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Schedule

Monday, May 19th

9h15-9h30 Welcome

9h30-10h30 Invited Talk (Chair: Damien Ernst)

Susan Murphy, Machine Learning and Reinforcement Learning in Clinical Research
p11

10h30-11h00 Coffee break

11h00-12h40 Session 1

Session 1.1 Reinforcement learning, planning, and games (Chair: Susan Murphy)

11h00-11h20 Tom Croonenborghs, Kurt Driessens, and Maurice Bruynooghe, Learning
a transfer function for reinforcement learning problems p15

11h20-11h40 Boris Defourny, Damien Ernst, and Louis Wehenkel, Perturb and combine
in sequential decision making under uncertainty p17

11h40-12h00 Raphael Fonteneau, Louis Wehenkel, and Damien Ernst, Variable selec-
tion for dynamic treatment regimes: a reinforcement learning approach p19

12h00-12h20 Jan Lemeire, An alternative approach for playing complex games like
chess p21

Session 1.2 Graphical and relational models (Chair: Kristel Van Steen)

11h00-11h20 Luc De Raedt, ProbLog p23

11h20-11h40 Bernd Gutmann, Angelika Kimmig, Luc De Raedt, and Kristian Kerst-
ing, Parameter learning in probabilistic databases: a least squares approach p25

11h40-12h00 Ingo Thon, Niels Landwehr, and Luc De Raedt, CPT-L: an efficient
model for relational stochastic processes p27

12h00-12h20 Vincent Auvray, and Louis Wehenkel, Learning inclusion-optimal chordal
graphs p29

12h20-12h40 Sourour Ammar, Philippe Leray, Boris Defourny, and Louis Wehenkel,
Density estimation with ensembles of randomized poly-trees p31

12h40-14h00 Lunch break

14h00-15h00 Invited Talk (Chair: Raphaël Marée)

Bill Triggs, Scene segmentation with latent topic markov field models
- and - classification and dimensionality reduction using convex class models p11

15h00-15h30 Coffee break

15h30-17h30 Session 2

Session 2.1 Vision and speech (Chair: Bill Triggs)

15h30-15h50 Fabien Scalzo, Georgios Bebis, Mircea Nicolescu, and Leandro Loss, Evo-
lutionary learning of feature fusion hierarchies p33

15h50-16h10 Cedric Simon, Jerome Meessen, and Christophe De Vleeschouwer, Us-
ing decision trees to build an event recognition framework for automated visual
surveillance p35
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16h10-16h30 Raphaël Marée, Pierre Geurts, and Louis Wehenkel, Content-based image
retrieval by indexing random subwindows with randomized trees p37

16h30-16h50 Herman Stehouwer, IGForest: From tree to forest p39

16h50-17h10 Marie Dumont, Raphaël Marée, Pierre Geurts, and Louis Wehenkel, Fast
image annotation with random subwindows p41

17h10-17h30 Thomas Drugman, Alexis Moinet, and Thierry Dutoit, On the use of
machine learning in statistical parametric speech synthesis p43

Session 2.2 Feature selection and active learning (Chair: Yvan Saeys)

15h30-15h50 Yvan Saeys, Thomas Abeel, and Yves Van de Peer, Towards robust fea-
ture selection techniques p45

15h50-16h10 Marieke van Erp, Antal van den Bosch, Piroska Lendvai, and Steve Hunt,
Feature selection techniques for database cleansing: knowledge-driven vs greedy
search p47

16h10-16h30 Vân Anh Huynh-Thu, Louis Wehenkel, and Pierre Geurts, Deriving p-
values for tree-based variable importance measures p49

16h30-16h50 Robby Goetschalckx, Scott Sanner, and Kurt Driessens, Linear regression
using costly features p51

16h50-17h10 Dirk Gorissen, Tom Dhaene, and Eric Laermans, Automatic regression
modeling with active learning p53

17h10-17h30 Kurt De Grave, Jan Ramon, and Luc De Raedt, Active learning for
primary drug screening p55

Evening Conference dinner
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Tuesday, May 20th

9h30-10h30 Invited Talk (Chair: Pierre Geurts)

Johannes Fürnkranz, Preference learning p12

10h30-11h00 Coffee break

11h00-12h40 Session 3

Session 3.1 Ranking and complex outputs (Chair: Johannes Fürnkranz)

11h00-11h20 Willem Waegeman, Bernard De Baets, and Luc Boullart, When can we
simplify a one-versus-one multi-class classifier to a single ranking? p57

11h20-11h40 Michaël Rademaker, Bernard De Baets, and Hans De Meyer, Mono-
tone Relabeling of Partially Non-Monotone Data: Restoring Regular or Stochastic
Monotonicity p59

11h40-12h00 Pierre Geurts, Louis Wehenkel, and Florence d’Alché-Buc, Learning in
kernelized output spaces with tree-based methods p61

12h00-12h20 Beau Piccart, Jan Struyf, and Hendrik Blockeel, Selective Inductive Trans-
fer p63

12h20-12h40 Justus Piater, Fabien Scalzo, and Renaud Detry, Vision as inference in
a hierarchical markov network p65

Session 3.2 Semi-supervised learning, missing data, and automata (Chair: Pierre Dupont)

11h00-11h20 Jerôme Callut, Kevin Françoisse, Marco Saerens, and Pierre Dupont,
Semi-supervised Classification in Graphs using Bounded Random Walks p67

11h20-11h40 Amin Mantrach, Marco Saerens, and Luh Yen, The Sum-Over-Paths Co-
variance: A novel covariance measure p69

11h40-12h00 Jort Gemmeke, Classification on incomplete data using sparse represen-
tations: Imputation is optional p71

12h00-12h20 Yann-Michaël De Hauwere, Peter Vrancx, and Ann Nowé, Multi-Agent
State Space Aggregation using Generalized Learning Automata p73

12h20-12h40 Sicco Verwer, Mathijs de Weerdt, and Cees Witteveen, Efficiently learn-
ing timed models from observations p75

12h40-14h00 Lunch break

14h00-15h00 Invited Talk (Chair: Louis Wehenkel)

Gunnar Rätsch, Boosting, margins, and beyond p12

15h00-15h30 Coffee break

15h30-17h30 Session 4

Session 4.1 Bioinformatics (Chair: Gunnar Rätsch)

15h30-15h50 Thomas Abeel, Yvan Saeys, and Yves Van de Peer, ProSOM: Core pro-
moter identification in the human genome p77

15h50-16h10 Sofie Van Landeghem, Yvan Saeys, Bernard De Baets, and Yves Van
de Peer, Benchmarking machine learning techniques for the extraction of protein-
protein interactions from text p79

16h10-16h30 Aalt-Jan van Dijk, Dirk Bosch, Cajo ter Braak, Sander van der Krol, and
Roeland van Ham, Predicting sub-Golgi localization of glycosyltransferases p81

16h30-16h50 Vincent Botta, Pierre Geurts, Sarah Hansoul, and Louis Wehenkel, Pre-
diction of genetic risk of complex diseases by supervised learning p83
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16h50-17h10 Gilles Meyer, and Rodolphe Sepulchre, Component analysis for genome-
wide association studies p85

17h10-17h30 Fabien Scalzo, Peng Xu, Marvin Bergsneider, Xiao Hu, Morphological
Feature Extraction of Intracranial Pressure Signals via Nonlinear Regression p87

Session 4.2 Applications (Chair: Bernard Manderick)

15h30-15h50 Tim Van de Cruys, An extended NMF algorithm for word sense discrim-
ination p89

15h50-16h10 Koen Smets, Bart Goethals, and Brigitte Verdonk, Automatic vandalism
detection in wikipedia: towards a machine learning approach p91

16h10-16h30 Bertrand Cornélusse, Louis Wehenkel, and Gérald Vignal, Supervised
learning of short-term strategies for generation planning p93

16h30-16h50 Jean-Michel Dricot, Mathieu Van der Haegen, Yann-Ael Le Borgne, and
Gianluca Bontempi, Performance evaluation of machine learning techniques for
the localization of users in wireless sensor networks p95

16h50-17h10 Marc Ponsen, Jan Ramon, Kurt Driessens, Tom Croonenborghs, and Karl
Tuyls, Bayes-relational learning of opponent models from incomplete information
in no-limit poker p99

17h10-17h30 Francis wyffels, Benjamin Schrauwen, and Dirk Stroobandt, System mod-
eling with Reservoir Computing p103

17:30-17:45 Closing
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Machine Learning and Reinforcement Learning in Clinical Research

Susan A. Murphy
Institute for Social Research & Professor in Psychiatry, University of Michigan, USA

Abstract
This talk will survey some of the possible roles that machine learning researchers can play in informing and
improving clinical practice. Clinical decision making, particularly when the patient has a chronic disorder, is
adaptive. That is the clinician must adapt and then readapt treatment type, combinations and dose to the
waxing and waning of the patient’s chronic disorder. This adaption naturally occurs via clinical measurements
of symptom severity, side effects, response to treatment, co-occuring disorders, etc. Currently most policies for
guiding clinical decision making are informed primarily by expert opinion with an informal use of clinical trial
data and clinical databases.
Some challenges in using trial data and databases are (1) there are usually many unknown causes of the patient
observations; as a result high quality mechanistic models for the ”system dynamics” are found only in very
special cases. And (2) clinical databases often include many associations that are not causal; hence a simplistic
application of learning methods can lead to gross biases. In addition to the causal issues, measures of confidence
are crucial in gaining acceptance of policies constructed from data. Some advances in these areas will be discussed;
however all of these are areas in which machine learning scientists could make a great impact.

Scene segmentation with latent topic markov field models
and

Classification and dimensionality reduction using convex class
models

Bill Triggs
Laboratoire Jean Kuntzmann (LJK) and CNRS, Grenoble, France

Abstract
The talk will be in two parts. In the first part I will present work with Jakob Verbeek on semantic-level scene
segmentation by combining spatial coherence models such as Markov and Conditional Random Fields with
latent topic based local image content models such as Probabilisitic Latent Semantic Analysis over bag-of-words
representations. In the second part I will present some recent work with Hakan Cevikalp, Frederic Jurie and
Robi Polikar on using simple convex approximations to high-dimensional classes for multi-class classification and
discriminant dimensionality reduction.
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Preference learning

Johannes Fürnkranz
Knowledge Engineering Group, TU Darmstadt, Germany

Abstract
Preference Learning is a learning scenario that generalizes several conventional learning setttings, such as clas-
sification, multi-label classification, and label ranking. In this talk, we will give a brief introduction into this
developing research area, and will in the following focus on our work on explicit modeling of pairwise preferences.
In this approach, we learn a separate model for each possible pair of labels, which is used to decide which of
the two labels is preferred. The predictions of the pairwise models are then combined into an overall ranking of
all possible options. The key advantages of this approach lie in the simplicity of the pairwise models, and the
possibility to combine the pairwise models in various ways, which allows to minimize different loss functions with
the same set of trained classifiers. An obvious disadvantage is the complexity resulting from the need for training
a quadratic number of classifiers. However, it can be shown that in many cases this problem can be efficiently
solved. We will also briefly discuss extensions of the basic model for multilabel classification, for hierarchical
classification, and for ordered classification.

Boosting, margins, and beyond

Gunnar Rätsch
Friedrich Miescher Laboratory of the Max Planck Society, Tbingen, Germany

Abstract
This talk will survey recent work on understanding Boosting in the context of maximizing the margin of separa-
tion. Starting with a brief introduction into Boosting in general and AdaBoost in particular, I will illustrate the
connection to von Neumann’s Minimax theorem and discuss AdaBoost’s strategy to achieve a large margin. This
will be followed by a presentation of algorithms which provably maximize the margin, are considerably quicker in
maximizing the margin in practice and implement the soft-margin idea to improve the robustness against noise.
In the second part I will discuss how these techniques relate to other convex optimization techniques and how
they are connected to Support Vector Machines. Finally, I will talk about the effects of the the different key
ingredients of Boosting and lessons learned from the application of such algorithms to real world problems.
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Learning a Transfer Function for Reinforcement Learning Problems

Tom Croonenborghs tom.croonenborghs@khk.be

Biosciences and Technology Department, KH Kempen University College, Geel, Belgium

Kurt Driessens kurt.driessens@cs.kuleuven.be
Maurice Bruynooghe maurice.bruynooghe@cs.kuleuven.be

Declarative Languages and Artificial Intelligence Group, Katholieke Universiteit Leuven (KUL), Belgium

Abstract

The goal of transfer learning algorithms is to
utilize knowledge gained in a source task to
speed up learning in a different but related
target task. Recently, several transfer meth-
ods for reinforcement learning have been pro-
posed. A lot of them require a hand-coded
mapping that relates features from one task
to another. This paper proposes a method
to learn such a mapping automatically from
interactions with the environment. Prelimi-
nary experiments show that our approach can
learn a meaningful mapping that can be used
to speed up learning through the execution of
transferred actions during exploration.

1. Introduction

An area where transfer learning is particularly impor-
tant is the domain of Reinforcement Learning (RL). In
RL (Sutton & Barto, 1998), an agent can observe its
world and perform actions in it. The agent’s learning
task is to maximize the reward he obtains. At the start
of the learning task, the agent has no or little informa-
tion and is forced to perform random exploration. As
a consequence, learning can become infeasible or too
slow in practice for complex domains and leveraging
knowledge could increase the learning speed.

Recently, several approaches have been proposed to
transfer knowledge between different reinforcement
learning tasks. Often, a user-defined mapping is used
to relate the new task to the task for which a policy
was already learned, e.g. (Taylor et al., 2007; Torrey
et al., 2006). There has been some work on learn-
ing such a mapping. E.g. in (Liu & Stone, 2006) a
graph-matching algorithm is used to find similarities
between state variables in the source and target task.
This approach however needs a complete and correct

transition model for both tasks.

In this paper, transfer learning is achieved by consid-
ering transfer actions, i.e. actions transferred from the
source task to the target task during the exploration
phase of the learning. To decide which action to trans-
fer, the agent learns a function that predicts for each
source action the probability that executing the trans-
fered action is at least as good as executing the action
which is best according to the agent’s current utility
function and selects the one with the highest proba-
bility.

2. Using Exploration to Transfer
Knowledge

The standard exploration policy of the agent is altered
sucht that with a probability of 10% the agent will se-
lect and execute a transfer action. To select the trans-
fer action in a state t of the target problem, we will
emplay a transfer function p(s, t) that represents for
each source state s the probability that the best ac-
tion for s is at least as good for t as the best action
according to the current approximation of the utility
function. The transfer action executed in t is then
the action performed on the state s for which p(s, t)
is maximal, i.e., πs(argmaxs p(s, t)) with πs the source
task policy. Note that we assume for simplicity that
actions in the source task are executable in the tar-
get task. In future work, we will extend our approach
so that the transfer function maps (state,action)-pairs
and is thereby able to incorporate the relation between
actions.

3. Learning the Transfer Function

At the end of every learning episode in the target task,
a number of learning examples for the transfer func-
tion can be generated. For every transfer action at

the agent executed (in a state s) during that episode,
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we compare the quality of the transfer action with the
quality of his current policy using two different utility
values. On the one hand, a Q-value QMC(s, at) can be
obtained by backtracking the Q-values from the end of
that episode to the step where at is executed. This is
comparable to a Monte Carlo estimate of this Q-value.
On the other hand we let the agent learn a Q-value ap-
proximation Q̂ of its current policy using a standard
Q-learning type algorithm with generalization1. The
generated learning example for each executed transfer
action then consists of the states in both the source
and target task and a label for the example: “trans-
fer” if QMC(s, at) ≥ maxaQ̂(s, a) and “no transfer”
otherwise.

4. Preliminary Experiments

To evaluate our approach, the target task consists of
a sequence of three four by four rooms. The rooms
are connected with doors in the bottom right of each
room. The agent can only pass a door if he possesses a
key of the same color as the door. The keys are placed
at random locations in a room. The primitive actions
available to the agent include four movement actions
(up,down,left and right) and a pickup action that picks
up the key that is located at the agent’s location (if ap-
plicable). The agent can execute at most 500 actions
per episode and receives a reward of 1 if he exits the
last room and 0 otherwise. The state representation
includes the dimensions of the different rooms, the lo-
cations and colors of the doors, the location and colors
of the keys, the keys the agent possesses, the agent’s
location and the goal location. The location consists
of two coordinates, where a coordinate is determined
by the relative position in the room and a certain off-
set for every room. In the source task, the agent has
(successfully) learned how to navigate to the bottom
right location in a four by four grid.

In a first experiment, instead of continuous learning
the transfer function, we learned a single transfer func-
tion once with Tilde (Blockeel & De Raedt, 1998)
based on learning examples created during the first
100 episodes in the target task and actions transferred
from random source states. The algorithm was able to
learn both the shift in coordinates between the differ-
ent rooms and that successful transfer is very unlikely
if the agent does not have the key needed to leave the
current room.

We then restarted the agent in the environment with
the learned transfer function. Figure 1 shows the av-

1In the experiments, the SARSA-algorithm is used to
learn a Q-function with the TG-algorithm, a first-order
incremental decision tree learner.

erage reward and number of actions per episode of a
SARSA-learning agent, both with and without trans-
fer. The numbers are obtained by freezing the current
utility function and following a greedy test policy for
100 episodes every 50 episodes. We show results aver-
aged over 10 runs.

