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Abstract – This paper presents a novel approach for 

power system dynamic voltage stability analysis based on 
the multi-input multi-output (MIMO) transfer function. 
The MIMO system is defined taking into account the criti-
cal nodal voltages as outputs and possible control variables 
as the input. Based on the modal analysis and singular 
value analysis, the dynamic voltage stability analysis is 
carried out. The proposed approach takes the advantages 
of the classical static voltage stability analysis and the 
modern multi-variable feedback control theory. The singu-
lar values and singular vectors are calculated for frequen-
cies corresponding to the critical system modes. The out-
put singular vectors provide an overview as to which out-
puts and thus which nodes are most affected by the voltage 
instability. Using the magnitudes of the input singular 
vectors the most suitable inputs for countermeasures can 
be selected. The proposed method is also applicable to very 
large systems. 

Keywords: Dynamic voltage stability, Singular 
value analysis, Modal analysis, Power system dynam-
ics, Dynamic voltage stability index, Multi-variable 
feedback control 

1 INTRODUCTION 
A large number of researches were performed in the 

area of voltage stability. Most of them treat the voltage 
stability problem with static analysis methods based on 
the study of the reduced (V-Q) Jacobian matrix, and by 
performing modal analysis [1-6]. Thus, the bus, branch 
and generator participation factors on the static voltage 
stability can be obtained. Moreover, the stability margin 
and the shortest distance to instability can also be de-
termined [6]. 

However, power system is a typical large dynamic 
system and its dynamic behavior has great influence on 
the voltage stability. The latest blackouts have shown 
that voltage stability is very closely associated with 
issues of frequency and angle stability [7,8]. Therefore, 
in order to get more realistic results it is necessary to 
take the full dynamic system model into account. Some 
researches have been performed on the dynamic voltage 
stability analysis [1,5,6,9]. The general structure of the 
system model used is similar to that for transient stabil-
ity analysis. The overall system equations comprise a 
set of first-order differential equations plus the algebraic 
equations (DAEs) [6]. However, for voltage stability 
analysis, special attention should be paid to issues of 

voltage and reactive power control and load behavior. 
In [9], the objective of dynamic voltage stability is 
achieved by minimizing oscillations of the state and 
network variables. Then, a parameter optimization tech-
nique is applied for limiting the magnitude of oscilla-
tions. In [10], the voltage stability is decoupled from the 
angle dynamics. The authors are assuming that all elec-
tromechanical oscillations are stable. By neglecting the 
power-angle dynamics, the voltage response of the 
unregulated power system can be approximated by the 
eigenvalues of the Voltage Stability Matrix [10]. 

However, in large power systems, the dynamic volt-
age stability is associated with different modes of oscil-
lations. Although there is extensive literature on voltage 
stability, very few deal with this issue. 

In this paper, a novel approach for the assessment of 
dynamic voltage stability is proposed. The method takes 
the advantages of modern multi-variable control theory. 
Based on the MIMO transfer function, interactions 
between properly defined input and output variables 
affecting dynamic voltage stability can be analyzed at 
different frequencies. 

This paper is organized as follows: Following the in-
troduction, the classic dynamic and static voltage stabil-
ity analyses are described in section 2. Then in section 
3, the proposed dynamic voltage stability modeling is 
introduced. The singular value analysis for dynamic 
voltage stability assessment is discussed in section 4 
and 5. Simulation results are given in section 6. Finally, 
brief conclusions are deduced. 

2 CLASSICAL DYNAMIC AND STATIC 
VOLTAGE STABILITY ANALYSES AND 

CONTROL 

2.1 Dynamic voltage stability analysis 
 

The mathematical model for the dynamic voltage 
stability study of a power system comprises a set of first 
order differential equations and a set of algebraic equa-
tions [1,6]: 

( )yxfx ,=
⋅

                                        (1) 
( )yxg ,0 =                                         (2) 

where 
 

x is the state vector of the system 
y vector containing bus voltages 
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Equations (1) and (2) are usually solved in the time-
domain by means of the numerical integration and 
power flow analysis methods [5,6]. 

