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Abstract - In many pool-based electricity markets two
types of generating companies coexist, namely price-taking
and leader companies. In this context, the optimal bidding
of a leader company, and consequently the market clearing
price, is mainly determined by its residual demand curve,
which can be modeled in different ways. In this work, three
different residual demand curves have been adopted to sim-
ulate the optimal strategy of an oligopolistic company. The
influence of these models on the gap between the expected
and actual market prices, as well as on the resulting leader
company profit is analyzed.

Keywords - competitive electricity markets, nonlinear
programming, residual demand.

1 INTRODUCTION

IN oligopolistic markets one or very few generating
companies have the ability to manipulate the market-

clearing prices. For this purpose, they resort to the
so-called residual demand curves, relating the market-
clearing price, for a given hour, with their own power
production [1]. A generating company exercises market
power when it reduces its output or raises the price at
which it is willing to sell its energy in order to change
the market-clearing price. Different models have been
adopted to materialize this kind of curves, such as: Tay-
lor series expansion [2], piecewise-linear approximation
[3, 4] and multi-step curves [1]. However, as those curves
are necessarily built from incomplete and aggregated in-
formation, where relevant individual constraints affecting
market agents are ignored, there will always exist a gap
between the optimal prices expected by the leader com-
pany and actual market-clearing prices determined by the
market operator on the basis of all bids submitted to the
pool. The motivation for this work is to show how the
model adopted to represent the residual demand curves in-
fluences the market-clearing prices, when the leader com-
pany is willing to exercise its market power.

The reminder of the paper is organized as follows,
Section 2 summarizes the mathematical model used to
simulated the leader generating company, presented as a
non-linear optimization problem, and the Market Oper-
ator problem, presented as a complex auction optimiza-
tion problem based on net social profit. Section 3 shows
the methodology used to compare the optimal prices and
the market-clearing prices. In Section 4 a numerical test
and the results obtained are presented. Finally, Section 5
presents several conclusion derived from this work.

2 OPTIMIZATION MODELS

In this section, the optimization problems respectively
faced by the leader generating company and market oper-
ator are briefly summarized.

2.1 Leader Generating Company Model

The profit function is defined as the total company in-
come minus the total costs. The goal is then to determine
the production that maximizes the total benefit

max
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where λh(φh) represents the residual demand function,φh

is the total energy produced at hour h, nj represents the
number of generating units belonging to the leader com-
pany,CP h

j is the variable production cost of unit j at hour
h, CUj and CSj are the start-up and shut-down costs of
unit j, respectively. Finally, ah

j and sh
j are binary variables

which are null if unit j is not starting up or shutting down
at the beginning of hour h, respectively.

Apart from the expressions characterizing the residual
demand curves, the above maximization problem is sub-
ject to a set of constraints, which can be defined in terms
of piecewise-linear equations [5][1]:

• Total generation, φh, is the sum of individual pro-
ductions,

φh =

nj
∑

j=1

P h
j (2)

where P h
j is the average output of unit j at hour h.

• Upper and lower generation limits for each unit,

Pm
j · xh

j ≤ P h
j ≤ PM

j · xh
j (3)

where Pm
j and PM

j are the minimum and maximum
power output of unit j, and xh

j is binary variable
which is null if unit j is not committed at hour h.

• Logical relationships among status changes,

xh
j − xh−1

j = ah
j − sh

j (4)

ah
j + sh

j ≤ 1 (5)
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• Maximum up and down ramps,

−RDj ≤ Pj,h − Pj,h−1 ≤ RU j (6)

where RUj and RDj are the ramp-up and ramp-
down limit of unit j, respectively.

• Variable production cost,

Cph
j (P h

j ) = fcj · x
h
j +

nc
∑

k=1

mj,k · σh
j,k (7)

P h
j = Pm

j · xh
j +
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∑
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σh
j,k (8)

0 ≤ σh
j,k ≤ pmax

j,k (9)

where Cph
j (P h

j ) is the piecewise linear cost func-
tion of unit j at hour h, fcj is the fixed cost of
unit j, nc represents the number of segments of
the piecewise linear cost function, σh

j,k is a positive
variable that represents the power of segment k at
hour h, mj,k represents the slope of the segment k,
and pmax

j,k is the upper limit of segment k of the cost
function of unit j.