Figure 1. Results in the multi-room grid wold domain.

5. Future Work

Besides evaluating our approach in more detail, one
important future direction is incorporating the quality
of possible transfer in the agent’s exploration policy.
We would also like to substitute the batch learning of
the transfer function as employed in our experiments,
by a continuous, incremental approach.

Acknowledgments: Kurt Driessens is a post doc-
toral research fellow of the FWO.
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Perturb and Combine in Sequential Decision Making under
Uncertainty

Boris Defourny Boris.Defourny@ulg.ac.be
Damien Ernst dernst@ulg.ac.be
Louis Wehenkel L.Wehenkel@ulg.ac.be

University of Liège, Department of Electrical Engineering and Computer Science,
Grande Traverse 10, Sart-Tilman, B-4000 Liège, Belgium

1. Overview

In the context of sequential decision making, rules that
adapt the decisions to the evolving state of information
are often preferable to a fixed sequence of decisions. As
finding optimal such rules is complex, an approxima-
tion of the information state is often called for at the
cost of some suboptimality (see Bertsekas, 2005).

In the classical discrete-time optimal control
paradigm, the state of information is captured
by state variables. An alternative approach (formal-
ized in Section 2) consists in modeling the state of
information by the history of a disturbance process
that accounts for all the uncertainty over the planning
horizon. Approximations over the disturbance process
(in the context of convex optimization, see e.g. Rachev
& Römisch, 2002) can simplify the representation of
the information state without affecting the state space
or the decision space.

If the disturbance space W has a finite number of ele-
ments, the disturbance process over T steps can be ex-
actly represented by a disturbance tree of depth T and
branching factor |W |. A decision rule mapping any
particular outcome of a sequence of t− 1 disturbances
to a decision at time t can also be fully described by
assigning decisions to the nodes of the tree. However,
the size of the tree grows exponentially with T .

The celebrated Perturb and Combine principle (trac-
ing back to Breiman, 1996) would recommend to
replace the disturbance tree by an ensemble of in-
complete, much smaller disturbance trees, built by a
nondeterministic algorithm (described in Section 3).
These partial representations of the disturbance pro-
cess lead to distinct, partially specified decision rules,
that can be optimized in parallel. A first-stage decision
obtained from a combination of their first-stage deci-
sions can be implemented, assuming that subsequent
decisions will be subject to renewed computations.

Preliminary experiments (reported in Section 4) sug-
gest that this approach brings formidable time savings,
while being only slightly suboptimal.

2. Planning over a disturbance tree

Let xt ∈ X, ut ∈ U , wt ∈ W be the system
state, the decision and the disturbance at time t. Let
xt+1 = ft(xt, ut, wt) be the state transition equation.
Let rt(xt, ut, wt) at 0 ≤ t < T and rT (xT ) at t = T
be the reward at time t. Optimal decision rules µ∗t ,
0 ≤ t < T , maximize the expectation of a γ-discounted
sum of the rewards:

J∗x0
= max

µt
E{

T−1∑
t=0

γtrt(xt, ut, wt) + γT rT (xT )} . (1)

In (1) the decision rule µt at time t is a mapping from
histories ht = [w0, w1, . . . , wt−1] of the disturbance
process to a decision ut. At t = 0, h0 is empty and µ0

degenerates into a decision u0. The state variable xt
is recovered by a chain of state transitions using the
t decisions uτ = µτ (hτ ) and the t disturbances wτ ,
0 ≤ τ < t, where hτ and wτ are extracted from ht.

Under the convenient assumption that W is finite,
there is a one-to-one correspondence between the non-
terminal nodes of a disturbance tree of depth T and
branching factor |W |, and all the possible histories ht,
0 ≤ t ≤ T . It suffices to assign a distinct element of
W to the |W | children of the nonterminal nodes, and
view the t disturbances on the path from the root to a
node n of depth t as the history associated to node n.

By assigning a decision un to nonterminal nodes n, a
mapping from histories to decisions and hence a deci-
sion rule can be fully specified on the tree.

The expectation in (1) can also be optimized on the
tree. Assuming first that the decisions un are set, val-
ues of state variables xn and rewards rn are assigned
to a node n of history hn, starting from x0 at the
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root (that has no reward associated with) and using a
chain of proper state transitions along the path to n.
The probability of an element of W is assigned to the
nodes with that element. The node probabilities are
then used in a progressive computation of a weighted
sum of node rewards which ultimately gives the expec-
tation Sµ of the γ-discounted sum of rewards under the
un’s. Such a procedure serves as an oracle for scoring
the un’s. A global solution to the maximization of Sµ
over the un’s gives (1), optimal un’s, and hence an op-
timal decision rule, while suboptimal un’s might still
represent an acceptable suboptimal decision rule.

3. Decision making on incomplete trees

The complete disturbance tree is cumbersome. A sim-
ple method for building an incomplete disturbance tree
consists in sampling a number m of disturbances, with
m a random number in {1, 2, . . . , q}, so as to create the
children of its root. The number m′ ≤ m of distinct
disturbances defines the number of children, while the
sample multiplicities induce probabilities assigned to
them. The procedure is repeated for each node of
depth t < T . The distribution of m, along with the
tree depth T , determines the expected size of the tree.

The partial representation of the disturbance process
by an incomplete tree leads to spurious opportunities
likely to be exploited during the optimization of the
decisions. Hence the great appeal of the Perturb and
Combine paradigm to mitigate this effect.

An optimal first-stage decision is always well-defined
for each incomplete tree. Under the assumption that
the decision space U is finite, the aggregation of these
decisions can be done through a majority vote.

4. Results on a navigation benchmark

The benchmark will illustrate how an ensemble of
small incomplete trees advantageously replaces a sin-
gle complete one.

A robot is in a corridor, at some position x ∈
{1, 2, . . . , 19}. There are 2 exits at x = 0 and x = 20,
with distinct rewards r = 1 and r = 5 obtained when
the robot enters one of these terminal positions. The
robot can move in both directions. A disturbance
also affects the move. Specifically, U = {−1,+1},
W = {−1, 0, 1} with Pw = {0.25, 0.50, 0.25}, and xt+1 = xt + ut + wt if 0 < xt + ut + wt < 20,

xt+1 = 0, if xt + ut + wt ≤ 0,
xt+1 = 20, if xt + ut + wt ≥ 20 .

The horizon is T = 20 with a discount factor γ = 0.75,
so that the robot is in a hurry. (With these parameters,

the optimal decisions are ut = −1 if 1 ≤ xt ≤ 7, and
ut = +1 if 8 ≤ xt ≤ 19.)

The proposed approach is implemented as follows. The
decision u0 is chosen by a majority vote over 10 incom-
plete trees on which the node decisions have been opti-
mized using the Cross-Entropy method (Rubinstein &
Kroese, 2004). The sampling of m disturbances in the
tree building algorithm is done with P(m = 1) = 0.6,
P(m = 2) = 0.2, P(m = 3) = 0.2, resulting in in-
complete trees of about 1200 nodes in expectation (in
constrast with the 5.2 ·109 nodes of the complete tree).

Simulations are carried out for the interesting initial
positions x0 = 6, 7, 8, 9, 10. The resulting decisions
are respectively −1 (by 100% of the trees), −1(80%),
−1(60%), +1(60%), +1(90%). The percentages sug-
gest that some decisions are more reliable than others.
(And in fact the decision −1 at x0 = 8 is even sub-
optimal.) One could live with that, or carry out new
simulations to ascertain the majority decision.

More technical details about the proposed approach
are provided in (Defourny et al., 2008). Future work
will focus on a broader set of benchmarks to evaluate
the advantages of this approach on problems with large
decision spaces and/or large disturbance spaces.
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1. Introduction

Nowadays, many diseases as for example HIV/AIDS,
cancer, inflammatory or neurological diseases are seen
by the medical community as being chronic-like dis-
eases, resulting in medical treatments that can last
over very long periods. For treating such diseases,
physicians often adopt explicit, operationalized series
of decision rules specifying how drug types and treat-
ment levels should be administered over time, which
are referred to in the medical community as Dynamic
Treatment Regimes (DTRs). Designing an appropri-
ate DTR for a given disease is a challenging issue.
Among the difficulties encountered, we can mention
the complex dynamics of the human body interacting
with treatments and other environmental factors, as
well as the often poor compliance to treatments due
to the side effects of some of the administered drugs.
While typically DTRs are based on clinical judgment
and medical insight, since a few years the biostatistics
community is investigating a new research field ad-
dressing specifically the problem of inferring in a well
principled way DTRs directly from clinical data gath-
ered from patients under treatment. Among the re-
sults already published in this area, we mention (Mur-
phy, 2005) which uses statistical tools for designing
DTRs for psychotic patients.

2. Problem formulation

One possible approach to infer DTR from the data col-
lected through clinical trials is to formalize this prob-
lem as an optimal control problem for which most
of the information available on the ‘system dynam-
ics’ (the system is here the patient and the input of
the system is the treatment) is ‘hidden’ in the clin-
ical data. This problem has been vastly studied in
Reinforcement Learning (RL), a subfield of machine
learning (see e.g., (Ernst et al., 2005)). Its application
to the DTR problem would consist of processing the
clinical data so as to compute a closed-loop treatment

strategy which takes as inputs all the various clinical
indicators which have been collected from the patients.
Using policies computed in this way may however be
inconvenient for the physicians who may prefer DTRs
based on an as small as possible subset of relevant in-
dicators rather than on the possibly very large set of
variables monitored through the clinical trial. In this
research, we therefore address the problem of deter-
mining a small subset of indicators among a larger set
of candidate ones, in order to infer by RL convenient
decision strategies. Our approach is closely inspired
by work on ‘variable selection’ for supervised learning.

3. Learning from a sample

We assume that the information available for design-
ing DTRs is a sample of discrete-time trajectories of
treated patients, i.e. successive tuples (xt, ut, xt+1),
where xt represents the state of a patient at some
time-step t and lies in an n-dimensional space X of
clinical indicators, ut is an element of the action space
(representing treatments taken by the patient in the
time interval [t, t + 1]), and xt+1 is the state at the
subsequent time-step.

We further suppose that the responses of patients suf-
fering from a specific type of chronic disease all obey
the same discrete-time dynamics:

xt+1 = f(xt, ut, wt) t = 0, 1, . . .

where disturbances wt are generated by the probability
distribution P (w|x, u). Finally, we assume that one
can associate to the state of the patient at time t and to
the action at time t, a reward signal rt = r(xt, ut) ∈ R
which represents the ‘well being’ of the patient over the
time interval [t, t + 1]. Once the choice of the function
rt = r(xt, ut) has been realized (a problem known as
preference elicitation), the problem of finding a ‘good’
DTR may be stated as an optimal control problem
for which one seeks to find a policy which leads to a
sequence of actions u0, u1, . . . , uT−1, which maximizes,
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over the time horizon T ∈ N, and for any initial state
the criterion:

R
(u0,u1,...,uT−1)
T (x0) = E

wt
t=0,1,...,T−1

[
T−1∑
t=0

r(xt, ut)

]

One can show (see e.g., (Ernst et al., 2005)) that there
exists a policy π∗T : X × [0, . . . , T − 1] → U which
produces such a sequence of actions for any initial state
x0. To characterize these optimal T -stage policies, let
us define iteratively the sequence of state-action value
functions QN : X × U → R, N = 1, . . . , T as follows:

QN (x, u) = E
w

[
r(x, u) + sup

u′∈U
QN−1(f(x, u, w), u′)

]
(1)

with Q0(x, u) = 0 for all (x, u) ∈ X × U . Dy-
namic programming theory implies that, for all t ∈
{1, . . . , T − 1} and x ∈ X , the policy

π⋆
T (t, x) = argmax

u∈U
QT−t(x, u)

is a T-step optimal policy.

Exploiting directly (1) for computing the QN -
functions is not possible in our context since f is
unknown and replaced here by an ensemble of one-
step trajectories F =

{
(xl

t, u
l
t, r

l
t, x

l
t+1)

}#F
l=1

, where
rl
t = r(xl

t, u
l
t). To address this problem, we exploit

the fitted Q iteration algorithm which offers a way
for computing (approximations of) the QN -functions
(Q̂N ) from the sole knowledge of F (Ernst et al., 2005).
Notice that when used with tree based approximators,
as it is the case in this paper, this algorithm offers
good inference performances. Furthermore, we exploit
the particular structure of these tree-based approxi-
mators in order to identify the most relevant clinical
indicators among the n candidate ones.

4. Selection of clinical indicators

As mentioned in Section 2, we propose to find a small
subset of state variables (clinical indicators), the m
(m ≪ n) most relevant ones with respect to a certain
criterion, so as to create an m-dimensional subspace
of X on which DTRs will be computed. The approach
we propose for this exploits the tree structure of the
Q̂N -functions computed by the fitted Q iteration algo-
rithm. More specifically, it evaluates the relevance of
each state variable xi, by the score function:

S(xi) =

∑T
N=1

∑
τ∈Q̂N

∑
ν∈τ δ(ν, xi)∆var(ν)|ν|∑T

N=1

∑
τ∈Q̂N

∑
ν∈τ ∆var(ν)|ν|

where ν is a nonterminal node in a tree τ (used to
build the ensemble model representing one of the Q̂N -
functions), δ(ν, xi) = 1 if xi is used to split at node

ν and 0 otherwise, ∆var(ν) is the variance reduction
when splitting node ν, and |ν| is the cardinality of the
subset of tuples residing at node ν.

The approach then sorts the state variables xi by de-
creasing values of their score so as to identify the m
most relevant ones. A DTR defined on this subset of
attributes is then computed by running the fitted Q
iteration algorithm again on a ‘modified F ’, where the
state variables of xl

t and xl
t+1 that are not among these

m most relevant ones are discarded.

The algorithm for computing a DTR defined on a small
subset of state variables is thus as follows:
(1) compute the Q̂N -functions (N = 1, . . . , T ) using
the fitted Q iteration algorithm on F ,
(2) compute the score function for each state variable,
and determine the m best ones,

(3) run the fitted Q iteration algorithm on
∼
F ={

(
∼
x

l

t, u
l
t, r

l
t,
∼
x

l

t+1)
}#

∼
F

l=1
where

∼
xt =

∼
Mxt, and

∼
M is a

m×n boolean matrix where
∼
mi,j = 1 if the state vari-

able xj is the i-th most relevant one and 0 otherwise.

5. Preliminary validation

The method has been tested on the ‘car on the hill’
problem, a classical benchmark in RL (Ernst et al.,
2005). This problem, which has a (continuous) state
space of dimension two (the position p and the speed
s of the car), is originally a deterministic problem. We
have added to these variables some non-informative
components so as to set up an experimental protocol.
In our trials, the algorithm described previously was
able to identify s and p as the most informative vari-
ables, which is encouraging for our future work with
real-life clinical data.

Acknowledgments

This paper presents research results of the Belgian
Network BIOMAGNET (Bioinformatics and Model-
ing: from Genomes to Networks), funded by the In-
teruniversity Attraction Poles Programme, initiated
by the Belgian State, Science Policy Office. The sci-
entific responsibility rests with its authors.

References

Ernst, D., Geurts, P., & Wehenkel, L. (2005). Tree-
based batch mode reinforcement learning. Journal
of Machine Learning Research, 6, 503–556.

Murphy, S. (2005). An experimental design for
the development of adaptative treatment strategies.
Statistics in Medicine, 24, 1455–1481.

20



An Alternative Approach for Playing Complex Games like Chess

Jan Lemeire JAN.LEMEIRE@VUB.AC.BE

ETRO Dept., Vrije Universiteit Brussel, Brussels, Belgium

Abstract
Computer algorithms for game playing rely on
a state evaluation which is based on a set of fea-
tures and patterns. Such evaluation can, however,
never fully capture the full complexity of games
such as chess, since the impact of a feature or
a pattern on the game outcome heavily relies on
the game’s context. It is a well-known problem
in pattern-based learning that too many too spe-
cialized patterns are needed to capture all pos-
sible situations. We hypothesize that a pattern
should be regarded as an opportunity to attain a
certain state during the continuation of the game,
which we call the effect of a pattern. For cor-
rect game state evaluation, one should analyze
whether the desired effects of the matched pat-
terns can be reached. Patterns indicate opportuni-
ties to reach a more advantageous situation. Tes-
ting whether this is possible in the current context
is performed through a well-directed game tree
exploration. We argue that this approach comes
closer to the human way of game playing.

1. Why the Evaluation Fails
Besides the abundant game playing research in optimizing
the brute-force minimax search much work is done on lear-
ning algorithms. They try to mimic human game playing.
Explanation-based algorithms offer such an approach. In
explanation-based learning (EBL), prior knowledge is used
to analyze, or explain, how each observed training exam-
ple satisfies the target concept (Mitchell et al., 1986). This
explanation is then used to distinguish the relevant features
of the training examples from the irrelevant, so that exam-
ples can be generalized based on logical rather than statis-
tical reasoning. A pattern denotes an advantageous situa-
tion. The explanations must give the sufficient and neces-
sary conditions for a pattern to be successful.