The steady state equilibrium values (x0 y0) of the dy-
namic system can be evaluated by setting the derivative 
in Equation (1) to zero. Through linearization about (x0 
y0), Equations (1) and (2) are expressed as follows 
[1,5]: 

 

yBxAx
∆+∆=

∆
dt

d                            (3) 

yDxC ∆+∆=0                              (4) 
 

Further, by eliminating ∆y, the linearized state equa-
tion can be written as [1,5]: 

 

( ) xAxCBDAx
∆=∆−=

∆ −
~

1

dt
d                       (5) 

 

The static bifurcation will occur when det (D) = 0. 
For the dynamic bifurcation phenomenon, it is always 
assumed that det (D) ≠  0 and that D-1 exists [1,5]. 

By analyzing the eigenvalues of 
~
A , dynamic voltage 

stability analysis can be performed.  
 

2.2 Static voltage stability analysis 
 

The static voltage stability analysis is based on the 
modal analysis of the power flow Jacobian matrix, as 
given in Equation (6) [6]: 
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where 
 

∆PPQ,PV incremental change in bus real power 
∆QPQ incremental change in bus reactive power 
∆θ incremental change in bus voltage angle 
∆V incremental change in bus voltage magni-

tude 
 

The elements of the Jacobian matrix represent the 
sensitivities between nodal power and bus voltage 
changes [6]. Power system voltage stability is largely 
affected by the reactive power. Keeping real power as 
constant at each operating point, the Q-V analysis can 
be carried out. Assuming ∆PPQ,PV = 0, it follows from 
Equation (6) [4,6]: 

 

[ ] PQRPQPVPQQVPQ VJVJJJJQ ∆⋅=∆⋅⋅⋅−=∆ −1
θθ

   (7) 
 

and 
PQRPQ QJV ∆⋅=∆ −1                              (8) 

 

Based on the JR
-1, which is the reduced V-Q Jacobian 

matrix, the Q-V modal analysis can be performed. 
Therefore, the bus, branch and generator participation 
factors are obtained. Moreover, the stability margin and 
the shortest distance to instability will be determined [4-
6]. 

As discussed in [2,3,12], the application of singular 
value analysis to JR

-1 also allows the static voltage sta-
bility analysis. 

 

2.3 Voltage stability control 
 

In order to prevent voltage collapse, different meas-
ures can be applied [5,6]. The reactive power compen-
sation, under-voltage load shedding and the control of 
transformer tap-changers are the most important control 
features for enhancing the static voltage stability [5,6,9]. 
Furthermore, with the development of power electron-
ics, FACTS (Flexible AC Transmission Systems) de-
vices, i.e. SVC (Static Var Compensation), are also 
recognized as important tools for the dynamic voltage 
stability control. 

3 DYNAMIC VOLTAGE STABILITY 
MODELING – A NOVEL APPROACH 

 

In this paper, we suggest to carry out voltage dy-
namic stability analysis based on the MIMO transfer 
function, which is widely used in control engineering. 
For this analysis, a detailed dynamic power system 
model including generators, governors, static exciters, 
power system stabilizers (PSS) and nonlinear voltage 
and frequency dependent loads is necessary. Further-
more, dynamic loads may also be included. In general, 
the dynamic models described by Equations (1) and (2) 
must consider all relevant issues affecting voltage sta-
bility. 

As the first step, variables that affect dynamic volt-
age stability must be selected as input variables to the 
MIMO system. These are usually the real and reactive 
power controls of selected generators and loads. Some 
other variables, such as the tap-changer position and the 
SVC control signals, can also be included as inputs. The 
voltage magnitudes at the most critical nodes are con-
sidered as output signals. Since the number of input and 
output variables can usually be constrained to a small 
range, large power systems can also be analyzed using 
the proposed method. 
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Figure 1:  Dynamic voltage stability modeling 
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In this study, a MIMO system transfer function ma-
trix is employed by using all the generation and load 
controls as the input signals. Also the set of output sig-
nals is extended to all bus voltages due to the small size 
of the simulated power system. The corresponding 
transfer function matrix, which is described by Equation 
(9), is shown in Figure 1. 
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is a 

InputOutput nn ×  transfer function matrix. 

 
Each sub transfer function in the JV(s) can be ob-

tained by applying numerical methods to the power 
system dynamic model. 

 

4 SINGULAR VALUE ANALYSIS FOR 
DYNAMIC VOLTAGE STABILITY 

4.1 Singular value decomposition (SVD) 
 

In order to analyze the MIMO system, singular value 
decomposition (SVD) of JV(s) is carried out at every 
fixed frequency [3,12,13]: 

 
T

V s VUJ Σ=)(                            (11) 
where 
 

Σ is a 
InputOutput nn ×  matrix with k = min { nOutput, 

nInput} non-negative singular values, σi, ar-
ranged in descending order along its main 
diagonal; the other entries are zero. The sin-
gular values are the positive square roots of 
the eigenvalues of )()( ss V

T
V JJ × , where 

)(sT
VJ  is the complex conjugate transpose of 

)(sVJ  [13]. 
 

