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Abstract: This paper presents a linear matrix 

inequality (LMI) approach for designing a robust 
decentralized structure - constrained controller for power 
systems. The problem of designing a fixed-structure H2/H∞ 
dynamic output feedback controller is first reformulated 
as an extension of a static output feedback controller 
design problem for the extended system. The resulting 
optimization problem has bilinear matrix inequalities 
(BMIs) form which is solved using an iterative LMIs 
programming method. The approach is demonstrated by 
designing fixed-structure power system stabilizer (PSS) 
controllers on a four machine test power system so as to 
determine the optimal parameters. The paper also 
presents algorithms for solving the iterative LMI 
programming problem to determine (sub)-optimally the 
PSSs parameters. 

 Keywords: Convex optimization, Lyapunov stability, 
Power system stabilizers, Robust control 

1 INRODUCTION 
In the last two decades, the electric power industry 

has experienced significant changes. The deregulation 
of the electricity markets has led to increasing 
uncertainties concerning the power flow within the 
network. This is further compounded by the physical 
expansion of interconnected networks such as those in 
Europe, which makes the prediction of system response 
to disturbances and severe loading condition more 
difficult. Besides, the ever-increasing utilization of wind 
energy may impact the load flow and dynamic 
behaviour of the system considerably. These and other 
similar developments prompted both power and control 
engineers to use new controller design techniques and 
more accurate model descriptions for the power system 
with the objective of providing reliable electricity 
services. To meet modern power systems requirements, 
controllers have to guarantee robustness over a wide 
range of system operating conditions and this further 
highlights the fact that robustness is one of the major 
issues in power system controllers design. 

Recently, a number of efforts have been made to 
extend the application of robust control techniques to 
power systems, such as L∞ optimization [1], [2],  H∞- 
optimization [3], [4], structured singular value (SSV or 
µ) technique [5] and linear matrix inequalities (LMIs) 
technique [6], [7]. Interesting robust decentralized 
controller schemes that are based on the concept of 
connectively stabilizing a large-scale nonlinear 
interconnected system for governor/turbine control and 

exciter control using the LMIs optimization [8] have 
been presented in [6] and [7], respectively. However, 
the designed local state feedback controllers need the 
corresponding state information of the subsystems, 
which may be either impossible or simply impractical to 
obtain measurements of the full state for all individual 
subsystems. The results of [5] also present a robust 
centralized controller for power systems based on 
structured singular value (SSV or µ) technique. The 
disadvantage of such approach, besides the order of the 
controller which is at least equal to the order of the 
system, is that the designed controllers require global 
information exchange about the measured signals. 
Furthermore, to some extent the result from this 
approach is turned out to be conservative. 

This paper focuses on the extension of linear matrix 
inequalities (LMIs) based mixed H2/H∞ optimization 
approach to problems of practical interest in power 
systems. The design problem considered is the natural 
extension of the reduced order decentralized dynamic 
output H2/H∞ controllers synthesis for power systems. 
In the design, the fixed - structure H2/H∞ dynamic 
decentralized output feedback controller problem is first 
reformulated as an extension of static output feedback 
controller design problem for the extended system. The 
resulting optimization problem has a general bilinear 
matrix inequalities (BMIs) form which can be solved 
using an iterative LMIs programming method based on 
linearizing the objective functional with respect to its 
variables. 

The approach has a number of practical relevance 
among which the following are singled out: i) the 
stability of the controller can be explicitly stated a priori 
in the fixed structure of the controller, ii) controller 
gains can be limited in order to avoid designing high 
gains that are often undesirable for practical 
implementation, and, iii) multi-objective optimization 
technique can easily be incorporated in the design by 
minimizing the H2/H∞ norms of the multiple transfer 
functions between different input/output channels. 
Moreover, the paper also presents a general approach 
that can be used for designing any order robust PSS 
structure controllers in power system. The application 
of this approach to a multi-machine power system 
allows a coordinated tuning of controllers that 
incorporate robustness to changes in the operating 
conditions as well as model uncertainties in the system. 

This paper is organized as follows. In Section 2, the 
robust PSS controller design problem is formulated in 
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the framework of linear matrix inequalities (LMIs) 
based mixed H2/H∞ optimization. The application of the 
approach to design robust PSS structured controllers 
and simulation results together with performance 
indices are given in Section 3. Finally, in Section 4, a 
brief conclusion about the paper is given. 