However, for a complex game like chess, patterns that have
to capture all aspects of a game become too complex. Con-
sider the task of learning to recognize chess positions - the
explanations - in which “one’s queen will be lost within the

next few moves” - the pattern (Mitchell & Thrun, 1996).
In a particular example, the queen could be lost due to a
fork, in which “the white knight is attacking both the black
king and queen”. A fork is, however, hard to define cor-
rectly. One has to capture all situations in which the pat-
tern leads to a successful outcome. All counter-plans that
are available to the opponent for saving both its threatened
pieces have to be excluded (Fürnkranz, 2001, p. 25). A
quasi-unlimited number of counter moves, generated by the
context in which the pattern appears, exist that can neutral-
ize the effects. Minton (Minton, 1984) and Epstein (Ep-
stein et al., 1996) highlight the same problem of learning
too many too specialized rules with explanation-based lear-
ning. Even in simple games, such as tic-tac-toe, 45 con-
cepts were learned with 52 exception clauses (Fawcett &
Utgoff, 1991).

For adequate pattern-based evaluation functions, the pat-
terns must contain all information on the outcome of the
game. This can be written as:

state ⊥⊥ outcome | Patterns(state) (1)

where Patterns(state) stands for the patterns that apply
for state. All game-playing algorithms rely in one way
or another on an evaluation of game states. A brute-force
search tries to postpone an evaluation as much as possible,
it explores all possible move sequences as far as possible
into the future.

2. Alternative Approach
Our analysis is based on the observation that the outcome
of a game is determined by the exact interaction of the pat-
terns and heavily depends on the context of the game state.
Trying to describe all the interactions leads, by the com-
plexity of the game, to an enormous amount of rules or
patterns. We hypothesize that the influence of a pattern on
the game outcome depends on the achievement of certain
states during the continuation of the game. We call these
states the effects of the pattern. The influence of a pattern
on the game outcome is completely described by these ef-
fects. The game can be analyzed by the set of existing pat-
terns and whether their effects can be achieved. The differ-
ence with the explanation-based approach is that we do not
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Figure 1. Game tree exploration by looking at patterns and their
possible effects

expect the game always to reach the effect in the presence
of the pattern.

Take the game tree of Fig. 1. Assume that the white player
considers playing move a by which he arrives at a position
in which pattern 1 is true. He hopes of achieving one of
the advantageous effects of the pattern. The black player
sees two possible counter moves. If he chooses for move
c, however, white can collect the benefits of pattern 1 with
move e. This is not possible if black chooses for move d.
White can then play f or g, but in both cases black neutral-
izes the threat of pattern 1 with moves h and j respectively.
Both moves bring the game in a state in which the posi-
tive effects of the pattern cannot be attained anymore. Note
that not all possible moves have to be explored. The game
tree can be pruned effectively. Only the moves interfering
with the pattern has to be explored. The other moves can be
classified as being irrelevant, since they do not approximate
white to the achievement of pattern 1’s effect.

We thus have defined a new kind of generic knowledge;
patterns together with their effects. However, an imple-
mentation of this approach needs a yet inexistent pattern
engine. We do not have a general way to describe, recog-
nize, learn and reason with patterns.

3. Human-like Game Playing
Psychological studies have shown that the differences in
playing strengths between chess experts and novices are
not so much due to differences in the ability to calculate
long move sequences, but to which moves they start to cal-
culate. Cowley and Byrne showed that chess experts rely

on falsification (Cowley & Byrne, 2004). The results of
the research show that chess masters were readily able to
falsify their plans. They generated move sequences that
falsified their plans more readily than novice players, who
tended to confirm their plans. Our approach confirms this;
it is based on plans and on falsification.

It’s well-known that humans have difficulties formally
defining the knowledge they use. Our approach can ex-
plain this. A pattern only denotes an opportunity. A pre-
cise description of the states in which it is successful is
not necessary, a well-directed tree search is used to con-
firm or falsify the hypothesis. Our approach also explains
why humans can reason about a game, why we can exactly
pinpoint which actions were decisive in a game and why.
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Abstract
ProbLog is a recently introduced probabilis-
tic extension of Prolog (De Raedt et al.,
2007). A ProbLog program defines a distri-
bution over logic programs by specifying for
each clause the probability that it belongs
to a randomly sampled program, and these
probabilities are mutually independent. The
semantics of ProbLog is then defined by the
success probability of a query in a randomly
sampled program. It has been applied to link
mining and discovery in a large biological net-
work. In the talk, I will also discuss various
learning settings for ProbLog and link min-
ing, in particular, I shall present techniques
for probabilistic local pattern mining (Kim-
mig & De Raedt, 2008), probabilistic expla-
nation based learning (Kimmig et al., 2007)
and theory compression from examples (De
Raedt et al., 2008).
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Abstract

Probabilistic databases compute the success
probabilities of queries. We introduce the
problem of learning the parameters of the
probabilistic database ProbLog. Given the
observed success probabilities of a set of
queries, we use a least squares approach to
compute the probabilities attached to facts
that have a low approximation error on the
training data as well as on unseen examples.1

1. Introduction

The statistical relational learning community has de-
voted a lot of attention to learning both the struc-
ture and parameters of probabilistic logics, cf. (Getoor
& Taskar, 2007; De Raedt et al., 2008), but so far
seems to have devoted little attention to the learn-
ing of probabilistic database formalisms. Probabilis-
tic databases (Dalvi & Suciu, 2004; De Raedt et al.,
2007) associate probabilities to facts, indicating the
probabilities with which the facts hold. This informa-
tion is then used to define and compute the success
probability of queries or derived facts or tuples. Be-
cause probabilistic databases do not constitute a gen-
erative model, it has – so far – been unclear as how
to learn such databases. In this paper, we introduce
the problem of learning the parameters of probabilis-
tic databases from a set of queries together with their
target probabilities. The approach is incorporated in

1This is a shortened version of an extended abstract
submitted to the 6th International Workshop on Mining
and Learning with Graphs (MLG2008)

the probabilistic database ProbLog (De Raedt et al.,
2007), though it can easily be integrated in other prob-
abilistic databases as well. ProbLog has been designed
to support life scientists that mine a large network of
biological entities in interactive querying sessions..

a

b

0.7 c
0.8

0.6

d
0.9

(a)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0  10  20  30  40  50

M
S

E

Iteration

MSE on test set

(b)

Figure 1. (a) Probabilistic graph. (b) Learning curve with
standard deviation, on test set for graph with 88 edges.

2. ProbLog

ProbLog is a simple probabilistic extension of Prolog
introduced in (De Raedt et al., 2007). A ProbLog
program consists – as Prolog – of a set of definite
clauses. However, in ProbLog every fact ci is la-
beled with the probability pi that it is true, and those
probabilities are assumed to be mutually independent.
For ease of illustration, we will consider probabilis-
tic graphs like the one in Figure 1(a) in the follow-
ing, but the entire discussion carries over to arbitrary
ProbLog programs. Such a probabilistic graph can
be used to sample subgraphs by tossing a biased coin
for each edge. The corresponding ProbLog program
T = {p1 : c1, · · · , pn : cn} therefore defines a probabil-
ity distribution over subgraphs L ⊆ LT = {c1, · · · , cn}
in the following way:

P (L|T ) =
∏

ci∈L
pi

∏
ci∈LT \L

(1− pi).
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It is straightforward to add background knowledge in
the form of Prolog clauses, say, the definition of a path
by combining edges. We can then ask for the probabil-
ity that there exists e.g. a path between nodes a and
c in our probabilistic graph, i.e. the probability that a
randomly sampled subgraph contains the edge from a
to c, or the path from a to c via b (or both of them).
Formally, the success probability Ps(q|T ) of a query q
in a ProbLog program T is defined as

Ps(q|T ) =
∑

L⊆LT

P (q|L) · P (L|T ) , (1)

where P (q|L) = 1 if there exists a θ such that L |= qθ,
and P (q|L) = 0 otherwise. The success probability of
query q corresponds to the probability that the query
q is provable in a randomly sampled logic program.
Due to presence of multiple paths in samples, eval-
uating the success probability of ProbLog queries is
computationally hard, see (De Raedt et al., 2007) for
an approximation algorithm.

3. Parameter Learning

ProbLog does not provide a generative model for
sampling queries (e.g. paths between nodes). Thus,
we cannot directly apply standard maximum likeli-
hood techniques for parameter estimation based on
the EM algorithm. We consider parameter learning
for ProbLog as a function optimization problem:

Definition 1 (ProbLog Parameter Learning)
Given a set of training examples {qi, p̃i}Ki=1, K > 0,
where each qi ∈ H is a logical query with success
probability p̃i, find a function h : H → [0, 1] with
low approximation error on the training data as well
as on unseen examples. H comprises all parameter
assigments for a given logical program T .

We want to minimize the mean squared error (MSE):

MSE(T ) =
1
K

∑
1≤i≤K

(
Ps(qi|T )− p̃i

)2
. (2)

It is easy to show that minimizing the squared error in
this case corresponds to finding a maximum likelihood
hypothesis, provided that for each training example
(qi, p̃i), a Gaussian error is included, i.e. p̃i = p(qi)+ei,
with p(qi) the actual probability of query qi and ei

drawn independently from a Gaussian with mean zero.
We now derive the gradient of the MSE. Applying the
sum and chain rule to Eq. (2) yields the partial deriva-
tive ∂MSE(T )/∂pj =

2
K

∑
1≤i≤K

(
Ps(qi|T )− p̃i

)︸ ︷︷ ︸
Part 1

· ∂ Ps(qi|T )
∂pj︸ ︷︷ ︸

Part 2

. (3)

We apply standard gradient descent to minimize the
MSE. (3) can be evaluated by ProbLog inference di-
rectly (Part 1) and by slightly adapting the underlying
techniques (Part 2).

4. Experiments

We implemented the gradient descent algorithm in
Prolog (Yap-5.1.3). Since this is ongoing work, we pri-
marily try to answer the question: does the gradient
descent minimize the MSE?

As our test graph G, we used a real biological graph
around 3 random Alzheimer genes, with 45 nodes and
88 edges, cf. (De Raedt et al., 2007). We randomly
sampled 100 node pairs and calculated the probability
that there exists a path between them using approxi-
mative ProbLog inference. We performed 5-fold cross-
validation, initializing the parameters randomly, with
fixed seed for succeeding experiments. Figure 1(b)
shows the learning curve for the test set. After 50 it-
erations, the MSE averaged over 5 folds is 0.00016 ±
0.00001 on the training set and 0.00107 ± 0.00065 on
the test set, answering our question positively.

5. Conclusions

We introduced an approach to parameter learning for
the probabilistic database ProbLog and successfully
showed it at work on a real biological application. In-
teresting directions for future research include optimiz-
ing the learning algorithm and regularization-based
cost functions. Those enable domain experts to refine
probabilities of a database by stating examples.
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Abstract
Agents that learn and act in real-world environ-
ments have to cope with both complex state de-
scriptions and non-deterministic transition be-
havior of the world. Standard statistical rela-
tional learning techniques can capture this com-
plexity, but are often inefficient. We present
a simple probabilistic model for such environ-
ments based on CP-Logic. efficiency is main-
tained by restriction to a fully observable setting.

1. Introduction
Artificial intelligence aims at developing agents that learn
and act in complex environments. Realistic environments
typically feature a variable number of objects, relations
amongst them, and non-deterministic transition behav-
ior. Standard probabilistic sequence models provide effi-
cient inference and learning techniques, but typically can-
not fully capture the relational complexity. On the other
hand, statistical relational learning techniques are often
too inefficient. In this paper, we present a simple model
that occupies an intermediate position in this expressive-
ness/efficiency trade-off. More specifically, we contribute
a novel representation, called CPT-L (for CPTime-Logic),
that essentially defines a probability distribution over se-
quences of interpretations. Interpretations are relational
state descriptions that are typically used in planning and
many other applications of artificial intelligence. CPT-L
is a variation of CP-logic (Vennekens et al., 2006), a recent
expressive logic for modeling causality. By focusing on the
sequential aspect and deliberately avoiding the complica-
tions that arise when dealing with hidden variables, CPT-L
is more restricted, but also more efficient to use than its
predecessor and alternative formalisms within the artificial
intelligence and statistical relational learning literature.

This is clear when positioning CPT-L w.r.t. to the few
existing approaches that can probabilistically model se-
quences of relational state descriptions. First, standard
SRL-approaches (Getoor & Taskar, 2007) can be used in
this setting by explicitly modeling time. However, such
models are often intractable for complex sequential real-

world domains. Second, relational STRIPS-based tech-
niques (Zettlemoyer et al., 2005) are able to probabilisti-
cally model relational sequences. However, they are re-
stricted by the fact that only one rule can “fire” at a par-
ticular point in time and thus only one aspect of the world
can be changed. The key contributions of our work are the
introduction of 1) the CPT-L model for representing proba-
bility distributions over sequences of interpretations, 2) we
report that efficient inference is possible under the assump-
tion of fully observability and the restriction to sequential
causal effects.

2. CPT-L
A relational interpretation I is a set of ground facts
a1, ..., aN .A relational stochastic process defines a distri-
bution P (I1, ..., IT ) over sequences of interpretations of
length T .The semantics of CPT-L is based on CP-logic, a
probabilistic first-order logic that defines probability distri-
butions over interpretations (Vennekens et al., 2006). CP-
logic has a strong focus on causality and constructive pro-
cesses: an interpretation is incrementally constructed by
a process that adds facts which are probabilistic outcomes
of other already given facts (the causes). CPT-L com-
bines the semantics of CP-logic with that of (first-order)
Markov processes. Causal influences only stretch from
It to It+1 (Markov assumption), are identical for all time
steps (stationarity), and all causes and outcomes are ob-
servable. Models in CPT-L are also called CP-theories, and
are defined as follows:

Definition 1. A CPT-theory is a set of rules of the form

r = (h1 : p1) ∨ . . . ∨ (hn : pn)︸ ︷︷ ︸
head(r)

← b1, . . . , bm︸ ︷︷ ︸
body(r)

where the hi are logical atoms, the bi are literals (i.e.,
atoms or their negation) and pi ∈ [0, 1] probabilities s.t.∑n

i=1 pi = 1.

We shall also assume all variables appearing in the head
of the rule also appear in its body. The intuition behind a
rule is that whenever the (grounded) body of the rule holds
in the current state It, one of the (grounded) heads will
hold in the next state It+1. In this way, the rule models
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Figure 1. Large graph: per-sequence log-likelihood on training
data as a function of the EM iteratio. Small graph: Running time
of EM as a function of the number of blocks in the world model.

a (probabilistic) causal process as the condition specified
in the body causes one (probabilistically chosen) atoms in
the head to become true in the next time step. One of the
main features of CPT-theories is that they are easily ex-
tended to include background knowledge, which can be any
logic program (cf. (Bratko, 1990)). In the presence of back-
ground knowledge, we say that a ground rule is applicable
in an interpretation It if its body b1θ, . . . , bmθ can be logi-
cally derived from It and the logic program B.
A CPT-theory defines a distribution over possible succes-
sor states, P (It+1 | It), in the following way. Let Rt =
{r1, ..., rk} denote the set of all ground rules applicable
in the current state It. Each ground rule applicable in It
will cause one of its head elements to become true in It+1.
More formally, a selection σ is a mapping from rules ri to
indices ji denoting that head element hiji ∈ head(ri) is
selected. In the stochastic process to be defined, It+1 is a
possible successor for the state It if and only if there is a
selection σ such that It+1 = {h1σ(1), ..., hkσ(k)}. We say
that σ yields It+1 from It, denoted It

σ→ It+1, and define

P (It+1|It) =
∑

σ:It
σ→It+1

P (σ) =
∑

σ:It
σ→It+1

∏
(ri,ji)∈σ

pji , (1)

where pji is the probability associated with head element
hiji in ri. As for propositional Markov processes, the prob-
ability of a sequence I1, ..., IT given an initial state I0 is
defined by

P (I1, ..., IT ) = P (I1)
T∏

t=0

P (It+1 | It). (2)

Intuitively, it is clear that this defines a distribution over
all sequences of interpretations of length T much as in the
propositional case.

3. Experimental Evaluation
The proposed CPT-L model has been evaluated in a
stochastic version of the well-known blocks world do-

main. The domain was chosen because it is truly rela-
tional and also serves as a popular artificial world model
in agent-based approaches such as planning and reinforce-
ment learning. Furthermore, it is an example for a domain
in which multiple aspects of the world can change concur-
rently — for instance, a block can be moved from A to
B while at the same time a stack collapses, spilling all of
its blocks on the floor. In an experiment, we explore the
convergence behavior of the EM algorithm for CPT-L. The
world model together is implemented by a (gold-standard)
CPT-theory T , and a training set of 20 sequences of length
50 each is sampled from T . From this data, the parameters
are re-learned using EM. Figure 1, large graph, shows the
convergence behavior of the algorithm on the training data
for different numbers of blocks in domain, averaged over
15 runs. It shows rapid and reliable convergence. Figure 1,
small graph, shows the running time of EM as a function
of the number of blocks. The scaling behavior is roughly
linear, indicating that the model scales well to reasonably
large domains. Absolute running times are also low, with
about 1 minute for an EM iteration in a world with 50
blocks.This is in contrast to other, more expressive model-
ing techniques which typically scale badly to domains with
many objects. The difference between the log likelihood on
an independent test set of the gold-standard model and the
learned model, were by four orders of magnitudes smaller
than the difference to a random model. Manual inspection
of the learned model also shows that parameter values are
on average very close to those in the gold-standard model.