( ) ( ))()()( sss V
T
ViVi JJJ ×= λσ               (12) 

 
 

U is a 
OutputOutput nn ×  unitary matrix of output singular 

vectors, ui 
V is a 

InputInput nn ×  unitary matrix of input singular 

vectors, vi 

4.2 Singular vectors 
 

The column vectors of U, denoted ui, represent the 
directions of the output variables. They are orthogonal 
and of unit length. Likewise, the column vectors of V, 
denoted vi, represent the directions of input variables. 
These input and output directions are related through 
the singular values [13]. 

For dynamic analysis, the singular values and their 
associated directions vary with the frequency. In power 
system dynamic voltage stability analysis, critical fre-
quencies corresponding to poorly damped dominant 
modes must be considered. 

By analyzing the maximum singular values and their 
related input and output singular vectors, the relation-
ship between input and output can be obtained at each 
frequency. The output singular vector shows at which 
bus the voltage magnitude is the most critical. The input 
singular vector indicates which input has the greatest 
influence on the corresponding output. Therefore, by 
means of the singular value analysis, the dynamic volt-
age stability can be performed. 

5 SIMULATION RESULTS 

5.1 Power system model and analysis procedure 
 

A typical four-machine two-area power system 
model [6,11], as shown in Figure 2, is used for demon-
stration of the proposed method. The corresponding 
dynamic model consists of generators described by 6th 
order model, governors, static exciters, power system 
stabilizers (PSS) and nonlinear voltage and frequency 
dependent loads. The detailed generator, controller and 
load models can be found in [6,11]. 
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Figure 2:  Four-machine two-area power system model 

The dynamic voltage stability assessment of the test 
power system will be performed in the following steps: 

 

- Static voltage stability analysis: 
  In large power systems, this step can be used for 

selecting the observed nodes and suitable control 
input variable for detailed dynamic voltage stabil-
ity analysis. 

- Modal analysis to find the critical modes of oscilla-
tions: Sometimes, the frequency range of critical 
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modes is known, so that the detailed modal analy-
sis can be omitted. 

- Calculation of the transfer function matrix JV(s) 
and SVD at critical frequencies. 

- Find the critical buses, which have the most severe 
dynamic voltage stability problem. 

- Find the best input variables allowing improve-
ment of voltage stability.  

 

5.2 Static voltage stability analysis – singular value 
approach 

 
For the static voltage stability analysis, since the re-

duced Jacobian matrix 1−
RJ , as shown in Equation (8), is 

a square matrix, both modal analysis and singular value 
analysis can be applied. Based on the theory provided in 
[2,3,12], the static voltage stability is analyzed using the 
singular value approach in this research. 

Simulation results are shown in Figure 3. The maxi-
mum singular value is 0.14. The corresponding maxi-
mum output singular vector is 0.55 and it associates 
with Bus 11. This means that disturbances on reactive 
loads will cause the largest variation on the voltage 
magnitude at Bus 11. 
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Figure 3:  Output singular vector plot for the static voltage 
stability analysis 

5.3 Dynamic voltage stability analysis – modal analy-
sis and singular value approach 

5.3.1 Modal analysis 
 
Modal analysis is carried out to find the critical 

modes of oscillations. The critical eigenvalues of the 
power system are given in Figure 4. 

Due to the PSS controller, all modes of oscillations 
are well damped in the test system. However, the PSS 
controller has negative influences on some exciter 
modes. Although the exciter mode 1 and the inter-area 
mode have sufficient damping ratio, they have greater 
influences on the dynamic voltage stability than the 
other modes, as can be seen from the singular values in 
the next section. 
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Figure 4:  Critical eigenvalues of the power system 

◘: Eigenvalues with PSS controller 
o: Eigenvalues without PSS controller 

 

As shown in Figure 4, the exciter mode 1 has a 
damping ratio of 11.93% and the oscillation frequency 
is about 2.82Hz. The inter-area mode has a damping 
ratio of 13.63% and the corresponding oscillation fre-
quency is about 0.57Hz. 