2   OUTLINE OF THE PROBLEM 

2.1 System model 
Consider the general structure of the thi  - generator 

together with the PSS block in a multi-machine power 
system shown in Figure 1. The input of the thi -
controller is connected to the output of the washout 
stage filter, which prevents the controller from acting on 
the system during steady state. Let the structure of this 

thi - washout stage be given by:  
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To illustrate the design procedure, consider the 
following first-order PSS controller with a-priori 
assumption made on the value of 2iT : 
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The PSS structure in (2) can be further rewritten in 
the following form 
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where 1iK  and 2iK  are easily identified as gain 
parameters that are to be determined during the design. 
Moreover, the gain parameters 1iK  and 2iK  together 
with 2iT  determine the original parameters iK  and 1iT . 

 
Figure 1:  General structure of the thi - generator together 
with the PSS structure and washout stage in a multimachine 
power system. 

After augmenting the washout stage in the system, 
the thi  - subsystem, within the framework of H2/H∞ 
design, is described by the following state space 
equation: 
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where in
i R xx ∈  is the state variable, in

i R uu ∈  is the 
control input, in

i R yy ∈  is the measurement signal, 
in

i R zz ∈  is the regulated variables, i
n

i R 0
0

ww ∈  and 
i

n

i R 1
1

w
w ∈  are exogenous signals (assuming that 1iw  is 
either independent of 0iw  or dependent causally on 0iw ) 
for the thi  - subsystem. 

Now consider the following approach to design a 
decentralized robust optimal H2/H∞ controllers of the 
form (3) for the system given in (4), i.e. determining 
optimally the gains 1iK  and 2iK  within the framework of 
H2/H∞ optimization. This implies the incorporation of 
the dynamic part of the controller first in (4), namely 
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and then reformulating the problem as an extension of a 
static output feedback problem for the extended system. 
Hence, the state space equation for thi  – subsystem 
becomes: 
 

[ ]

[ ] (6)1100

121110101

2
1

1

1
0

0

0

iiyciiiyci
ci

i
ciiycii

iiiiii
ci

i
ii

i
i

i
iyci

i
i

iyci

i
ij

jij

ci

i

ciiyci

ii

ci

i

wDDwDD
x
x

CCDy

uDwDwD
x
x

0Cz

u
0

B
wDB

B
wDB

B

0

xA
x
x

ACB
0A

x
x

++⎥
⎦

⎤
⎢
⎣

⎡
=

+++⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥
⎦

⎤
⎢
⎣

⎡ ∑
≠

~

&

&

 

 

where ciA , ciB , ciC  and ciD  are the state space 
realization of (5) and are given by:  
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Finally, the overall extended system equation for the 
system can be rewritten in one state space model as 
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where 
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Hence, the static output feedback controller for thi -
subsystem is given as: 
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where [ ]21 iii KK=K
~ . Moreover, the decentralized static 

output feedback controller for the whole system will 
then have the familiar block structure of the form 
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Substituting the static output feedback strategy (10) 

into the system equation of (8), the closed loop system 
will become 
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2.2  Suboptimal static H2/H∞ output feedback design 
using iterative LMIs programming method. 

Designing a suboptimal static H2/H∞ output feedback 
controller for the extended plant is equivalent to that of 
finding the gain matrix DK

~  by minimizing the upper 
bound of the H2 norm of the transfer function 

0000 clclclcl ssT DBAICzw +−= )()(  from 0w  to measured output 
z  and which at the same time satisfies an H∞ norm 
bound condition on the closed loop transfer function 

1111 clclclcl ssT DBAICzw +−= )()(  from disturbance 1w  to 
measured output z , i.e. γ<

∞1zwT  (for a given scalar 

constant 0>γ ). Moreover, the transfer functions )(sT 1zw  
and )(sT 0zw  must be stable [9].  

Designing a static H∞ output feedback controller for 
the system given in (8) is reduced to finding of a 
controller DK

~  and a positive definite matrix 0P >  that 
satisfy the following equation  
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Alternatively, using the projection lemma of [10] 
equation (12) of the BMI form could be transformed 
into two LMIs equations coupled through a bilinear 
matrix equation. 
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IPQ =           (15) 

 

where UN and VN  denotes arbitrary bases of the 
nullspaces of  ]

~~
[ 1yDC  and ]

~~
[ TT

122 DB , respectively. 
Remark 1: It is possible to find stabilizing 

controllers which at the same time ensure an α - degree 
of stability. This additional requirement will introduce 
terms Qα2  and Pα2  for some positive value of α  in 
(13) and (14), respectively. 