4. Conclusions and Future Work
We have introduced CPT-L, a probabilistic model for se-
quences of relational state descriptions. In contrast to other
approaches that address this setting, the focus in CPT-L is
on computational efficiency rather than maximal expres-
sivity. The main interesting directions for future work is to
further evaluate representation power and scaling behavior
of the model in challenging real-world domains.
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Abstract

This abstract discusses a very simple and e�-
cient algorithm to learn the chordal structure
of a probabilistic model from data. The al-
gorithm is a greedy hill-climbing search algo-
rithm that uses the inclusion boundary neigh-
borhood over chordal graphs. In the limit
of a large sample size and under appropriate
hypotheses on the scoring criterion, the algo-
rithm will �nd a structure that is inclusion-
optimal when the dependency model of the
data-generating distribution can be perfectly
represented by an undirected graph.

1. Introduction

This abstract considers the class of graphical models
whose structure is a chordal graph, known as the class
of decomposable models. A chordal graph is an undi-
rected graph (UG) where every cycle comprising more
than three edges has a chord. The class of dependency
models de�ned by chordal graphs is the intersection
of the class of directed acyclic graphs (DAGs) depen-
dency models and the class of UG dependency models.

A greedy hill-climbing search algorithm is often used
to learn the DAG structure of a Bayesian Network.
Di�erent choices of search spaces and neighborhoods
connecting the search space are possible. In partic-
ular, the search may proceed over the set of Markov
equivalence classes of DAG structures by exploiting
the inclusion boundary neighborhood (see (Chicker-
ing, 2002; Auvray & Wehenkel, 2002)). Under appro-
priate assumptions on the scoring criterion and on the
data-generating distribution, a greedy algorithm us-
ing the inclusion boundary neighborhood returns an
inclusion-optimal structure in the limit of a large sam-
ple size (see (Chickering & Meek, 2002) and (Castelo &
Ko£ka, 2003)). Unfortunately, the size of the inclusion
boundary of an equivalence class of a DAG structure
is in the worst case exponential in the number of vari-
ables. The notion of inclusion boundary neighborhood

can also be de�ned over sets of chordal graphs. In this
context, its size is bounded from above by the square
of the number of variables and it can be computed
easily.

In this abstract, we investigate the optimality prop-
erties of the greedy hill-climbing search algorithm us-
ing the inclusion boundary neighborhood to learn a
chordal structure. As mentionned above in the case
of DAG structures, a desirable property of a structure
learning algorithm is to return an inclusion-optimal
solution. We describe a local asymptotic consistency
property of scoring criteria that ensures that a greedy
search will produce an inclusion-optimal chordal struc-
ture when the independence relations holding in the
data-generating distribution can be represented ex-
actly by an undirected graph. For more details and
omitted proofs, see (Auvray & Wehenkel, 2008).

2. Background

Consider an undirected graph G whose vertex set X
is a set of random variables. Given disjoints sets
A,B,C ⊆ X, we say that A and B are separated by
C in G if all paths between a vertex in A and a vertex
in B go through at least one vertex in C. The depen-
dency model encoded by G consists of the marginal
and conditional independence relations A ⊥ B|C such
that A and B are separated by C in G. In the se-
quel, we sometimes identify an undirected graph and
its dependency model.

Let us de�ne the notion of inclusion-optimality for
chordal graphs. Consider a particular dependency
model M0. We say that a chordal dependency model
M is inclusion-optimal for M0 if M0 ⊆ M and there
is no chordal dependency model M ′ such that M0 ⊆
M ′ ⊆ M . This notion has a simple graphical inter-
pretation: a chordal graph G encodes an inclusion-
optimal dependency model for M0 if, and only if, (a)
it does not encode any independence assumption that
does not hold inM0 and (b) every chordal subgraph of
G encodes such an incorrect independence assumption.
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Let us present the notion of inclusion boundary for
chordal graphs. The inclusion boundary of a chordal
graph G is the set of chordal graphs H satisfying

• I(G) ⊆ I(H) and there is no chordal graph K
such that I(G) ⊆ I(K) ⊆ I(H), or

• I(H) ⊆ I(G) and there is no chordal graph K
such that I(H) ⊆ I(K) ⊆ I(G),

where I(C) denotes the dependency model (i.e. the set
of conditional independencies) encoded by the chordal
graph C. It is straightforward to describe graphically
the inclusion boundary of a chordal graph G: it con-
sists of the chordal graphs that di�er from G by the
addition or removal of a single edge. This is a con-
sequence of the fact that, for any two chordal graphs
G,H such that H is a subgraph of G, there exists
a sequence of chordal graphs K0, . . . ,Kn such that
K0 = H, Kn = G and Ki+1 is obtained from Ki by
adding a single edge (see (Giudici & Green, 1999)).

3. Inclusion-optimality of greedy search

Following the terminology of (Chickering & Meek,
2002), we say that a scoring criterion score(·) for
chordal graphs is locally consistent for a dependency
model I if, for each vertices a, b and chordal graphs G,
H such that H is obtained from G by removing a− b,
we have

1. a ⊥ b|neG(a) ∩ neG(b) ∈ I ⇒ score(H) >
score(G),

2. a ⊥ b|neG(a) ∩ neG(b) /∈ I ⇒ score(G) >
score(H),

where neK(a) denotes the sets of neighboring (i.e. ad-
jacent) vertices of a in K.

Recall that a scoring criterion score(·) for a DAG de-
pendency model encoded by G is decomposable if it
can be written as a sum of functions that depend each
on only one vertex and its parents, i.e.

score(G) =
∑
v∈V

f
(
v, paG(v)

)
.

The following proposition holds.

Proposition 1. If score(·) is a scoring criterion over
DAG dependency models that is decomposable and con-
sistent for a dependency model I, then it is locally con-
sistent for I when restricted to chordal graphs and

score(G)−score(H) = f
(
b, {a}∪(neG(a)∩neG(b))

)
− f(

b, neG(a) ∩ neG(b)
)
,

for chordal graphs G and H such that H is obtained
from G by removing the edge a− b.
In practice, scoring criteria over DAG dependency
models only satisfy the consistency property asymp-
totically in the limit of a large sample size. When
restricted to chordal dependency models, such scoring
criteria will only be locally consistent asymptotically.

The main result of this abstract can now be stated.

Proposition 2. If score is a scoring criterion for
chordal graphs that is consistent and locally consistent
for a graph-isomorph dependency model I, then local
optima of score(·) w.r.t. the inclusion boundary neigh-
borhood are inclusion-optimal for I.
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1. Motivation

Learning of Bayesian networks aims at modeling the
joint density of a set of random variables from a ran-
dom sample of joint observations of these variables
(Näım et al., 2007). Such a graphical model may
be used for elucidating the conditional independences
holding in the datagenerating distribution, for auto-
matic reasoning under uncertainties, and for Monte-
Carlo simulations. Unfortunately, currently available
algorithms for Bayesian network structure learning
are either restrictive in the kind of distributions they
search for, or of too high computational complexity to
be applicable in high dimensional spaces.

Ensembles of weakly fitted randomized models have
been studied intensively and used successfully in the
supervised learning literature during the last two
decades. Among the advantages of these methods, let
us quote the improved scalability of their learning al-
gorithms thanks to randomization and the improved
predictive accuracy the induced models thanks to their
higher flexibility in terms of bias/variance trade-off.
For example, ensembles of extremely randomized trees
have been applied successfully in very complex high-
dimensional tasks, such as image and sequence classi-
fication (Geurts et al., 2006).

In this work we explore the Perturb and Combine
idea celebrated in supervised learning in the context
of probability density estimation in high-dimensional
spaces. We propose a new family of unsupervised
learning methods of mixtures of large ensembles of
randomly generated poly-trees. The specific feature
of these methods is their scalability to very large num-
bers of variables and training instances. We explore
various variants of these methods empirically on a set
of discrete test problems of growing complexity.

2. Methods

2.1. Poly-Tree density models

Let X = {X1, . . . , Xn} denote a finite set of discrete
random variables.

A poly-tree model P for the density over X is defined
by a directed acyclic graph which skeleton is acyclic
and connected, and the set of vertices of which is in
bijection with X and with a set of conditional densi-
ties PP (Xi|paP (Xi)), where paP (Xi) denotes the set
of variables in bijection with the parents of Xi in P .
It represents graphically the density factorization

PP (X1, . . . , Xn) =
n∏

i=1

PP (Xi|paP (Xi)). (1)

Poly-tree models can be used for probabilistic inference
over P(X1, . . . , Xn) with a computational complexity
linear in the number of variables n (Pearl, 1986).

One can define nested subclasses of poly-tree density
models by imposing constraints on the maximum num-
ber p of parents of any node. In these subclasses, not
only inference but also parameter learning is of lin-
ear complexity in the number of variables. The small-
est such subclass is called the tree subspace, in which
nodes have exactly one parent (p = 1).

2.2. Mixture models of poly-trees

A mixture model of m poly-tree models (P1, . . . , Pm)
is defined as a convex combination of the elementary
poly-tree models, ie.

PM (X1, . . . , Xn) =
m∑

i=1

µiPPi(X1, . . . , Xn), (2)

where µi ∈ [0, 1] and
∑m

i µi = 1.
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While single poly-tree models impose restrictions on
the kind of densities they can faithfully represent, mix-
tures of poly-trees are universal approximators.

2.3. Learning a random mixture from data

Let X be a set of discrete random variables, and
D = (x1, · · · , xd) be a sample of joint observations
xi = (xi

1, · · · , xi
n) drawn from some datagenerating

distribution PG(X). Let P be the space of all possible
poly-tree graphical structures defined over X .

Our generic procedure for generating a random mix-
ture of poly-tree models from D is described by Algo-
rithm 1; it receives as inputs X , D, m, and three pro-
cedures DrawPolytree, LearnPars, ComputeWeight.

Algorithm 1 (Learning random poly-tree mixtures)

1. Repeat for i = 1, · · · , m:

(a) Pi = DrawPolytree(P),
(b) For j = 1, · · · , n:

PPi(Xj |paPi(Xj)) = LearnPars(Pi, Xj , D)
(c) µi = ComputeWeight(Pi, D, m)

2. Return
(
µi, (PPi(Xj |paPi(Xj)))

n
j=1

)m

i=1
.

3. Experiments and preliminary results

In (Ammar et al., 2008) we report some first results
with the above algorithm applied to datasets of size
d = 1000 generated from discrete distributions with
n = 8, which could be faithfully represented by a
chain, a single tree, or a single poly-tree model.

In these simulations we have considered two differ-
ent instances of DrawPolytree, namely a uniform draw
over the class P of all poly-trees, and a uniform draw
over the subclass P1 of trees. In order to achieve this
for m ∈ {1, 2, . . . , 1000}, we have used efficient algo-
rithms for sampling trees given in (Quiroz, 1989).

For parameter learning, we used maximum a posteriori
values given the dataset and structure, while assuming
non-informative priors on the parameters. Concern-
ing the µis, we used a uniform weighting strategy, ie.
ComputeWeight(Pi, D, m) = 1/m.

Overall, these results showed that the quality of the
mixture-models converges rather rapidly (ie. for m ≈
20), and that the poly-tree mixtures were slightly su-
perior when targeting poly-tree datagenerating distri-
butions, while the mixtures of trees were superior in
the other two cases. We also observed a slightly non-
monotonic behavior of the model quality with growing
values of m, which we suspect to be related to the
uniform weighting scheme.

In the immediate future, we will carry out further more
systematic experiments on larger problems and span-
ning different versions of the algorithm.

In particular, we will consider non-uniform weighting
schemes, by exploiting the score obtained for a given
structure and dataset so as to downweight structures
that fit less well to the datagenerating distribution.
We will also consider sampling from the spaces Pp of
poly-trees of bounded number of parents.

Experiments will be made over a richer set of datagen-
erating distributions, in particular ones that can not
be represented faithfully by a single poly-tree model.
For instance, we will consider general directed acyclic
graph models as datagenerating distributions.

We will compare our algorithm in terms of sample and
computational efficiency with Bayesian network struc-
ture learning and algorithms targeting an optimal mix-
ture of tree-models (Meila-Predoviciu, 1999).

Subsequently, we plan to extend our approach to han-
dle continuous variables and incomplete datasets.
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Abstract

We present a hierarchical feature fusion
model for image classification that is con-
structed by an evolutionary learning algo-
rithm. The model has the ability to com-
bine local patches whose location, width and
height are automatically determined during
learning. The representational framework
takes the form of a two-level hierarchy which
combines feature fusion and decision fusion
into a unified model. The structure of the
hierarchy itself is constructed automatically
during learning to produce optimal local fea-
ture combinations. A comparative evaluation
of different classifiers is provided on a chal-
lenging gender classification image database.
It demonstrates the effectiveness of these Fea-
ture Fusion Hierarchies (FFH).

1. Introduction

The generalization of new image acquisition devices
and the development of new feature extractors have
recently increased the interest of combining comple-
mentary modalities or features to perform automatic
image classification. Hierarchical approaches (Singh
et al., 2008; Podolak, 2008; Kim & Oh, 2008) to im-
age classification are particularly interesting to solve
complex problems because they are capable to decom-
pose them into tasks that are often easier to tackle.
However, these approaches often tend to manually de-
fine the structure of their hierarchy depending on the
features involved (Tan & Triggs, 2007), and can only
exploit a limited number of features. The current pa-
per addresses these problems by presenting a frame-
work that performs gender classification based on a
large set of features extracted from facial images. The
structure of the model as well as its parameters are es-
timated by a genetic learning algorithm that explores
the space of possible hierarchies.

2. Feature Fusion Hierarchies

Feature Fusion Hierarchies (FFH) address the problem
of fusing high-dimensional registered feature sets for
image classification. The representational framework
takes the form of a two-level hierarchy which combines
local feature fusion and decision fusion into a unified
model (Figure 1).

Given a feature set I(x, y, f), where (x, y) denotes a
position in the image, and f is a feature, the feature
fusion level is defined as a set of compound features C.
Each compound feature Ci combines a subset of fea-
tures fCi ∈ f over a local window θCi . This fusion is
done using a dimensionality reduction technique, de-
noted Ri(IfCi

,θCi
), and learned in a supervised way

(e.g. LDA). A key property of this function Ri is
to operate locally in the sense that it exploits local
adaptive windows (Scalzo & Piater, 2007) whose pa-
rameters θCi

= {x, y, Sx, Sy} are automatically ad-
justed during learning (position in the image (x, y),
width Sx and height Sy). The output of the func-
tion Si = Ri(IfCi

,θCi
) corresponds to a lower dimen-

sionality response vector. An additional classifier is
learned on the top of the first level to form the second
level D corresponding to the decision fusion. Its in-
put data correspond to the compound feature output
{S1, S2, . . . , Sn} merged into a single vector S.

3. Learning of Fusion Hierarchies

A canonical genetic algorithm is used to explore the
space of possible hierarchies (both the structure and
the parameters are estimated). The optimal solution
is the one that offers the best classification rate on the
validation data and minimizes the number of features
used as well as the size of the patches.

3.1. Genome Representation

Each evolving genome in the population is represented
as a binary vector encoding the structure and the pa-
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Figure 1. Overview of a Feature Fusion Hierarchy (FFH).

rameters of a specific hierarchy (Fig. 2). A genome
defines the hierarchy as a set of Nc combinations Ci.
The structure of Ci corresponds to the subset of fea-
tures that are combined fCi = {f1, . . . , fn} whereas its
parameters define the location (x, y) and size (Sx, Sy)
of the local window in the image on which the fusion
is performed.

Given n features at the first level, the structural part
is represented as a n-length binary vector encoding
the presence of the features in the combination. For
the parameter part, variables {x, y, Sx, Sy} are each
represented as b bits vector.

00 1 0 11

Features Local Window

f1 f2 f3 fn x y Sx Sy

100 1 00 1 0 11

Genome

Combination

c1 c2 c3 c4

Figure 2. A Feature Fusion Hierarchy made of four com-
pound features (c1, c2, c3, c4) is encoded into a genome.
The structural part and the parameters are embedded into
a single binary vector.

3.2. Fitness, Crossover and Mutation

The fitness function fit(h) is used to evaluate each in-
dividual in the population. It is set proportional to
the classification rate r of the genome encoded hier-
archy g, fit(g) = r(g) + α1n + α2s

−1, where n is the
number of zeros in the structure part of the genome
g and s is the total area covered by the patches. Pa-

rameters α1 and α2 are used respectively to support
combinations that have a fewer number of features and
are defined over a smaller window. A bi-parental ran-
dom crossover and a single point mutation operator
are used in our algorithm to produce new individuals.