 

5.3.2 Singular value analysis 
 

Based on the detailed dynamic power system model, 
the transfer function matrix JV(s) can be obtained using 
the numerical method. The maximal singular value of 
JV(s) provides the maximal gain between input and 
output variables. It describes how the observed outputs 
can be influenced by the inputs [13]. The maximal sin-
gular value of JV(s) over the frequency range of 
[0.01Hz~100Hz] is shown in Figure 5. It is obvious that 
the peaks of the maximal singular value plot correspond 
to the inter-area mode and exciter mode 1 respectively. 
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Figure 5:  Maximal singular value plot 

Therefore, the singular value analysis is carried out 
for the two critical oscillation mode frequencies. 
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The output singular vector corresponding to the 
maximum singular value at the exciter mode frequency 
is given in Figure 6. It can be seen that the buses 7, 8 , 9 
and 13 are related to the dynamic voltage stability with 
Bus 8 standing out as the most critical. The input singu-
lar vectors associated with this mode shows that the 
input signals of QG4, QG2 QG3 and QG1 (Input number 
26, 24, 25 and 23) are the most suitable signals for this 
mode of dynamic voltage stability control. Other input 
signals have relative weak influences, as can be seen in 
Figure 7. 
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Figure 6:  Output singular vector associated with exciter 
mode 1 

0 2 4 6 8 10 12 14 16 18 20 22 24 26
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ag

ni
tu

de
 o

f t
he

 in
pu

t s
in

gu
la

r v
ec

to
r 

Input number 

QG1 

QG4 

QG2 QG3 

 

Figure 7:  Input singular vector associated with exciter     
mode 1 

The critical output singular vector associated with 
the inter-area mode is given in Figure 8. From this 
follows that the bus 11 is the most critical one. In com-
parison with the exciter mode 1, this mode has larger 
output singular vectors. 

The input singular vectors, as can be seen in Figure 
9, with this mode shows that the input signal of QG2, 
QG1 QG4 and QG3 (Input number 24, 23, 26 and 25) are 
the most suitable signals for dynamic voltage stability 
control. 
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Figure 8:  Output singular vector associated with inter-area 
mode 
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Figure 9:  Intput singular vector associated with inter-area 
mode 

As can be seen from the input singular vector plots 
given in Figure 7 and Figure 9, the generator reactive 
power controls (Input number 23-26) will always have 
maximum influence on the dynamic voltage stability.  

 

5.4 Comparison of the static and dynamic voltage 
stability analysis methods 

 

In order to compare the results of the static and dy-
namic voltage stability analyses, the static behavior of 
the MIMO transfer function matrix JV(s) is analyzed 
(s=0). The simulation result is shown in Figure 10.  

For the static voltage stability assessment discussed 
in section 5.2, the generators G1~G4 (Buses 1, 2, 6, 7) 
are not included because they are considered as PV 
nodes. However, in the dynamic system model the volt-
ages of these buses are not fixed and can be controlled. 
Therefore, they appear with non-zero values in the sin-
gular vectors shown in Figure 10. In comparison with 
the simulation result of static voltage stability analysis 
(Figure 3), it can be realized that the results are similar: 
The most critical node in both cases is Bus 11. How-
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ever, instead of Bus 8 and Bus 9 in the static voltage 
stability analysis, Bus 3 and Bus 4 come to be the sec-
ond critical nodes. The other nodes have the same par-
ticipation with regard to voltage stability. 
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Figure 10:  Output singular vector of the transfer function 
matrix JV(s) when s=0 

6 CONCLUSION 
 

This paper suggests the application of singular value 
analysis to a properly defined MIMO system model for 
power system dynamic voltage stability studies. The 
output variables of the MIMO system are chosen as the 
most critical node voltages concerning voltage stability 
issues. The inputs are selected due to their capability of 
impacting the outputs. Because in practical systems the 
focus is always on a few selected input/output variables, 
the method is always applicable to very large systems. 
For calculation of the transfer matrix, numerical meth-
ods based on a dynamic system model can be used, 
which is usually prepared for time domain simulation 
studies. The analysis has to be carried out at frequencies 
corresponding to critical and dominant modes. From the 
output singular vectors it can be seen how the selected 
nodes are affected by the voltage stability problem. The 
elements of the input singular vector indicate the impact 
of the corresponding inputs on the outputs. Therefore 
input singular vectors can be used for selecting the most 
suitable variables for voltage stability control. 
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