The coupling nonlinear equality constraint in (15) 
can be rearranged as 0QP =− −1  and which further can be 
relaxed as an LMI expression 
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Moreover, using the cone complementarity approach 
[11] there exists an H∞ static output feedback controller 

DK
~  if and only if the global minimum of the following 
optimization problem  
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where 0L>  is the observability Gramian and satisfies 
the following Lyapunov equation 
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Whenever P  satisfies the condition given (12), the 
H2 norm of )(sT 0zw  satisfies the following upper bound 
condition [12]  
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The above relation suggests minimizing of the upper 
bound given in (20) for suboptimal static H2/H∞ output 
feedback problem instead of directly minimizing the H2 
norm of )(sT 0zw . Hence, minimizing the upper bound is 
equivalent to the following optimization problem 
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The LMI expression in (21), i.e. 0PBBY ≥≥ 00 cl
T
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, can 
be further expanded as follows: 

 

[ ] [ ] 0PB0K
0

D0DK
BP
0

PB
PBY

≥⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡ TT
D

T
y

yD

T

2
0

0
20

0 ~~~
~~

~    (22) 

 

Thus, the problem for designing the suboptimal 
H2/H∞ stabilizing static output feedback will be reduced 
to solving simultaneously the optimization problems in 
(17) and (21) for the positive definite matrices P , Q  
and Y :  
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where RN  and SN  denotes arbitrary bases of the 
nullspaces of  ]

~
[ 0DR y1=  and ]

~
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2B0S = , respectively. 
The optimization in (23) is an NP-hard non-convex 

optimization problem due to the coupling constraints of 
the bilinear matrix equation in (15). To compute the 
(sub-) optimal solution of this problem, an algorithm 
based on an iterative LMIs programming method is 
proposed. The idea behind this algorithm is to linearize 
the cost functional in (23) with respect to its variables 
and then to solve the resulting convex optimization 
problem involving only LMI optimization at each 
iteration. Moreover, the algorithm will set the direction 
of the feasible solution appropriately by solving a 
subclass problem for a Newton-type updating 
coefficient. Furthermore, the solution of the 
optimization problem is monotonically non-increasing, 
i.e. the solution decreases in each iteration with the 
lower bound being ∑ =+ N

i inN 1 X . The convergence 
behaviour of the whole optimization problem is ensured 
by checking the norm distances between the current and 
the previous solutions. Thus, the iterative LMI 
programming method for finding the stabilizing robust 

static output gain matrix has the following two-step 
optimization algorithms. 

 
Algorithm I: Iterative LMI Programming Method 
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(2) Set the direction 
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Algorithm II: The LMI Problem to Determine 
DK~  

Solve the following LMI optimization problem 
for 

DK~  that gives the least norm on the gains of the 
controller. 
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where *P  and *Y  are the solutions of Algorithm I, and  
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Remark 3: It is possible to include a different set of 

LMIs constraint in Algorithm II that could be used to 
limit the upper gain of the controller matrix DK

~ .  
The above two algorithms, i.e. Algorithm I and 

Algorithm II, involve the following: i) minimization 
problem of a convex cost functional subject to LMI 
constraints, i.e. the iterative LMI optimization problem 
in Algorithm I,  will give the optimal values for *P , *Q  
and *Y , and ii) minimization problem of a least norm 
objective functional subject to LMIs constraints, i.e. the 
optimization problem in Algorithm II, which gives the 
suboptimal H2/H∞ stabilizing static output feedback 
controller DK

~ . These two algorithms can be 
conveniently implemented with the available 
Semidefinite Optimization (SDO) solvers such as 
MATLAB LMI Toolbox [13]. 

3 SIMULATION RESULTS 
The robust decentralized PSS controllers design 

approach presented in the previous section is now 
applied on a four machine test system. This system, 
which is shown in Figure 2, has been specifically 
designed to study the fundamental behaviour of large 
interconnected power systems including inter-area 
oscillations in power systems [14]. The system has four 
generators and each generator is equipped with IEEE 
standard exciter and governor controllers. The 
parameters for the standard exciter and governor 
controllers used in the simulation were taken from 
Kundur [15]. Moreover, the generators used in all 

simulations were fifth-order generator models. To 
demonstrate the applicability of the proposed approach 
a first order PSS controller is used, although it is 
possible to extend the method to any order and/or 
combinations of PSS blocks in the design procedure 
without any difficulty. Figure 3 shows a first - order 
PSS structure for the ith – machine including the values 
for wiT  and 2iT  that are used. After including the 
washout filter for  in the system, the design problem is 
reformulated as a nonconvex optimization problem 
involving bilinear matrix inequalities (BMIs) and linear 
matrix inequalities (LMIs) which is solved using the 
iterative LMI programming method presented in the 
previous section. Moreover, the robust stability degree 
of the system was incorporated in the formulation while 
designing the decentralized robust PSS controllers. 