4. Experiments

The effectiveness of the proposed framework is evalu-
ated on a gender classification problem. Given a set
of 400 facial images (Sun et al., 2002) captured un-
der various conditions, the task is to correctly iden-
tify the gender of the subject present in the image.
Each image is convolved with 35 Gabor filters and 5
Laplacian filters to produce the initial feature set on
which our Feature Fusion Hierarchies (FFH) are con-
structed. The classification results after a three-fold
cross-validation are reported in Table 1 for LDA, SVM
and KSR classifiers. It can be observed that the use of
the Feature Fusion Hierarchies (FFH) reduces signifi-
cantly the classification error of a PCA-based frame-
work and outperforms the results obtained by PCA-
GA approach (Sun et al., 2002). This can be explained
by the fact that our FFH approach exploits local fea-
tures whereas PCA-GA computes the projections on
the entire image.

LDA SVM KSR
PCA 14.2% 8.9% -%

GA-PCA(Sun et al., 2002) 9% 4.7% -%
FFH (this paper) 7.2% -% 3.8%

Table 1. Results for three different classifiers are reported
for PCA, GA-PCA (Sun et al., 2002) and the Feature Fu-
sion Hierarchies (FFH).
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Abstract

This paper presents a classifier-based ap-
proach to recognize possibly sophisticated
events in video surveillance. The aim of this
work is to propose a flexible and generic event
recognition system that can be used in a real
world context. Our system uses the ensem-
ble of randomized trees procedure to model
each event as a sequence of structured ac-
tivity patterns, without using any tracking
method. Experimental results demonstrate
the robustness of the system toward artifacts
and passer-by, and the effectiveness of its
framework for event recognition applications
in visual surveillance.

1. Overview

The growing number of cameras in public and pri-
vate areas increases the interest of the image process-
ing community in automated visual surveillance sys-
tem. Nonetheless, there is still a broad gap between
what automated systems offer and the actual needs
of the industry (Dee & Velastin, 2007). The system
we propose aims at reducing this gap, by using a co-
herent framework that links local and coarse features
with meaningful concepts. Those local features are at-
tributes representing the moving objects (the blobs)
in the scene, at each frame. No tracking procedure
nor intermediate reasoning (eg. occlusions) is needed
which leads in a greater genericity. The framework
we propose (figure 1) relies on two main parts that
are both based on the ensemble of randomized trees
concept (Geurts et al., 2006).

In the first stage (section 2), sophisticated features are
built by clustering the blobs according to their fea-
ture’s values at each frame. Those clusters are tagged,

I - Preprocessing


Video sequences


II - Supervised

Clustering


III - Supervised

Learning


Event label


Database of

event models


Database of new

features


Machine Learning Strategy


Figure 1. Overview of the system

and each tag is then associated to the appropriate
frames in the video sequences. In the second stage
(section 3), the events are classified, based on the tem-
poral distribution of those tags in the sequences. The
main idea is to discriminate event classes by investi-
gating the temporal relationships between the tags, for
example by asking if there is a blob of one type before
a blob of another type. This framework is inspired
from Geman works in (Amit & Geman, 1997).

2. Construction of elaborated features
and definition of tags

From the blob’s features, we adopt an information-
theoretic approach and cluster similar blobs by using
the decision tree methodology. Two sets of clustering
trees are built according to the type of attributes used
by the trees:
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• In the first pool, attributes are based on blob’s
features (i.e its position, size and velocity)

• In the second pool, attributes are based on pair
of blob’s features (i.e the distance between the
blobs and their relative velocity). For efficiency,
from all pairs of blobs in each frame, we keep only
pairs having a relatively short distance between
the blobs

At each node of one tree, a question is selected by
choosing one attribute, i.e by picking one feature and
one threshold that reduce as much as possible the class
entropy within the node. Thereby, each blob (or pair
of blobs) inherit the event class of the whole sequence
it belongs to.

Once the trees are built, we tag each node of the trees,
except for the root node. Hence, by definition, each
tag correspond to a specific combination of coarse and
local features, that characterize each frame of the video
sequences. Diversity of the tags can then be boosted
by increasing the number of the clustering trees NCT ,
while more specificity is obtained by increasing the
depth of the trees. For instance, we observed in our
experiments that the system achieved the best perfor-
mance for NCT ≈ 10. This supervised clustering pro-
cess allows each tag to be more discriminant regarding
the event classes, while using only local information
(each frame individually).

3. Modeling the spatio-temporal events
with randomized trees

Once the elaborated features are computed, we use
another set of randomized trees to model and classify
the video sequences, based on the spatio-temporal ar-
rangement of those advanced features. This is done
by defining the two output branches of a tree node
based on the presence/absence of a specific temporal
arrangement A of tags in the video sequence. In order
for these arrangements to be scale invariant (and bet-
ter fit the notion of visual surveillance event), coarse
binary relations like ”before”, ”after” and ”at the same
time” are used. An example of arrangement would
then be: tag x exists ”before” tag y which exists ”at
the same time” as tag z.

At the root node Nr a tag Tx from the full set T of
tags is chosen. The Question (Q0) is ”Does Tx exist
in the training sequences?”. Those training samples
for which QNr

= 0 are in the ”no” child node and
we search again through T . Those samples for which
QNr

= 1 are in the ”yes” child node and we then put
Tx among the participating tags Tp. Further question

can be:


∃Ti?
∃Ti ? Tj?
∃Tjx ? Tjy ?

with


Ti ∈ T
Tj , Tjx , Tjy ∈ Tp

? ∈ [≺, |,�]
(1)

with ≺ meaning ’before’, | ’during’ and � ’after’.

4. Experiments and perspective

The described system was tested on two scenarios.
The first one used simulated video surveillance events,
while the second is a real case scenario, which occurs
in the entrance lobby of a public company. More in-
formation about those datasets can be found on the
web 1. Results are encouraging our framework, even
if passer-by or by-stander are significantly decreasing
the accuracy.

Further improvement could then analyze how to use
histograms of similarity between the blobs to enrich
our elaborated features and gain some robustness,
along with features characterizing each frame more
globally (i.e. the number of blobs in the frame, the
density of the moving objects in each frame, the aver-
age/variance of each features..). We will also focus on
using an active learning procedure in order to interact
with the user, and to be able to enhance the system
on line.
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Abstract

We propose a method for content-based im-
age retrieval which exploits the similarity
measure and indexing structure of totally
randomized tree ensembles induced from a
set of subwindows randomly extracted from
a sample of images. The approach is quanti-
tatively evaluated on various types of images
with good results despite its conceptual sim-
plicity and computational efficiency.

1. Introduction

In content-based image retrieval (CBIR), users want to
retrieve images that share some similar visual elements
with a query image, without any further text descrip-
tion neither for images in the reference database, nor
for the query image (see Figure 1). To be practically
valuable, a CBIR method should combine computer
vision techniques that derive rich image descriptions,
and efficient indexing structures.

Figure 1. Illustration of the goal of a CBIR system for one
query image (left) from the IRMA-2005 dataset.

Our method for CBIR is an extension of the method we
proposed for image classification (Marée et al., 2005)
and was published in (Marée et al., 2007) where more
formal notations and experiment details are given.

2. Method

The different steps of our algorithm are now described.

2.1. Extraction of random subwindows

Square patches of random sizes are extracted at ran-
dom locations in images, resized by bilinear interpola-
tion to a fixed-size (16 × 16), and described by HSV
values (resulting into 768 feature vectors) for color im-
ages, or gray intensities (resulting into 256 feature vec-
tors) for graylevel images. This provides a rich repre-
sentation of images corresponding to various overlap-
ping regions, both local and global, whatever the task
and content of images. Using raw pixel values as de-
scriptors avoids discarding potentially useful informa-
tion while being generic, and fast.

2.2. Indexing subwindows with totally
randomized trees

We use ensembles of totally randomized trees (Geurts
et al., 2006) for indexing extracted random subwin-
dows. The method recursively partitions the training
sample of subwindows by randomly generated tests.
Each test is chosen by selecting a random pixel compo-
nent and a random cut-point in the range of variation
of the pixel component in the subset of subwindows
associated to the node to split. The development of
a node is stopped as soon as either all descriptors are
constant in the leaf or the number of subwindows in
the leaf is smaller than a predefined number nmin. A
number T of such trees are grown from the training
sample. To be able to later perform image retrieval,
at each leaf of each tree, we record for each image of
the reference set that appears in the leaf the number
of its subwindows that have reached this leaf.
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2.3. Inducing image similarities from tree
ensembles

We first defined a similarity measure between any two
subwindows by considering that two subwindows are
very similar if they fall in a same leaf that has a very
small subset of training subwindows. Then, we defined
the similarity induced by an ensemble of T trees by
considering that two subwindows are similar if they are
considered similar by a large proportion of the trees.
Given this similarity measure between subwindows, we
derived a similarity between two images that is the av-
erage similarity between all pairs of their subwindows.

2.4. Image retrieval

The similarities between the query image and all refer-
ence images could then computed by propagating into
each tree all subwindows from the query image, and
by incrementing, for each of its subwindow, each tree,
and each reference image, the similarity between the
query and reference images. It is then possible to rank
the reference images according to their similarity to
the query image, as illustrated by Figure 2.

Figure 2. Ranking of the reference images according to
their similarity to the query image.

3. Results

We performed a quantitative evaluation of our
method in terms of its retrieval accuracy on vari-
ous image datasets with ground-truth labels. These
databases contains images representing various build-
ings (ZuBuD), objects and scenes (META and Uk-
Bench), and radiographs (IRMA). In our experiments,
we consider that an image is relevant to a query if it
is of the same class as the query image, and irrelevant
otherwise. Note that, while using class labels to as-
sess accuracy, this information is not used during the

indexing phase. Results are shown in Table 1.

Dataset #images ls/ts Accuracy
ZuBuD 1005/115 96.52%

IRMA-2005 9000/1000 85.4%
UkBench 10200/10200 75.25%

META/UkBench 205763/10200 66.74%

Table 1. Image retrieval accuracy results.

4. Discussion

This method has nice properties that we will explore in
future work for large-scale, distributed content-based
image retrieval: The possibility of updating the model
as new images come in, the capability of comparing
new images using a model previously constructed from
a different set of images, and its computational effi-
ciency (due to randomization used both in image de-
scription and indexing) while keeping overall good per-
formances. Finally, let us note that our image similar-
ity measure actually defines a kernel and it could thus
be exploited in clustering or supervised learning with
kernel methods.
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Abstract

TiMBL is an implementation of K-nn con-
taining several algorithms for classification.
One of the implemented, and often used, clas-
sifiers is IGTree. IGTree is a fast trie-based
approximation of k-nn. Because of its trie-
based nature IGTree can mismatch on a fea-
ture quite fast, resulting in sub-optimal clas-
sification compared to IB1. We present an
early version of IGForest that tries to lessen
the impact of this problem while retaining
the behavior of this set of algorithms. IGFor-
est consists of an ensemble of IGTrees. The
performance of IGForest is compared to both
IGTree and IB1 on a diverse set of NLP prob-
lems.

1. Introduction

IGTree is a fast approximation of k-nearest neighbor
classification (Daelemans et al., 1997). IGTree allows
for fast training and testing even with millions of ex-
amples. IGTree compresses a set of labeled examples
into a decision tree structure similar to the classic C4.5
algorithm (Quinlan, 1993), except that throughout one
level in the IGTree decision tree, the same feature is
tested. Classification in IGTree is a simple procedure
in which the decision tree is traversed from the root
node down, and one path is followed that matches the
actual values of the new example to be classified. If an
end node is met, the outcome stored at the end node
is generated as classification. If the last visited node is
a non-ending node, but no outgoing arcs match with
the value in the new example, the most likely outcome
stored at that node is produced as the resulting clas-
sification.

IGTree is typically able to compress a large example
set into a lean decision tree with high compression fac-
tors, in reasonably short time, comparable to other
compression algorithms. More importantly, IGTree’s
classification time depends only on the number of fea-

tures (O(f)). Indeed, we observe high compression
rates: trained on almost 2 million examples of a Dutch
d/dt inflection task containing both part-of-speech and
full-word features, IGTree builds a tree containing a
mere 46,466 nodes, with which it can classify 17 thou-
sand examples per second on a current computing
server.

Well known techniques for boosting classifier perfor-
mance are ensemble creation methods such as bagging
and boosting. In (Banfield et al., 2007) a comparison
is given of several such combination techniques on dif-
ferent training sets. They compare randomised C4.5,
random subspaces, random forests, AdaBoost.M1W,
and bagging. Most of these training sets where taken
from the UCI repository (Murphy & Aha, 1995). Their
main conclusion is that “. . . for any given data set the
statistically significantly better algorithms are likely to
be more accurate, just not by a significant amount on
that data set.”.

We frequently see that on large datasets, such as that
the CoNLL 2000 shared task (Tjong Kim Sang &
Buchholz, 2000), that IB1 easily outperforms IGTree
in terms of accuracy, at the cost of classification time
as can be clearly seen in Table 1. As the speed differ-
ence increases non-lineairly with the amount of train-
ing data, it would be prohibitive to run IB1 on exper-
iments with millions of training instances.

The algorithm proposed here tries to find the middle
ground between IB1 and IGTree by creating a forest
of semi-random IGTrees. This is motivated by the
fact that we wish to retain some of the unique charac-
teristics of IGTree, such as its resemblance to a basic
language model in smoothing (Zavrel & Daelemans,
1997), while still being a generic classifier supporting
any number and type of features.

2. System Architecture

IGForest consists of a number of simple steps that gen-
erate an ensemble of IGTrees, which is than applied to
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F-score Time
IB1 0.926 866
IGTree 0.868 1
IGForest 0.906 219

Table 1. F-score and total training and testing time in
seconds on the CoNLL 2000 shared task (Tjong Kim Sang
& Buchholz, 2000) by IB1, IGTree and IGForest using IB1
as an arbiter. 100.000 training instances where used.

the data which is to be classified. These steps are dis-
cussed briefly below. As should become clear IGForest
is easy to parallelize by running IGTRee training and
tagging in parallel. IGForest implements the following
steps, that combined result in an ensemble classifier

1: Analyse Data The first step is the analysis of the
incoming training instances. This includes gener-
ating a default set of feature weights (Gain Ratio)
and determining the performance on the training
instances of a simple most-frequent outcome base-
line.

2: Generate IGTrees In the second step a fixed
number of IGTree feature orders is generated
semi-randomly. We use the default set of feature
weights as a bias for the random order, i.e. if one
feature has a default weight of half the total of
the default weights it has a 50% chance of being
picked first.

These feature orders are filtered to ensure unique-
ness and improved performance on the training in-
stances using cross-validation. It is ensured that
each ordering improves on the most-frequent out-
come baseline. The forest will always contain the
default IGTree.

3: Train Combination Method IGForest contains
several combination methods. Most of these com-
bination methods need some training.

The simplest of these is linear unweighted voting,
which does not need training and simply takes a
vote of the different trees.

Somewhat more complex is linear weighted vot-
ing, where the weight of the vote of each tree is
determined by the performance on the training
instances using cross-validation.

The final combination method is that of an arbiter
which trains on a holdout part of the training in-
stances. Any classifier can be used as an arbiter.
We use either IGTree or IB1.

4: Apply Finally, all the separate IGTrees are ap-
plied to the unclassified instances, after which the

combination method is applied resulting in classi-
fied instances.

3. Preliminary Results

We have implemented a basic version of IGForest,
which does not check for uniqueness of the trees, nor
does it cull the trees that perform worse than the most-
frequent outcome baseline. Nevertheless, the first re-
sults are promising. The results for the CoNLL 2000
task for IGForest using IB1 as an arbiter can be found
in Table 1.

This basic version performs in between IB1 and IGTree
on the CoNLL 2000 data. We observe similar numbers
in other experiments, such as pos-tagging on the Wall-
street Journal. In different experiments, where IGTree
already outperforms IB1, we do not see such an im-
provement, such as -d/-dt inflection in Dutch. IGTree
outperforms IB1 in cases where the feature order is
much more absolute than the feature weighting would
suggest.
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Abstract
This work addresses image annotation, i.e.
labelling pixels of an image with a class
among a finite set of predefined classes. The
proposed method extracts a sample of sub-
windows from a set of annotated training im-
ages to train a subwindow annotation model
by tree-based ensemble methods. In one vari-
ant of the approach, the classifier is train to
label only the central pixel of the subwin-
dow, while in a second variant the classifier
is extended to annotate all subwindow pix-
els simultaneously. This approach is eval-
uated on four different problems, where its
overall good performance and efficiency are
highlighted.

1. Image annotation

In this work, we propose a supervised learning ap-
proach for the generic problem of image annotation.
Given a training set of images with pixel-wise labelling
(ie. every pixel is hand-labelled with one class among
a finite set of predefined classes), the goal is to build a
model that will be able to predict accurately the class
of every pixel of any new, unseen image.

2. Methods

To tackle this problem, our starting point is the results
obtained by (Marée et al., 2005) for image classifica-
tion. Their method first randomly extracts a large
set of image subwindows (or patches) and describes

those by high-dimensional feature vectors composed by
raw pixel values. Then, the method uses an ensemble
of extremely randomized decision trees (Geurts et al.,
2006a) to build a subwindow classification model. To
predict the class of a new image, the method extracts
random subwindows from this image, classifies these
subwindows using the decision tree ensemble and then
aggregates the subwindow classifications by majority
voting to get a single class prediction for the whole
image.

In the context of image annotation, we follow a similar
scheme based on the extraction of random subwindows
and the use of ensemble of randomized trees. We pro-
pose two approaches.

