for the block (SB1, SB2), and one for the 
block (SB3, SB4).  

In this study, it has been decided to use a static char-
acteristic for these estimated functions. For instance, for 
(SB1, SB2), the estimated cost function can be computed 
as the real optimization problem: 
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Constraints are capacity constraints, and the follow-

ing equation: 
 

mmm SBSB =+
21

 (17)  
 
Note that dynamic aspects such as start up and shut 

down costs and time up and time down constraints are 
not taken into account in this estimation. 

In practice, these functions can only be computed for 
few values. They are then approximated by a linear 
expression (for tractability of electricity optimization), 
using a least square method. Thus, 
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3.2 Optimization of electricity production 
With the help of these estimated functions, the opti-

mization of electricity production can be expressed by 
the following equation: 

 

 
Figure 3:  Benchmark cogeneration system. 

Optimize “Q level”  
Equation (15) 

Compute global estimated 
cost function of “Q level” 

Optimize “P level”  
Equation (14) 

Solve “Economic  
Dispatch” 

① 
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③ 

④ 

To electric 
network 

SB1 SB2 

SB3 SB4 

PRV1 

PRV2 

Cog 

TA1 TA2 TA3 

TA4 TA5 TA6 

To heat exchanger  
(district heating network) 

To industrial 
consumer 

(50b, 425°) 

(20b, 215°) 

Condenser  

(10b, 190°) 

SB: Steam Boiler 
TA: Turbo Alternator 
Cog: Cogen unit 
PRV : Pressure Reducing Valve 
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 The constraints for the electric part are: 
• Capacity constraints (equation (2)). 
• Minimum time up/time down constraints. 
• Network constraints: 
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• Satisfaction of industrial and district heating net-
work demands: 
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Reformulations depicted in section 2.5 are used to 

obtain a linear model, for which exact solution remains 
tractable. The cogeneration system may have to satisfy 
an exact electricity demand n

demP instead of maximizing 
the income earned by electricity selling. If so, the fol-
lowing set of constraints is added: 
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For a long time horizon ( )12≥N it may be necessary 

to divide it into smaller time intervals so as to keep 
reasonable computation times. 

3.3 Optimization of heat production 
As there are two heat demands, 2 optimization prob-

lems have to be solved. SB1 and SB2 have to satisfy 
demand n

demm 1, and SB3 and SB4 demand n
demm 2, : 
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Note that these heat demands can be satisfied since 
constraints (21) have already been taken into account in 
the optimization of electricity production. For instance, 
for steam boilers 1 and 2, the problem can be stated as: 
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Optimization problems are then reformulated as ex-

plained in section 2.5. Linear mixed integer program-
ming problems are obtained and exactly solved with a 
“Branch and Bound” method.  

3.4 Economic Dispatch 
Step ④ of the optimization strategy is the “Economic 

Dispatch” solution. Note that this last optimization 
problem has no binary variable anymore. Thus, it is 
possible to use the initial model (without reformulations 
and estimations of section 2) to compute real variables. 
The computation is achieved with a classical gradient 
optimization method. 

3.5 Overall optimization 
Each stage of optimization generates an optimal solu-

tion for that stage only. After 4 steps of optimization 
there is no guarantee that the solution is optimal for the 
overall problem. Thus, a fifth step is added: the previ-
ous solution is the initial point of a discrete descent 
method which is performed for the overall problem. 
This leads to a local minimum of the optimization prob-
lem. Finally, the cost of the solution slightly decreases. 

4 NUMERICAL RESULTS 
To illustrate the quality of optimization results, a 

complete example of solution is presented in this sec-
tion. The industrial steam demand and the district heat-
ing network one are depicted on figure 4. The price of 
electricity is constant: 40=n

elc €/MWh. This price cor-
responds to the current French situation from November 
the 1st to March the 31st. 

 

 
Figure 4:  Industrial and district heating network demands. 
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Figure 5:  Optimization results. a) Steam mass flow (”Cogen unit” and PRV1). b) Produced steam (SB1 and SB2). c) Produced 
electricity (TA1, TA2, TA3). d) Produced Steam (SB3, SB4 and PRV2). 

The time horizon is N=24 hours. At the initial state, 
all steam boilers are switched on. Steam boilers 1, 2 and 
3 are compelled to be switched on at final time, whereas 
steam boiler 4 has to be switched off. Computation 
times are about 190 seconds (Pentium IV, 2.5 GHz). 
Note that time horizon has been divided for the electric 
optimization part. Computation times are rather good: 
the initial optimization problem is a non linear mixed 
integer programming problem made of 24*11=264 
integer variables and 24*13=312 real variables. 