The design procedure has been carried out for 
loading condition Mvar]150QMW,1600[P L1L1 ==  and 

Mvar]120QMW,2400[P L2L2 == . The speed of each 
generator and the voltage error signal which is the input 
to the regulator of the exciter are used as regulated 
signals within the framework of the design. Moreover, 
the output of the washout block, i.e., measured output 
signal, is used as an input signal for the PSS controller 
in the system. 

 
Figure 2:  One-line diagram of the test system. 

A three-phase fault with different fault durations was 
applied at different fault locations and operating 
conditions to verify the performance of the proposed 
robust PSSs controllers. For a short circuit of 100ms 
duration at node F in Area-A, the transient responses of 
generator G2 with and without the PSS controllers in 
the system are shown in Figure 4. This generator which 
is the most disturbed generator in the system due to its 
relative nearness to the fault location shows a good 
damping behaviour after the PSS included in the 
system. The calculated PSS gains and parameters for 
each generator are given in Table 1. 
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Figure 3:  The PSS structure used in the design. 
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Gains for the PSS Parameter Ti1 
K1 = 1.2465 T11 = 0.5347 
K2 = 1.0005 T21 = 0.5342 
K3 = 0.8778 T31 = 0.5338 
K4 = 1.1064 T41 = 0.5338 

 

Table 1:  The computed robust PSS controllers gains and 
parameters corresponding to each generator. 
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Figure 4:  The transient responses of Generator G2 to a short 
circuit of 100 ms duration at node F in Area A. 

To further assess the effectiveness of the proposed 
approach regarding robustness, the transient 
performance indices were computed for different 
loading conditions at node 1 ]Q,[P L1L1  and node 2 

]Q,[P L2L2  while keeping constant total load in the 
system. These transient performance indices, which are 
used to investigate the behaviour of the system during 
any fault and/or sudden load changes, are then 
normalized to the transient performance indices of the 
base operating condition for which the designed 
procedure has been carried out. Specifically, these 
normalizations are computed according to the following 
formula: 

 

BLC

DLC
N I

I
I =   (27) 

 

where DLCI  is the transient performance index for 
different loading condition, BLCI  is the transient 
performance index for base loading condition for which 
the design has been carried out. Moreover, the transient 
performance indices for generator powers iGP , generator 
terminal voltages itV  and excitation voltages ifdE  are 
computed using the following equations. 
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The normalized transient performance indices 
(NTPIs) for different loading conditions are shown in 
Figure 5. It can be seen from Figure 5 that the NTPIs 

for )( fdN EI , )( GN PI  and )( tN VI  are either near to unity or 
less than unity for a wide operating conditions. This 
clearly indicates that the transient responses of the 
generators for different operating conditions are well 
damped and the system behaviour exhibits robustness 
for all loading conditions. 

Similarly, the NTPIs after disconnecting one of the 
tie-lines from the system are shown in Figure 6 for 
different operating conditions. From these figures the 
NTPIs are also either near to unity or less than unity for 
wide operating conditions except for the condition when 
the total load distribution apparently concentrated to 
Area-B. This evidently shows the robustness of the 
proposed approach to structural change in the system. 

 

 
Figure 5:  Plot of the normalized transient performance indi-
ces. 

 
 

Figure 6:  Plot of the normalized transient performance indi-
ces after disconnecting one of the tie-lines. 

4 CONCLUSION 
A framework for robust PSS controller design that 

takes into account model uncertainties and changes in 
the operating conditions has been presented. The 
applicability of the approach has been demonstrated 
through design example in a four-machine test system. 
This design problem is formulated as an optimization 
problem involving bilinear matrix inequalities (BMIs) 
and solved using an iterative LMIs programming 
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method. Though the proposed approach is demonstrated 
on a first order PSS block, it is possible to extend the 
method to any higher order PSS blocks and even a 
combination of any orders in the design without any 
difficulty. Moreover the approach is flexible enough to 
allow the inclusion of additional design parameters such 
as the size and structure of the gain matrices, the degree 
of exponential stability and different performance 
measures for each input/output channel in the system. 
An additional benefit of this approach is that all the 
controllers are linear and use minimum local feedback 
information. The approach could also be used for 
retuning the existing PSSs in the system.  
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