The first approach builds extremely randomized trees
to predict the class of the central pixel of subwindows.
To classify a pixel of an unseen image, a subwindow
centered on that pixel is extracted and the pixel clas-
sifications obtained by applying the trees on the sub-
window are aggregated by majority voting. We denote
this method SCM for Subwindow Classification Model.

The second approach extends the classifier so as to
predict the class of every subwindow pixels simultane-
ously. We propose to replace the score function used
to evaluate and select splits during tree induction by
the average over all output pixel classes of the infor-
mation theoretic score used for standard classification
problems. Once the model is built, to annotate a new
image, several (overlapping) subwindows are randomly
extracted from the image, a prediction is computed by
the classifier for every subwindow pixel and the final
annotation of the image is obtained by taking for every
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image pixel the majority class among all class predic-
tions that were obtained for this pixel. We call this
method SCMMO for Subwindow Classification Model
with Multiple Outputs.

3. Experiments

To assess the performance and usefulness of the pro-
posed methods as a foundation for image annotation,
we have evaluated them on four datasets represent-
ing various types of images (microscope imaging, pho-
tographs of natural scenes, etc.) and a large variety of
classes. Table 1 reports results with both methods in
terms of pixel misclassification error rate on these four
problems. Table 2 reports computing times. Examples
of annotated images are shown in Figure 1. Detailed
results and description of the datasets can be found in
(Dumont et al., 2008).

SCMMO is almost always significantly better than
SCM, which was expected as SCM predictions do not
exploit correlation between pixels. On three problems
among the four, SCMMO results are in fact compara-
ble to those obtained by the state of the art. Moreover,
our methods are very attractive in terms of computing
times.

Table 1. Error rates obtained on four datasets.
Database SCM SCMMO

Retina 7.53% 7.56%
Bronchial 3.42% 3.13%

Corel 49.43% 36.01%
Sowerby 14.96% 10.93%

Table 2. Computing times on two datasets.

Dataset Sowerby Retina
Method Training Prediction Training Prediction

SCM 76.63 s 0.12 s 41.22 s 17.64 s
SCMMO 315.68 s 0.26 s 125.5 s 26.98 s

4. Conclusion

We have introduced and compared two generic image
annotation methods: SCM and SCMMO. From our
experiments on four distinct databases, SCMMO ap-
pears to be the most interesting one among the two
proposed methods: it is almost always significantly
better than SCM and obtains state-of-the-art results
on three problems among four. We deem that the main
merit of our approach is its good overall performance
while remaining conceptually very simple and keeping
computing times very low. Moreover, it might be ex-

Figure 1. From left to right: original image, manual an-
notation, annotation obtained with SCM, annotation ob-
tained with SCMMO. From top to bottom: images from
Retina, Bronchial, Corel, and Sowerby datasets.

ploited as a first, fast step for image annotation as its
output predictions might be post-processed by various
techniques at the local and/or global level.
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Abstract

Statistical parametric speech synthesis has
recently shown its ability to produce natu-
ral sounding speech while keeping a certain
flexibility for voice transformation without
requiring a huge amount of data. This ab-
stract presents how machine learning tech-
niques such as Hidden Markov Models in gen-
eration mode or context oriented clustering
with decision trees are applied in speech syn-
thesis. Fields that are investigated in our
laboratory to improve this method are also
discussed.

1. HMM-based Speech Synthesis

Before the last five years, synthetic speech was typ-
ically produced by concatenating frames of natural
speech selected from a huge database, possibly apply-
ing signal processing to them so as to smooth dis-
continuities. In 2002, Tokuda et al. (K. Tokuda,
2002) proposed a system relying on HMM generation
of speech parameters. Compared to the previous one,
this approach has the advantage to allow voice trans-
formation without requiring a large amount of data,
merely by adapting its statistics through a short train-
ing (A. W. Black & Tokuda, 2007). By voice transfor-
mation we here mean voice conversion towards a given
target speaker or expressive/emotive speech produc-
tion from the initial trained system.

The key idea of a HMM-based synthesizer is to gener-
ate sequences of speech parameters directly from the
trained HMMs. Next subsections describe the two
main steps in the bloc diagram of such a synthesizer
(see Figure 1).

Figure 1. Bloc diagram of a HMM-based speech synthe-
sizer

1.1. The training part

Training our system assumes that a large segmented
speech database is available. Labels consist of phonetic
environment description. First, speech waveforms are
decomposed into their source (glottal) and filter (vocal
tract) components. Representative features are then
extracted from both contributions. Since source mod-
eling is composed either of continuous values or a dis-
crete symbol (respectively during voiced and unvoiced
regions), multi-space probability density HMMs have
been proposed. Indeed this approach turns out to be
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able to model sequences of observations having a vari-
able dimensionality.

Given these latter parameters and the labels, HMMs
are trained using the Viterbi and Baum-Welch re-
estimation algorithms. Till that point this may seem
very close to building a speech recognizer. Neverthe-
less decision tree-based context clustering is here used
to statistically model data appearing in similar con-
textual situations. Indeed contextual factors such as
stress-related, locational, syntaxical or phone identity
factors affect prosody (duration and source excitation
characteristics) as well as spectrum. More precisely an
exhaustive list of possible contextual questions is first
drawn up. Decision trees are then built for source,
spectrum and duration independently (as factors have
a different impact on them) using a maximum likeli-
hood criterion. Probability densities for each tree leaf
are finally approximated by a Gaussian mixture model.

1.2. The synthesis part

The text typed by the user is first converted into a
sequence of contextual labels. From them, a path
through context-dependent HMMs is computed using
the duration decision tree. Source and spectrum pa-
rameters are then generated by maximizing the out-
put probability. The incorporation of dynamic fea-
tures makes the coefficients evolution more realistic
and smooth. Speech is finally synthesized from the
generated parameters by an operation of signal pro-
cessing.

2. Our ongoing research activities

Our main goal is to develop an efficient HMM-based
speech synthesizer for French. For this, the ACAPELA
group kindly provided us with their natural language
processor. Since English and French have both their
own phonological particularities, an adaptation of the
questions used for the context oriented clustering was
necessary.

Basically our (ongoing) research activities focus on
three main issues:

• Speech analysis: A major disadvantage of such
a synthesizer is the ”buzziness” of the produced
speech. This is typically due to the parametrical
representation of speech. To overcome this hin-
drance a particular interest is devoted to speech
analysis. Our approach particularly investigates
a method of source-filter deconvolution based on
the zeros of the Z-transform (B. Bozkurt & Du-
toit, 2007). By this way an estimation of the glot-

tal signal and the vocal tract impulse response
is achieved. Different models for the source (LF
and CALM models) as well as for the spectrum
(MLSA, LSP or MFCC coefficients) are tested
and their perceptual quality is assessed.

• Intelligibility enhancement: In some applica-
tions speech has to be synthesized in adverse con-
ditions (in cars, at the station,...). Intelligibility
consequently becomes of a paramount importance
(Langner & Black, 2005). If we can model the
modifications occurring when speech is produced
in noise (possibly implying a training), a synthe-
sizer with (adaptive) intelligibility enhancement
could be carried out.

• Voice conversion : In voice conversion
(Y. Stylianou & Moulines, 1995) it is aimed at
modifying the source speaker’s voice towards a
particular target speaker given a limited dataset
of his utterances. This approach implies the study
of the statistical learning transforming represen-
tation spaces of both speakers. This could allow
us to easily generate new voices, including the
production of more emotions and expressivity in
speech.
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Abstract

Robustness of feature selection techniques
is a topic of recent interest, especially in
high dimensional domains with small sam-
ple sizes, where selected feature subsets are
subsequently analysed by domain experts to
gain more insight into the problem modelled.
In this work, we investigate the robustness
of various feature selection techniques, and
provide a general scheme to improve robust-
ness using ensemble feature selection. We
show that ensemble feature selection tech-
niques show great promise for small sample
domains, and provide more robust feature
subsets than a single feature selection tech-
nique. In addition, we also investigate the ef-
fect of ensemble feature selection techniques
on classification performance, giving rise to a
new model selection strategy.

1. Introduction

During the past decade, the use of feature selection
for knowledge discovery has become increasingly im-
portant in many domains that are characterized by a
large number of features, but a small number of sam-
ples. Typical examples of such domains include text
mining, computational chemistry and the bioinformat-
ics and biomedical field, where the number of features
(problem dimensionality) often exceeds the number of
samples by orders of magnitude (Saeys et al., 2007).
When using feature selection in these domains, not
only model performance but also robustness of the fea-
ture selection process is important, as domain experts
would prefer a stable feature selection algorithm over
an unstable one when only small changes are made to
the dataset.

Surprisingly, the robustness (stability) of feature selec-
tion techniques is an important aspect that received

only relatively little attention during the past. Re-
cent works in this area mainly focus on the stability
indices to be used for feature selection, introducing
measures based on Hamming distance (Dunne et al.,
2002), correlation coefficients (Kalousis et al., 2007),
consistency (Kuncheva, 2007) and information theory
(Kŕızek et al., 2007). The work of Kalousis et al.
(2007) also presents an extensive comparative evalu-
ation of feature selection stability over a number of
high-dimensional datasets. However, most of these re-
cent works only focus on the stability of single feature
selection techniques.

In this work, we investigate whether the use of ensem-
ble feature selection techniques can be used to yield
more robust feature selection techniques, and whether
combining multiple methods has any effect on the clas-
sification performance.

2. Methods

2.1. Quantification of robustness

Depending on the outcome of a feature selection tech-
nique, the result can be either a set of weights, a rank-
ing, or a particular feature subset. In order to assess
robustness, a subsampling scheme is used that gener-
ates k subsamples containing 90% of the original data.
The robustness of a technique is then measured by
the average over all pairwise similarity comparisons
between the different feature selectors:

Stot =
2

∑k
i=1

∑k
j=i+1 S(fi, fj)

k(k − 1)

where fi represents the outcome of the feature selec-
tion method applied to subsample i (1 ≤ i ≤ k), and
S(fi, fj) represents a similarity measure between fi and
fj .
Here, we focus on similarities between rankings - using
the Spearman rank correlation coefficient - and sub-
sets, using the Jaccard index (Kalousis et al., 2007) or
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Table 1. Robustness of the different feature selectors across the different datasets. Spearman correlation coefficient (Sp),
Jacard index (JC) and consistency index (CI) on a subset of 1% best features.

Dataset SU Relief SVM RFE RF

Colon

Single Ensemble Single Ensemble Single Ensemble Single Ensemble
Sp 0.61 0.76 0.62 0.85 0.7 0.81 0.91 0.99
JC 0.3 0.55 0.45 0.56 0.44 0.5 0.01 0.64
CI 0.45 0.7 0.61 0.71 0.6 0.65 0.01 0.77

Leukemia
Sp 0.68 0.76 0.58 0.79 0.73 0.79 0.97 0.99
JC 0.54 0.6 0.44 0.55 0.49 0.57 0.36 0.8
CI 0.7 0.74 0.6 0.71 0.64 0.72 0.53 0.89

Lymphoma
Sp 0.59 0.74 0.49 0.76 0.77 0.81 0.96 0.99
JC 0.37 0.55 0.42 0.56 0.43 0.46 0.22 0.73
CI 0.53 0.7 0.58 0.71 0.6 0.63 0.35 0.84

Average
Sp 0.63 0.75 0.56 0.8 0.73 0.80 0.95 0.99
JC 0.40 0.57 0.44 0.56 0.45 0.51 0.2 0.72
CI 0.56 0.71 0.6 0.71 0.61 0.67 0.3 0.83

the consistency index (Kuncheva, 2007).

2.2. Ensemble feature selection

In order to improve the robustness of feature selec-
tion, a similar idea as in ensemble learning can be
used, where multiple classifiers are combined in order
to improve performance. In this work, we construct
an ensemble of feature selectors by bootstrapping the
data, and creating a consensus feature selector that
aggregates the results of the single feature selectors by
rank summation.

3. Results

Table 1 shows the robustness of a representative sam-
ple of feature selectors, including two filter based ap-
proaches (Symmetrical Uncertainty (SU) and Relief)
and two embedded approaches (recursive feature elimi-
nation using a SVM (SVM RFE) and Random Forests
(RF)). It can be observed that constructing an ensem-
ble version of each feature selector significantly im-
proves robustness.
However, considering only robustness of a feature se-
lection technique is not an appropriate strategy to find
good feature rankings or subsets, and also model per-
formance should be taken into account to decide which
features to select. Therefore, feature selection needs to
be combined with a classification model in order to get
an estimate of the performance of the feature selector-
classifier combination.
Our results show that in most cases, classification per-
formance using ensemble feature selection is compa-
rable to the performance using conventional feature
selection techniques, or performs only slightly worse
(data not shown). It turns out that the best trade-
off between robustness and classification performance
depends on the dataset at hand, giving rise to a new

model selection strategy, incorporating both classifica-
tion performance as well as robustness in the evalua-
tion strategy by taking e.g. the harmonic mean of ro-
bustness and classification performance as a combined
measure.
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Abstract

A comparative study is presented in which
a wrapper-based feature selection algorithm
and a knowledge-driven feature selection
approach are compared to each other on
a database cleaning task. Results show
that both perform better than a classi-
fier that is trained on the full feature set.
The knowledge-driven approach provides a
considerable speed up of the experiments
over the wrapper-based feature selection ap-
proach.

1. Introduction

In order for machine learning algorithms to achieve op-
timal performance on a particular task, it is important
to present the machine learner with optimal training
data, e.g., not containing any attributes that may dis-
tract the algorithm. Today’s data sets often contain
large numbers of attributes, hence it is often not pos-
sible for human experts to remove bad attributes from
the data before it is presented to the machine learner,
or there may not even be a human expert to do this.
Automatic feature selection promises to take over this
task from humans, but may come at a cost. Some al-
gorithms, such as C4.5 (Quinlan, 1993) order features
during classification, but more often feature selection
takes place before the actual classification. Among
these techniques is the wrapper approach (Kohavi &
John, 1997) in which the algorithm that will be used in
the classification task is run on different feature sub-
sets to evaluate the ‘goodness’ of each set for the final
classification task. The order of the feature subsets un-
der scrutiny can be organised via various algorithms
that browse the feature set search space in a smart
way to avoid having to test every possible subset of
features.

Another approach is to mimic the human expert who
chooses features based on the world knowledge he/she
has by selecting features via the introduction of knowl-
edge in the classification experiment, for instance via
an ontology. Some work has been done to steer feature
selection via a domain ontology for microarray gene ex-
pression data (Qi & Tang, 2006). This work applies a
similar approach to the natural history domain.

The natural history domain harbours vast amounts of
data, of which some is digitised (mostly manually).
In this work a flat database from the Dutch National
Museum for Natural History (Naturalis) is used. It
contains 16,870 records organised into 39 columns that
describe findings and characteristics of reptile and am-
phibian specimens, as well as how they are preserved
in the collection and when they entered the collection.
The data was entered manually by researchers at the
museum and contains typos, spelling variations and
incorrect values.

In earlier work, a machine learner was already applied
to this data to detect and correct errors (Sporleder
et al., 2006). Error detection and correction is treated
as a classification task, in which it is assumed that
the majority of the database fields is correct, and can
be used as training data to predict other database
fields. In that work all features were used, which is
regarded here as the baseline because it is known that
the performance of the k nearest neighbour algorithm
can deteriorate when it is trained on irrelevant fea-
tures (Wettschereck et al., 1997).

2. Domain Knowledge

To express domain knowledge, an ontology was created
for the reptiles and amphibians via the CIDOC-CRM
scheme (international standard ISO 21127:2006). By
adhering to the CIDOC-CRM structure it is easier to
integrate the ontology with information sources from
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Table 1. Number of times each approach achieves highest
accuracy over the other approaches

all feats hill climb ontology
all feats – 14 (2) 28 (3)
hill climb 23 (2) – 29 (1)
ontology 8 (3) 9 (1) –

within the same institution, or even from other insti-
tutions (Crofts et al., 2007).

3. Experimental setup

For the ontology-driven feature selection (ontology),
3 experiments were performed per database column,
where the number of experiments represents the maxi-
mum distance between the to be predicted concept (i.e.,
database column) and the concepts in the ontology (i.e,
features). The experiments were carried out in an in-
cremental fashion: first all features within distance 1
to the focus column in the ontology were selected, then
all the features within distance 2, etc.

The ontology-driven feature selection was compared to
a greedy heuristic search, namely a bi-directional hill
climber (hill climb). The search carried out by this
method starts out with an empty feature set. During
each iteration it adds or deletes the one feature that, in
combination with the other features already selected,
improves the classifier the most (Caruana & Freitag,
1994). This heuristic feature selection algorithm does
a very thorough job and can lead to very good results,
but is very expensive.

All experiments were carried out in a leave-one-out
cross validation setting, with the implementation of
feature-weighted k-NN as implemented in the TiMBL
software package (Daelemans et al., 2007). Empty
database fields were not included in the values that
were to be predicted because in some cases a field is
supposed to be empty, whereas in some cases it is not,
which is out of the scope of this work.