• Hydraulic power output versus water discharge,

P h
j (Qh

j ) = Pm
j xh

j +
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mqj,l · α
h
j,l (10)
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where P h
j (Qh

j ) is the piecewise linear output func-
tion of hydro unit j at hour h, Qh

j is the water dis-
charge, qm

j is the minimum water discharge, nl rep-
resents the number of segments of the piecewise lin-
ear output function, αh

j,l is a positive variable that
represents the water discharge of segment l at hour
h, mcj,l is the slope of the segment l of the piece-
wise linear function, and qmax

j,l is the upper limit of
segment l of the piecewise linear output function of
hydro plant j.

• Reservoir spill-out as a function of the reservoir vol-
ume,

Sh
j (V h

j ) =
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∑
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msj,m · ψh
j,m (13)
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where Sh
j (V h

j ) is the piecewise linear spill function
of reservoir j at hour h, V h

j is the water volume of
reservoir j at the end of hour h, msj,m is the slope
of the segment m of the piecewise linear spill func-
tion, ψh

j,m is a positive variable that represents the

spillage rate of segmentm, and vmax
j,m represents the

upper limit of segment v of the piecewise linear spill
function of reservoir j.

• Water dynamic balance with travel delay,

V h
j = V h−1

j + rh
j +Q

h−τj

j−1
+

+S
h−τj

j−1
−Qh

j − Sh
j (16)

V m
j ≤ V h

j ≤ V M
j (17)

where rh
j in the net inflow to the reservoir j during

hour h, τj is the water delay time in hours between
reservoir j and the next reservoir downstream, V m

j

and V M
j are the minimum and maximum reservoir

volumen limits, respectively.

The above nonlinear maximization problem is solved
using the commercial package DICOPT [7] under
GAMS [8].

2.2 Market Operator Model

In a market where network losses and constraints can
be neglected, the market price is determined by maximiz-
ing the total surplus of generators and consumers. The
objective function is defined as

max
ϕ,δ
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where J is the set of generating units, I is the set of con-
sumers, D is the set of energy blocks offered by con-
sumers, B is the set of energy blocks offered by produc-
ers, ϕh

i,d is the amount of energy corresponding to block
d of consumer i at hour h, PCh

i,d is the associated energy
price, δh

j,b is the amount of energy corresponding to block
b of producer j at hour h and PGh

j,b is the corresponding
energy price.

The objective function is subject to the following con-
straints (h = 1, . . . , 24) [6]:

• At any time, the total energy sold has to be equal to
the total energy bought. Also, each block of cleared
energy must not exceed the amount of energy of-
fered by each producer or consumer for that block.

∑

i∈I

∑

d∈D

ϕh
i,d =

∑

j∈J

∑

b∈B

δh
j,b (19)

ϕh
i,d ≤ Qchi,d (20)

δh
i,d ≤ Qgh

i,d (21)

where Qci,h,d is the energy that consumer i is will-
ing to buy at hour h of block d, and Qgj,h,b is the
energy that unit j is willing to produce at hour h of
block b.
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• Upper and lower limits for each unit and consumer,

Pm
j · xh

j ≤ P h
j =

B
∑

b=1

δh
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j (22)

Cm
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where Pj,h is the energy of unit j at hourh, andCi,h

is the energy served to consumer j at hour h.

• Logical relationships among status changes of units,

xh
j − xh−1

j = ah
j − sh

j (24)

ah
j + sh

j ≤ 1 (25)

where ah
j , and sh

j are binary variables which are
equal to one if unit j is started-up or shut-down at
the beginning of hour h, respectively.

• Maximum up and down ramps of units,

−RDj ≤ Pj,h − Pj,h−1 ≤ RU j (26)

where RUj and RDj are the ramp-up and ramp-
down limit of unit j, respectively.

The above optimization problem has been imple-
mented and solved by the linear programming solver
CPLEX [9], under GAMS commercial software [8].