Optimization results are drawn on figure 5. Results 
appear to be physically coherent. Indeed, a good work-
ing order of the cogeneration system is observed. On 
the first level (SB1, SB2 and “Cogen unit”) the “Cogen 
unit” always produces at its highest rate (figure 5a): this 
unit has the best efficiency of all steam production 
units. SB1 is more profitable than SB2. Thus, it is used 
at its maximum rate when needed. It is not the case 
from hour 8 to hour 17: because of start up and shut 
down costs, it is more profitable to keep SB2 switched 
on, and to decrease SB1 production when less steam is 
needed (see figure 4). The produced steam feeds the 
industrial consumer and the second level (TA1, TA2, 
TA3 and PRV1). 

On the second level, TA1 has the best efficiency and 
TA3 the worst, which can explain figure 5c. The steam 
mass flow going from level 1 to level 2 goes either 

through TA2 or PRV1: due to working costs of turbo 
alternators, the use of turbo alternator (TA2 in this case) 
is not profitable if steam mass flow is too low. Electric 
production of TA4, TA5, and TA6 is zero. Indeed, as the 
price of electricity is too low, it is more profitable to use 
the steam going from level 2 to satisfy district heating 
network demand: less steam will have to be produced 
by SB3 and SB4. This demand is completely fed by 
steam mass flow in PRV2: due to electricity power sell-
ing, production costs of level 1 are lower than produc-
tion costs of SB3 and SB4. However these 2 steam boil-
ers remain switched on, and work at their minimum 
rate, because of start up and shut down costs. 

Several scenarios have also been tested, leading to 
coherent behavior of optimization results. For instance, 
for a nil price of electricity, all turbo alternators are 
switched off. Industrial demand is satisfied by SB1 and 
SB2, and district demand is satisfied by SB3 and SB4. 
For high prices of electricity, all turbo alternators work 
at their maximum rate.  

5 DISCUSSION 

5.1 Polluting emissions 
The use of cogeneration systems can be profitable in 

terms of polluting emissions because of the high global 
efficiency of production sites. Polluting emissions can 

a) b) 

c) d) 
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of course be explicitly taken into account by additional 
constraints. For instance, for NOx emissions the follow-
ing set of constraints can be added:  
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5.2 Generalization 
The proposed method is quite versatile and can be 

applied to various kinds of cogeneration systems. When 
the number of production units becomes high, cogene-
ration systems may have to be agglomerated in smaller 
systems so as to apply the strategy. In the case study 
(see section 3), the “Cogen unit” can be viewed as a 
secondary network of production units. Those produc-
tion units are agglomerated together, and a global esti-
mated function is computed ( )( )n

Cog
n
Cog

prod
Cog umc , . Thus, 

for a given cogeneration system, a relevant modeling 
has to be defined, based on physical partition and a 
priori knowledge of the system. 

5.3 Two level optimization approach 
The proposed method can be applied for generic co-

generation systems. However, it is strongly dependent 
on the quality of global estimated functions of agglom-
erated subsystems. The establishment of such functions 
is a hard task: one may have to estimate the generic 
solution of partial “Unit Commitment” problems. 

In step ③ of the proposed strategy, subsystems are 
exactly solved. Thus, it is possible to check the quality 
of estimated functions and to validate the solution. If 
those exact solutions lead to production costs which are 
quite different from estimated costs, the optimization 
problem may be solved again with an updated estimated 
objective functions. This strategy could be viewed as a 
two level optimization approach, which is one of the 
forthcoming works of this study. 

6 CONCLUSION 
Cogeneration systems can be of great interest for en-

ergy Industries: global high efficiencies lead to eco-
nomical and environmental benefits. However, the op-
timization of such systems is a tough problem, since it is 
a huge and non linear mixed integer programming issue, 
for which exact solution is highly intractable. 

In this paper, a new method to optimize cogeneration 
systems has been presented. Instead of looking for an 
approximate optimization method, physical partition 
and reformulations are used to divide the initial problem 
into smaller ones for which exact solution can be 
achieved with very low computation times. The advan-
tage of this approach is that the validation of the solu-
tion is not made with a fine analysis of optimization 
algorithms anymore. It is made with the help of produc-
ers’ expertness: the ways they manage their production 
sites are guiding principles for the partition procedure. 

The partition is mainly achieved with a division into 
electric and thermal production parts, as the economical 
management of cogeneration systems is principally 

based on the price of electricity. However, it may be 
useful to go on the partition and agglomerate some of 
production units to keep small optimization problems.  

Algebraic reformulations are made to obtain linear 
optimization problems (objective functions and con-
straints). They lead to the possibility of exact solution of 
mixed integer programming problems. The method is 
also based on estimated objective functions. The estab-
lishment of such functions is the main difficulty of the 
proposed strategy and has been discussed in this paper. 

Finally very low computation times are observed. 
The quality of the solution can be checked with the help 
of physical and economical reasoning for academic 
cases (constant values of electricity price). 
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