4. Results

In Table 1 the number of times every approach ‘wins’
from the other approaches is given, where the rows
represent the score of the approach against the oth-
ers in each column. The numbers in parentheses are
draws. ‘All feats’ is the baseline with the complete
feature set.

5. Conclusions

For most database columns, there is an increase in ac-
curacy when feature selection is applied. As expected

the heuristic feature selection approach performs best,
but often the accuracy of the ontology-driven approach
was very close. The added bonus of the ontology-
driven approach is that it is very fast, whereas the hill
climbing search took significantly more time to come
up with a well performing feature set. The results vary,
because there is much variety between the different
database columns. Follow-up research will include in-
vestigating how these differences affect each approach,
and whether it is possible to combine the knowledge-
driven approach with the heuristic approach.
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1. Motivation

In many applications and specially in bioinformatics,
an important task is the selection or ranking of some
variables or features according to their relevance to
predict some target variable, e.g. in order to iden-
tify genes or markers involved in a disease (see Saeys
et al. (2007) for a recent review). Feature selection
has usually two goals: improve the model accuracy by
reducing overfitting and provide a better understand-
ing of the problem under study. In this research, we
focus on the latter goal.

Univariate approaches in the form of statistical tests
are widely used in this domain. These methods pro-
vide for each variable a so called p-value that repre-
sents the probability of getting a value of some statis-
tic as unusual as the observed one under the (null)
hypothesis that there is no correlation between the
variable and the target. These methods are statisti-
cally well founded and provide results that are intu-
itive and easily interpretable by practitioners. How-
ever, they make sometimes strong parametric hypothe-
ses and they potentially miss important features that
are only relevant in interaction with some other fea-
tures.

On the other hand, machine learning brings several
feature selection and ranking approaches that can be
applied to a large variety of prediction problems and
are able to model feature dependencies. Among them,
variable importance measures derived from tree-based
models have been used in many application domains
(see Saeys et al. (2007) for some references in bioin-
formatics). These methods make no strong parametric
hypotheses about the problem, can handle mixtures
of categorical and numerical variables, and are often
computationally very efficient. However, with respect
to univariate statistical tests, this kind of importance
measure is not so intuitive for practitioners. One con-
sequence is that it is not easy to indicate an impor-
tance threshold in order to distinguish truly relevant
from irrelevant variables. Furthermore, despite their

popularity, there has not been much empirical stud-
ies of these measures in controlled experiments (Strobl
et al. (2007) is an exception but it however focuses
only on the detection of a univariate effect).

In this context, our goal in this research is two-fold: (i)
improve interpretability by proposing a p-value to be
associated to each variable in the ranking and (ii) pro-
vide a systematic study of these measures on artificial
datasets in order to assess their strengths and limita-
tions. Below, we briefly describe tree-based variable
importance measures and how we propose to exploit
random permutations to evaluate them. We then re-
port some preliminary results on artificial data.

2. Tree-based importance measures

Tree-based algorithms, single trees or ensembles of
trees, allow to easily compute an attribute importance
measure for a given classification problem. Among the
importance measures proposed in the literature, we
use the information measure from (Wehenkel, 1998).
Namely, at each test node n, we compute the total re-
duction of the class entropy due to the split, which is
defined by:

I(n) = #SHC(S)−#StHC(St)−#SfHC(Sf ), (1)

where S denotes the set of samples that reach node
n, St (resp. Sf ) denotes its subset for which the test
is true (resp. false), HC(·) is the Shannon entropy of
the class frequencies in a subset, and # denotes the
cardinality of a set of samples. The overall impor-
tance of an attribute is then computed by summing
the I values of all tree nodes (of a single tree, or of
an ensemble of trees) where this attribute is used to
split. The importances are usually normalized for the
different variables so that they sum up to 100%.

3. Evaluation by random permutations

The false discovery rate, FDR, has been introduced to
control multiple testing issues in the context of uni-
variate tests. It is defined as the proportion of irrele-
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vant variables among all variables that are predicted
as relevant by the model (Storey & Tibshirani, 2003).
This concept could be applied directly to the variable
importance ranking provided by a tree-based method.
For an importance threshold vimp, the FDR is esti-
mated as the proportion of variables that receive an
importance greater than vimp under the null hypothe-
sis that all variables are irrelevant. The null hypothesis
can be simulated by randomly permutating the class
labels in the learning sample.

One problem of this approach in a multivariate con-
text is that it assumes that the relevance measures are
independent of each other, and it has been shown that
this assumption potentially leads to an overestimation
of the FDR (see Listgarten and Heckerman (2007) for
a discussion of this issue in the context of Bayesian
networks). In order to overcome this problem, we pro-
pose an alternative measure based on the computa-
tion of a conditional p-value, which we define, for a
variable with an importance vimp, as the probability
that it receives an importance equal or greater than
vimp, under the hypothesis that this variable and all
its successors in the ranking are irrelevant. This quan-
tity can be estimated by random permutations as well,
by permutating the values of those variables that have
an importance equal or smaller than vimp instead of
permutating the class labels, so as to keep the original
relationship between the first variables and the target
class unchanged.

Like the FDR, this conditional p-value has an intuitive
interpretation. It should better reflect the relevance
of a variable as it takes into account the dependence
between the importances.

4. Preliminary results

To give some intuition about the proposed measures,
we report here a small experiment on some artificial
data. The dataset is composed of 100 objects and 20
variables. The first three are really relevant (and of de-
creasing importance), while the others are pure Gaus-
sian noise. The problem is such that the third vari-
able is only relevant in combination with the first two.
Table 1 shows variable importances obtained with en-
sembles of extremely randomized trees (Geurts et al.,
2006) and one standard statistical test (the Mann-
Whitney U test) for comparison. FDRs and condi-
tional p-values are estimated from 1000 random per-
mutations.

We observe that the true ranking is well retrieved
by the tree-based method while the univariate Mann-
Whitney test fails at finding the third feature (as ex-

Table 1. Variable rankings
ET Mann-Whitney

Var. Imp. FDR cond. p Var. p FDR
feat1 17.7 0 0 feat1 4.5e-09 0
feat2 15.6 0 0 feat2 1.2e-07 0
feat3 6.7 0.36 0.06 feat5 4.1e-02 0.27
feat8 5.4 1 0.23 feat9 5.0e-02 0.25
feat9 4.8 1 0.60 feat7 6.2e-02 0.26
feat19 4.2 1 0.93 feat18 6.8e-02 0.23
feat5 4.1 1 0.94 feat19 7.2e-02 0.21
feat14 3.8 1 0.98 feat10 1.5e-01 0.39
feat6 3.8 1 0.98 feat3 3.1e-01 0.71

... ...

pected). The FDRs and cond. p-values usefully com-
plement the ranking and the cond. p-value is indeed
less conservative than the FDR, giving more chance to
the third variable to be considered relevant.

We are currently investigating how these measures be-
have when parameters of the problems (number of ir-
relevant and relevant features, learning sample size,
etc.) and of the algorithms (splitting criterion, impor-
tance measure, etc.) are varied. In the light of these
new findings, the same approach will be applied to real
practical bioinformatics problems.

Acknowledgments

V.A. Huynh-Thu is recipient of a F.R.I.A. fellowship. P.

Geurts is a Research Associate of the F.R.S.-FNRS. This

work presents research results of the Belgian Network BIO-

MAGNET (Bioinformatics and Modeling: from Genomes

to Networks), funded by the Interuniversity Attraction

Poles Programme, initiated by the Belgian State, Science

Policy Office.

References

Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely
randomized trees. Machine Learning, 63, 3–42.

Listgarten, J., & Heckerman, D. (2007). Determining the
number of non-spurious arcs in a learned DAG model:
Investigation of a bayesian and a frequentist approach.
Proceedings of UAI. UAI Press.

Saeys, Y., Inza, I., & Larranaga, P. (2007). A review of
feature selection techniques in bioinformatics. Bioinfor-
matics, 23, 2507–2517.

Storey, J. D., & Tibshirani, R. (2003). Statistical signifi-
cance for genomewide studies. Proc Natl Acad Sci U S
A, 100, 9440–9445.

Strobl, C., Boulesteix, A.-L., Zeileis, A., & Horthorn, T.
(2007). Bias in random forest variable importance mea-
sures: Illustrations, sources and a solution. BMC Bioin-
formatics, 8.

Wehenkel, L. (1998). Automatic learning techniques in
power systems. Boston: Kluwer Academic.

50



Linear Regression using Costly Features

Robby Goetschalckx robby@cs.kuleuven.be

KULeuven - Department of Computer Science, Celestijnenlaan 200A, 3001 Heverlee, Belgium

Scott Sanner Scott.Sanner@nicta.com.au

National ICT Australia, Tower A, 7 London Circuit, Canberra City ACT 2601, Australia

Kurt Driessens kurtd@cs.kuleuven.be

KULeuven - Department of Computer Science, Celestijnenlaan 200A, 3001 Heverlee, Belgium

1. Introduction

In this paper we consider the problem of linear regres-
sion where some features might only be observable at
a certain cost. We assume that this cost can be ex-
pressed in the same units and thus be compared to
the approximation error cost. The learning task be-
comes a search for the features that contain enough
information to warrant their cost. Costs of features
could reflect necessary time for complicated computa-
tions, the price of a costly experiment setup, the price
an expert asks for advice, . . .

Sparsity in linear regression has been widely studied,
cf. chapter 3 of (Hastie et al., 2001). In these meth-
ods, striving for sparsity in the parameters of the linear
approximation leads to higher interpretability and less
over-fitting. Our setting, however, is significantly dif-
ferent as sparsity is gained by only including features
with a cost lower than their value.

Including costs of features for classification and regres-
sion has also been discussed in (Turney, 2000; Domin-
gos, 1999; Goetschalckx & Driessens, 2007). In these
approaches, binary tests are used in a decision tree
if the expected information gain is worth more than
the cost. The difference with this paper is that here
we are able to deal with numerical features instead of
only binary ones.

2. Problem Statement

The problem we try to solve can be stated as following.

Given:

• a set X of examples,P (x) is the distribution from
which examples x are drawn

• a target function Y : X → R which we want to

approximate

• a set F of features: fi : X → R

• a cost of features: c : R×X → R

Find: a subset F of F and weights wi such that
the accumulated cost, consisting of the approxima-
tion error and the feature cost, is minimized: find
arg minF, ~w

∑
x∈X P (x)

[
|Y (x)− ŷ(x)|+ ∑

f∈F c(f, x)
]

where ŷ(x) = w0 +
∑
fi∈F wifi.

In other words, we try to find a linear combination of
a subset of the features, where the absolute error of
the approximation is compared to the cost of the set
of features.

3. Cost Sensitive Forward Stagewise
Regression

Many sparse linear regression methods are based on
least-angle regression methods such as lasso and for-
ward stepwise regression (Efron et al., 2002). In these
methods the cost function includes a term

∑
fi∈F |wi|,

to encourage lower weights and sparsity. For our set-
ting, we simply change this to

∑
fi∈F c(fi, x).

We adapt an existing method, forward-stepwise regres-
sion, to solve the problem in an efficient way. We
briefly describe this below and refer the reader to the
detailed discussion in (Efron et al., 2002) for more in-
formation on this and related methods. The modified
algorithm will be called C-FSR.

We start by gathering a batch of examples, together
with all their feature values and their target values.
We take the average target value and assign its value
to w0 (this normalizes the residuals). All features are
normalized to have 0 mean and standard deviation
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equal to 1, and assigned the feature vectors ~fi. We
assign the normalized target values to the vector of
residuals ~r.

Cost-sensitive Forward-Stagewise Regression
(C-FSR)
repeat:

1. Find the feature

fi = arg max
f∈F

|~fi · ~r| − I[fi /∈ F ] · ci > 0

2. Increase its weight wi by ε.sign(~fi · ~r)
3. Recompute residuals

4. F ← F ∪ {fi}
until no such feature can be found.

In step 1, the cost is only included in the score if the
feature is not yet introduced in the linear function.

It should be noted that the C-FSR is a greedy selec-
tion approach. Because of this, the approximation ob-
tained might not always be globally optimal. A local
optimum is guaranteed, however and the increase in
prediction accuracy of using this greedy feature set is
guaranteed to equal or exceed the cost of its compu-
tation.

4. Experiments

The setting we used for experiments is a simple do-
main, where there are seven different examples with
different values. We provided seven indicator features
fi for 1 ≤ i ≤ 7, one for every example. f1 and f4

have a cost c, the others are cost-free.

We varied the value of c over a range of 0 to 0.5. With
increasing c the agent can not distinguish between x1

and x4 without paying a cost. C-FSR showed a clear-
cut phase transition near c = 0.185 (the theoretically
correct threshold value): with lower costs, the cost
for the features is always payed, with higher costs the
agent prefers not to use the costly features. This can
be clearly seen in figure 1.

Here the cost the agent pays is compared with the
prediction error the agent is aware of of making (the
norm of the final residual vector). For very low values
of c, the agent actually computes both of the features
while only one is needed. As the costs are indeed very
low, this does not pose a real problem. For low values
of c, the agent keeps paying for one of the features.
For values higher than the threshold, the error the
agent is aware of making is lower than the cost of extra
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Figure 1. Error the agent is aware of making versus the
amount spent on costly features

information and the agent will not pay for the features.
For larger domains similar tests have shown that the
algorithm scales well, with running time linear in the
number of features.

5. Conclusion

We introduced a novel sparse linear regression method,
C-FSR, in the case where features have different costs.
Empirically we have shown that C-FSR behaves near-
perfectly for a test domain.
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Abstract

Many complex, real world phenomena are dif-
�cult to study directly using controlled ex-
periments. Instead, the use of computer sim-
ulations has become commonplace as a fea-
sible alternative. However, due to the com-
putational cost of these high �delity simu-
lations, the use of neural networks, kernel
methods, and other surrogate modeling tech-
niques have become indispensable. Surrogate
models are compact and cheap to evaluate,
and have proven very useful for tasks such as
optimization, design space exploration, visu-
alization, prototyping, and sensitivity analy-
sis. Consequently, there is great interest in
techniques that facilitate the construction of
such regression models, while minimizing the
computational cost and maximizing model
accuracy. We present a fully automated ma-
chine learning toolkit for regression model-
ing and active learning to tackle these issues.
We place a strong focus on adaptivity, self-
tuning and robustness in order to maximize
e�ciency and make our algorithms and tools
easily accessible to other scientists in compu-
tational science and engineering.

1. Introduction

For many problems from science and engineering it
is impractical to perform experiments on the physical
world directly (e.g., airfoil design, earthquake propa-
gation). Instead, complex, physics-based simulation
codes are used to run experiments on computer hard-
ware. While allowing scientists more �exibility to
study phenomena under controlled conditions, com-
puter experiments require a substantial investment of
computation time (one simulation may take many min-
utes, hours, days or even weeks) (Wang & Shan, 2007).

As a result, the use of various approximation meth-
ods that mimic the behavior of the simulation model
as closely as possible has become standard practice.
This work concentrates on the use of data-driven,
global approximations using compact surrogate mod-
els (also known as metamodels, or response surface
models (RSM)). Popular metamodel types include:
neural networks, Kriging models, and Support Vector
Machines (SVM).

Global surrogate models provide a fast and e�cient
way for the engineer to explore the relationship be-
tween parameters (design space exploration), study
the in�uence of various boundary conditions on di�er-
ent optimization runs, or enable the simulation of large
scale systems where this would normally be too cum-
bersome. For the last case a classic example is the full-
wave simulation of an electronic circuit board. Elec-
tromagnetic modeling of the whole board in one run is
almost intractable. Instead the board is modeled as a
collection of small, compact, accurate replacement sur-
rogate models that represent the di�erent functional
components (capacitors, resistors, ...) on the board.

2. Motivation

However, in order to come to an acceptable approx-
imation, numerous problems and design choices need
to be overcome: what data collection strategy to use
(active learning), what model type is most applica-
ble (model selection), how should model parameters
be tuned (hyperparameter optimization), how to op-
timize the accuracy vs. computational cost trade-o�,
etc. Particularly important is the data collection strat-
egy. Since data is computationally expensive to ob-
tain, it is impossible to use traditional, one-shot, space
�lling experimental designs. Data points must be se-
lected iteratively, there where the information gain will
be the greatest. An intelligent sampling function is
needed that minimizes the number of sample points
selected in each iteration, yet maximizes the informa-

53



Figure 1. Automatic Adaptive Surrogate Modeling

tion gain of each iteration step. This is the process of
active learning (Sugiyama & Ogawa, 2002), but it is
also known as adaptive sampling or sequential design.

Together this makes that there are an overwhelming
number of options available to the designer: di�erent
model types, di�erent experimental designs, di�erent
model selection criteria, etc. However, in practice it
turns out that the designer rarely tries out more than
one subset of options. All too often, surrogate model
construction is done in a one-shot manner. Iterative
and adaptive methods, on the other hand, have the po-
tential of producing a much more accurate surrogate
at a considerably lower cost (less data points) (Busby
et al., 2007). We present a state-of-the-art machine
learning platform that provides an automatic, �exible
and rigorous means to tackle such problems and that
can easily be integrated in the engineering design pro-
cess: the SUrrogate MOdeling (SUMO) Toolbox.