3 ASSESSMENT METHODOLOGY

In this section, the methodology adopted to assess
the differences between the optimal price and the market-
clearing price is described. The optimal price is defined as
the price determined by the leader company when it solves
its own optimization problem, assuming the remaining
agents are not able to exercise market power. The market-
clearing price, on the other hand, represents the pool price
obtained through the auction mechanism, when the leader
company has submitted its strategic bid to exercise mar-
ket power. It is assumed, like in the Spanish pool, that all
agents pay/get the same price for the cleared energy they
demand/offer, irrespective of their own bids for each block
energy.

Figure 1 shows a flow diagram representing the major
steps involved in the comparison process. The informa-
tion about the rivals’ bidding curves and the aggregated
demand are assumed to be known. Consequently, it is
possible to obtain the residual demand curves of the leader
company for each hour of the bidding period. The residual
demand is obtained as the difference between the aggre-
gated demand and the rivals’ bidding curves for each level
of prices.

Figure 1: Methodology adopted to compare optimal and market-clearing
prices.

Obtaining in practice the residual demand model for a
given hour is an involved stochastic process which, based
on historical data, leads to a set of sample points. In order
to use this information within a deterministic optimization
problem, the set of points is replaced or approximated by a
certain analytical function. Usually, in simulation environ-
ments, we come up with a step-wise curve, whose step size
is related to the energy block sizes, but this does not mean
that the step-wise model is the true or best substitute in
real life for the original cloud of points. The oligopolistic
company will be interested in using the model for which
the resulting market prices better match its expectations.

In order to find the optimal price and the optimal
amount of energy that the leader company has to offer at
each period, the daily benefit function described in Sec-
tion 2.1 is maximized, where residual demand curves play
a critical role. To exercise its potential market power the
leader company must establish the prices for each of its
energy blocks, in accordance with the total quantity of en-
ergy determined previously in the optimization process.

Then, knowing all generators’ bids, including that of
the leader company, and the aggregated demand, the com-
plex auction algorithm described in Section 2.2 is used
to obtain the energy blocks assigned to each generating
unit. Afterwards, the market-clearing price, determined
by the most expensive block of accepted energy, is com-
pared with the optimal price, in order to assess the gap
between both prices.

Although both prices should be rather similar, it is ev-
ident that they will not be necessarily equal, as a conse-
quence of the different data handled by each optimization
model. While the market operator knows all of the details
associated with each individual bid, the leader company
must rely to a set of residual demand curves in which the
aggregated competitors’ information is somehow embed-
ded. In this regard, note that the residual demand curve for
a given hour is not coupled with those of previous or future
hours, whereas the detailed bids handled by the market op-
erator are usually coupled along the 24-hour period.
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4 CASE STUDY

The oligopolistic generation company simulated in
this work is composed of eight thermal units plus two
hydro plants, coupled by the same water stream, whose
power-water characteristics, water dynamics and spill out
behavior have been modeled as piece-wise linear func-
tions.
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Figure 2: Hourly demand for the simulated market.

A 24-hour period for a day-ahead auction market has
been considered. Figure 2 shows the total hourly demand
corresponding to the scenario simulated. For simplicity,
the demand is considered inelastic, which is equivalent to
replacing the first term in (18) by a constant value Dh. In
this study, the following residual demand curves have been
modeled: 1) second-degree polynomial approximation; 2)
piecewise linear approximation; 3) step-wise approxima-
tion. Such models are represented in Figure 3 for hour 21.
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Figure 3: Residual demand approximations for the same hour.

4.1 Polynomial approximation

In this case, the residual demand curve is expressed as

λh(φ) = αh
1 + αh

2φ
h + αh

3 (φh)2

where the respective coefficients are obtained by second-
order polynomial regression.

Figure 4 shows the optimal and market prices, along
with the hourly gap between both prices. The average er-
ror is 1.13%, the largest errors taking place at hours 4, 5
and 6, when the energy cleared is smaller.

One of the sources which can justify in part the result-
ing error lies in the fact that the market-clearing algorithm
takes into account the ramp limits of rival generating units,
which are ignored by the leader company. In order to ana-
lyze the influence of this factor, the experiment is repeated
after removing such constraints from the auction-based
algorithm. Figure 5 shows that, as expected, the error de-
creases during hours 4, 5, and 6, the average error for the
24-hour period being just 0.84%. This result suggests that
energy ramps, which do not explicitly appear in the aggre-
gated bidding curves of rival generating units, constitute
a crucial decision variable when formulating the optimal

bidding problem of a leader company. Ramp limits will
be considered in the sequel.
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Figure 4: Prices and error for the polynomial model with ramp con-
straints.
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Figure 5: Prices and error for the polynomial model without ramp con-
straints.

4.2 Piecewise linear approximation

In this case, the residual demand curves have been
approximated by a piecewise linear function comprising
eight segments.

The comparison between the optimal and market-
clearing prices is shown in Figure 6. Note that the market
prices are smaller than the expected optimal prices, except
for hours 4, 5, 15 and 19. The average error is this time
1.58%, the largest and smallest differences being 3.75%
and 0.059% at hours 10 and 4 respectively.

4.3 Step-wise model

Figure 7 shows the difference between the optimal and
market clearing prices when the residual demand curves
are represented by a multi-step model. Compared to pre-
vious models, it is apparent that the error is much larger
in this case at peak hours; in fact, it is null for the first
8 hours. The average error for the 24-hour period is
0.92%, compared to 1.13% for the polynomial regression
and 1.93% for the piecewise linear approximation.

Therefore, it can be concluded that the multi-step
model for residual demand curves provides a closer agree-
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ment between expected and resulting prices when the
leader company is interested in exercising its potential
market power. Accuracy of the piecewise linear approxi-
mation could be improved at the expense of increasing the
number of linear intervals.
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Figure 6: Prices and error for the piecewise linear model.
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Figure 7: Prices and error for the step-wise model.

4.4 Oligopolistic company profit and demand share

Even more important than the gap between the market
expected prices and the resulting prices are the noticeable
differences among the hourly prices of Figures 4, 6 and 7,
which may significantly affect the net income of all mar-
ket agents, in particular that of the leader company. This
is somewhat contrary to intuition, considering the minor
quantitative differences among the three models adopted
to represent the residual demand curves.

Table 1 compares the average market price, the total
amount paid by consumers, the fraction of the total energy
which is actually supplied by the leader company, as well
as its profit, for the three residual demand models adopted.
Note that the multi-step model yields both the largest daily
profit and the largest percentage of market share for the
leader company, whereas the piecewise linear model leads
to opposite results.

Such differences can be partly attributed to the com-
plexity and nonconvexity of the resulting optimization

problems, comprising many integer variables and nonlin-
ear constraints, which are hence prone to converge to dif-
ferent local optimum points. In this kind of applications,
the optimization tools employed behave like black boxes,
whose output is rather sensitive to minor model changes.

For comparison, the perfect market case, in which the
leader company does not exercise market power, is in-
cluded in the last row. It is worth noting that, in spite
of the leader company serving a larger portion of the total
load, its total profit is, as expected, much smaller in this
case as a consequence of the lower clearing prices.

Model Mean Demand Market Daily
price cost share profit

[Euros/MWh] [Euros] [Euros] [Euros]

Polynomial 27.93 1,678,390 57.65 420,964
Piecewise 28.13 1,690,913 56.66 419,242
Multi-Step 27.89 1,677,260 59.46 427,054

Perf. Market 25.39 1,531,484 71.64 336,538

Table 1: Average market-clearing price, cost to consumers, leader com-
pany’s market share and daily profit.

5 CONCLUSIONS

This paper analyzes the influence of the model adopted
to represent the residual demand curves of an oligopolis-
tic company, which is willing to exercise market power,
on the clearing prices of a day-ahead auction-based en-
ergy pool. First, the nonlinear mixed-integer optimiza-
tion problems respectively faced by the market operator
and the leader company are briefly reviewed. Then, three
residual demand curve models have been simulated to
compare the gap between optimal prices predicted by the
leader company and actual prices resulting from a com-
plex auction process. It is shown that energy ramps of ri-
val companies are partly responsible for these differences,
which are smaller when the multi-step model is adopted.
Finally, it is analyzed how such models affect the net profit
and market share of the leader company.
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