3. SUMO Toolbox

The SUMO Toolbox (Gorissen et al., 2006) is an adap-
tive tool that integrates di�erent modeling approaches
and implements a fully automated, adaptive global
surrogate model construction algorithm. Given a sim-
ulation engine, the toolbox automatically generates a
surrogate model within the prede�ned accuracy and
time limits set by the user (see �gure 1). However,
at the same time keeping in mind that there is no
such thing as a `one-size-�ts-all', di�erent problems

need to be modeled di�erently. Therefore the tool-
box was designed to be modular and extensible but
not be too cumbersome to use or con�gure. Di�erent
plugins are supported: model types (neural networks,
SVMs, splines, ...), hyperparameter optimization al-
gorithms (Pattern Search, Genetic Algorithm (GA),
Particle Swarm Optimization (PSO), ...), active learn-
ing (density based, error based, gradient based, ...),
and sample evaluation methods (local, on a cluster
or grid). The behavior of each component is con�g-
urable through a central XML con�guration �le and
components can easily be added, removed or replaced
by custom, problem-speci�c, implementations.

The di�erence with existing machine learning toolkits
such as Rapidminer (formerly Yale), Spider, Shogun,
Weka, and Plearn is that they are heavily biased to-
wards classi�cation and data mining (vs. regression),
they assume data is freely available and cheap (no ac-
tive learning), and they lack advanced algorithms for
the automatic selection of the model type and model
complexity.

Our approach has been successfully applied to a very
wide range of �elds ranging from combustion mod-
eling in chemistry and metallurgy, semi-conductor
modeling (electromagnetism), aerodynamic modeling
(aerospace), to structural mechanics modeling in the
car industry. Its success is primarily due to its �exi-
bility, self tuning implementation, and its ease of inte-
gration into the larger computational science and en-
gineering pipeline.
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Abstract

We study the task of approximating the k
best instances with regard to a function us-
ing a limited number of evaluations. We
also apply an active learning algorithm based
on Gaussian processes to the problem, and
evaluate it on a challenging set of structure-
activity relationship prediction tasks.

1. Introduction

High Throughput Screening (HTS) is a step in the
drug discovery process, in which chemical compounds
are screened against a biological assay. The goal of
this step is to find a few lead compounds within the
entire compound library that exhibit a very high ac-
tivity in the assay. In this type of application, only
partial information can be obtained by testing specific
instances for their performance. Such tests correspond
to experiments and can be quite expensive. The chal-
lenge then is to identify the best performing instances
using as few experiments as possible.

2. Problem statement

Our work is especially motivated by the structure-
activity relationship domain, where HTS approaches
often assume the availability of a large but fixed li-
brary of chemical compounds. Hence, we assume the
learner must select the next example from a finite pool.

We formally specify the problem as follows:
Given:

• a pool P of instances,

• an unknown function f that maps instances x ∈ P
on their target values f(x),

• an oracle that can be queried for the target value
of any example x ∈ P,

• the maximal number Nmax of queries,

• the number k of best examples searched for.

Find:

• the top k instances in P, that is, the k instances
in P that have the highest values for f .

From a machine learning perspective, the key chal-
lenge is to determine the policy for determining the
next query to be asked on the basis of the already
known examples. This policy will have to keep the
right balance between exploring the whole pool of ex-
amples and exploiting those regions in the pool that
look most promising.

3. Model and selection strategies

We will use a Gaussian process (GP) model for learn-
ing (Gibbs, 1997). Detailed explanations can be found
in several textbooks, e.g. (Bishop, 2006). The GP
model allows us to calculate the probability distribu-
tion of the target value t∗ of a new example x∗ given
the tested examples XN and their measured target val-
ues TN :

t∗|XN , TN , x∗ ∼ N (
t̄∗, var(t∗)) (1)

Different active learning strategies exist. In line with
the customary goal of inducing a model with maximal
accuracy on future examples, most approaches involve
a strategy aiming to greedily improve the quality of the
model in regions of the example space where its qual-
ity is lowest. One can select new examples for which
the predictions of the model are least certain or most
ambiguous. Depending on the learning algorithm, this
translates to near decision boundary selection, ensem-
ble entropy reduction, version space shrinking, and
others. In our model, it translates to maximum vari-
ance on the predicted value or arg max(var(t∗)).

(Warmuth et al., 2003) found that in a highly skewed
distribution, recall increases quickly when one selects
examples for testing that are most likely to belong to
the minority class. For our optimization problem we
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will test the equivalent method of selecting the exam-
ple that the current model predicts to have the best
target value, or arg max(t̄∗). We will refer to this as
the maximum predicted strategy.

Another strategy is to always choose the example for
which the optimistic guess is maximal. The idea is
not to test the example in the database where the pre-
dicted value t̄∗ is maximal, but the example where
t̄∗ + koptimism · var(t∗) is maximal.

An alternative strategy is to select the example xN+1

that has the highest probability of improving the cur-
rent solution, as described by (Lizotte et al., 2007).
Let the current step be N , the aggregate value of the
set of k best examples be ‖TN‖best−k

and the tar-
get value of the k-th best example be t#(k,N). We
can evaluate this probability computing the cumula-
tive Gaussian

P (t∗ > t#(k,N)) =
∫ ∞

t=t#(k,N)

(t− t̄∗)P (t∗ = t)dt. (2)

We call this the maximum gain probability strategy.

4. Experimental evaluation

We evaluated the algorithm on the US National Can-
cer Institute (NCI) 60 anticancer drug screen (NCI60)
dataset (Shoemaker, 2006). A pool of 2,000 com-
pounds was randomly selected from each assay.

We used a linear kernel using for each compound 1024
Open Babel FP2 fingerprints as features. The algo-
rithm was bootstrapped with measurements of ten ran-
dom compounds. Each experiment was repeated 20
times for every assay and the results were averaged.

Budget 10% 15% 20% 25%
Max predicted (0σ) 0.251 0.684 0.040 0.021
Optimistic (0.5σ) 0.521 Best 0.251 0.111
Optimistic (1σ) 0.182 0.469 Best Best
Optimistic (2σ) 0.618 0.958 0.179 0.298
Max variance (∞σ) ε ε ε ε
Max gain prob Best 0.982 0.189 0.052
Random selection ε ε ε ε

Table 1. Best strategy (attaining highest ‖TNmax‖best−10
)

and Wilcoxon signed-rank test p-value for the null hypoth-
esis that the difference between the top-10 values of this
strategy and those of the best strategy is on average 0. ε
indicates that p < 10−10. Budget shown as % of pool size.

From the results presented in Figure 1 and Table 1 one
can see that all strategies, except maximum-variance,
clearly perform much better than random example se-
lection. The 1σ optimistic strategy performs best over
the widest range of budgets.
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Figure 1. The value of ‖TN‖best−10
as a function of the

fraction of compounds tested. The vertical axis is scaled
to place the aggregate target value of the overall k best
compounds at one and the worst k compounds at zero.

5. Conclusions

To summarize: we introduced the best-k optimization
problem in a machine learning context, we proposed an
approach based on Gaussian processes to tackle it, and
we applied it successfully to a challenging structure
activity relationship prediction task.
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Abstract
We try to answer the question posed in
the title from a theoretical point of view.
To this end, sufficient conditions are de-
rived for which a one-versus-one ensemble be-
comes ranking representable, i.e. conditions
for which the ensemble can be reduced to
a ranking or ordinal regression model such
that a similar performance on training data
is measured. As performance measure, we
use the area under the ROC curve (AUC)
and its reformulation in terms of graphs. By
means of a graph-theoretic analysis of the
problem, we are able to formulate necessary
and sufficient conditions for ranking repre-
sentability. For the three class case, this re-
sults in a new type of transitivity for pairwise
AUCs that can be verified by solving an in-
teger quadratic program.

1. Introduction

Many machine learning algorithms for multi-class clas-
sification aggregate several binary classifiers to com-
pose a decision rule. In the popular one-versus-one
ensemble (Fürnkranz, 2002), a classifier is trained on
each pair of categories, but do we really need such
a complex model for every multi-class classification
task? One might agree that different multi-class classi-
fication schemes have a different degree of complexity,
but no consensus has been reached on which one to
prefer. In this work we go one step further and inves-
tigate whether a one-versus-one multi-class model can

be simplified to a ranking model. We start from the as-
sumption that the optimal complexity of a multi-class
model is problem-specific. Reducing a one-versus-
one ensemble to a ranking model, can be seen as a
quite drastic application of the bias-variance trade-
off: a one-versus-one classification scheme is a complex
model, resulting in a low bias and a high variance of
the performance, while an ordinal regression model is
a much simpler model, manifesting a high bias but a
low variance. So, we do not claim that a one-versus-
one scheme can always be reduced to a ranking model.
We rather look for necessary and sufficient conditions
for such a reduction.

2. Strict ranking representability

Let X denote the object space and Y the unordered
set of r labels. We use the notation Y = {y1, ..., yr}
to denote the respective categories. Furthermore, we
formally define a one-versus-one model as a set F of
r(r − 1)/2 ranking functions fkl : X → R with 1 ≤
k < l ≤ r. Thus, we consider one-versus-one schemes
for which each binary classifier produces a continuous
output resulting in a probability estimate or a ranking
of the data for each pair of categories. A dataset of
size n will be denoted D = {(x1, y1), ..., (xn, yn)}.
Given a one-versus-one classification model, repre-
sented by a set F of r(r− 1)/2 pairwise ranking func-
tions fkl, when can we reduce this model to a single
ranking f : X → R that gives a better performance
on unknown test data? Or, equivalently, when can we
simplify the one-versus-one model to a ranking model
without decreasing the error on training data? Hav-

57



ing in mind the bias-variance trade-off, it would be ap-
propriate to prefer the single ranking model over the
one-versus-one scheme if the training error does not
increase. In that case, the former model is complex
enough to fit the data well in spite of having a lower
variance over different training samples. In its most
strict form, we can define ranking representability of a
one-versus-one classification scheme as follows.

Definition 2.1. Let D ⊂ X × Y. We call a set
F of pairwise ranking functions fkl strictly ranking
representable on D if there exists a ranking function
f : X → R such that for all yk, yl ∈ Y and any
(xi, yk), (xj , yl) ∈ D

fkl(xi) ≤ fkl(xj)⇔ f(xi) ≤ f(xj) . (1)

We can define a unique directed graph for a set of pair-
wise rankings F , and strict ranking representability of
F can be easily checked with a simple algorithm that
verifies whether the corresponding graph is a DAG.

3. AUC ranking representability

It goes without saying that strict ranking repre-
sentability has a very limited applicability to reduce
one-versus-one multi-class schemes, since the condi-
tion is too strong to be satisfied in practice. When
fitting r(r−1)/2 functions to the data in a multi-class
setting, it is unrealistic to think that all these func-
tions will impose a consistent ranking, i.e. a ranking
satisfying Eq. (1). Yet, is it really necessary to require
strict ranking representability in order to exchange a
one-versus-one model for a single ranking model? The
answer is no, since we are interested in a good perfor-
mance on independent test data. Therefore, demand-
ing that a single ranking gives exactly the same result
on training data as a one-versus-one scheme might be a
too strong condition. An obvious relaxation could ex-
ist in requiring that a single ranking model yields the
same performance on training data instead of requir-
ing the same results. This makes a subtle difference
since it is now allowed that both models make errors
on different data objects, as long as the total error of
both models is similar. As claimed above, the single
ranking model should attain better results on indepen-
dent test data when the bias-variance trade-off is taken
into consideration.

The performance measure that we will consider is the
pairwise AUC, which can be evaluated on a one-versus-
one model as well as on a single ranking model. We will
respectively use the notations Âkl(F , D) and Âkl(f,D)
for the AUC obtained for categories yk and yl. AUC
ranking representability is defined as follows.

Definition 3.1. Let D ⊂ X × Y. We call a set F
of pairwise ranking functions fkl AUC ranking rep-
resentable on D if there exists a ranking function
f : X → R such that

Âkl(F , D) = Âkl(f,D) ∀k, l : 1 ≤ k < l ≤ r . (2)

A graph-theoretic reformulation of AUC ranking rep-
resentability can be established by defining a set
GAUC(F , D) of graphs such that F is AUC ranking
representable if and only if GAUC(F , D) contains at
least one acyclic graph. However, unlike strict ranking
representability, it is far form trivial to verify whether
a set F of pairwise rankings fkl is AUC ranking rep-
resentable, since examining all graphs in GAUC(F , D)
will be computationally intractable for large training
samples. In the talk we will present a way to tackle the
problem by using additional graph concepts and the
framework of cycle transitivity (De Baets et al., 2006).
Using this framework, we are able to define necessary
conditions for AUC ranking representability, since the
pairwise AUCs of an AUC ranking representable one-
versus-one scheme are reciprocal relations coinciding
with dice models (De Schuymer et al., 2003). These
conditions can be easily verified in practice by analyz-
ing the pairwise AUCs.

In another way, sufficient conditions for AUC ranking
representability can also be translated into the frame-
work of cycle transitivity. To this end, a new type of
cycle transitivity is introduced, leading to a verifiable
sufficient condition for the three class case. In this
way, AUC ranking representability can be checked by
solving an integer quadratic program.
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Abstract

We examine the problem of non-
monotonicity in multi-criteria data, and
formulate different optimal relabeling al-
gorithms for different domain constraints.
More exactly, we examine the case where
labels are ordinal or lacking a distance
function, and the case where such a distance
function is applicable. Furthermore, we dis-
cuss the problem of stochastic monotonicity,
and give optimal algorithms for relabeling
for this type of domain knowledge. Of
central importance is the transitivity of the
non-monotonicity relation, which permits
formulation of each of these relabeling
problems as an independent set problem
in a comparability graph. Network flow
algorithms can then be applied in order to
yield optimal solutions in all but one of the
problems discussed.

1. Introduction

We consider the problem of noise in the form of non-
monotonicity. Three options present themselves given
a data set subject to such noise: keep the data set as it
is, identify the noisy instances and remove them from
the data set, or identify the noisy instances and rela-
bel them. It is this last option we will discuss here.
We will examine regular and stochastic monotonicity,
and discuss the ways in which these problems can be
translated to independent set problems in comparabil-
ity graphs. Of key importance is the transitivity of the
non-monotonicity relation, permitting the formulation
of the problem as one solvable by network flow algo-

rithms and formulation of L1 loss optimal relabeling
algorithms.

2. Multi-criteria data, monotonicity
and independent sets

In multi-criteria data, instances can be ordered
w.r.t. the scores on the different criteria. One instance
is said to be strictly better than another instance if
it received a score that is at least as good on each
of the criteria, with the preference being strict for at
least one criterion. For two such instances, one can
expect the better instance to receive a label (coming
from the collection of labels L) that is at least as good
as the worse instance. This background knowledge is
known as the monotonicity requirement: an increase
in criterion scores cannot result in a decrease in label.

Sometimes, assignment of a single label to each feature
vector is too strict. In such cases, a distribution over
the different labels is supplied for each feature vector,
and regular monotonicity does not apply. Rather, we
have stochastic monotonicity: the better feature vector
should have a distribution that contains more higher
labels than the worse feature vector. This is most eas-
ily seen on the basis of the cumulative distributions:
the better feature vector has a cumulative distribu-
tion that takes higher values at higher labels, while
the worse feature vector should take higher values for
lower labels (see Section 3).

Of central importance is the fact that both regular
and stochastic non-monotonicity are defined as tran-
sitive relations: if an instance or feature vector x is
non-monotone w.r.t. an instance or feature vector y, it
will also be non-monotone w.r.t. all instances or fea-
ture vectors which are better than y according to their
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(a) (b)

Figure 1. Graph representation of a partially non-
monotone data set S1(numbers represent class labels)

features, and worse according to their label(s).

The independent set concept is relevant to the discus-
sion of non-monotonicity in defining an optimal clean-
up (Rademaker et al., 2006). This problem from graph
theory deals with a graph G, comprised of a set of
vertices V and a set of edges E. Figure 1(a) can be
seen as a graph-representation of a data set S with in-
stances S. The set of instances corresponds to the set
of vertices of our graph, and the edges we show denote
two instances to be non-monotone (Enm) w.r.t. each
other. Though finding a maximum independent set
is an NP-complete problem in the general case, it is
solvable in our case: the transitivity inherent to the
non-monotonicity relation means a graph such as the
one in Figure 1(a) is actually a comparability graph
by definition. The condensed representation of such a
graph is shown in Figure 1(b). Through the use of a
network flow algorithm, it is possible to determine the
maximum independent set in O(|V |3) time (Möhring,
1985). We will show how the problems of restoring
regular and stochastic monotonicity through the re-
labeling of instances can be solved by these methods.
Network flow representations are possible and straight-
forward, but have been omitted here for lack of space.

3. Solving the relabeling problem

Suppose we have the label function d : S → L that
returns the label an instance received in the data set,
and the label distance function D : L × L → R that
quantifies how far apart two labels are. We now trans-
late the minimal L1 relabeling problem to a weighted
maximum independent set problem. To this end, we
add a number of instances to the data set: we copy
each instance |L| − 1 times, and assign each of these
copies a new label so that we end up with in total |L|
copies, one for each label. The weight each of these
instances receives is related to the label distance be-
tween the old and the new label. The original copy

Figure 2. Cumulative frequency label distributions: one
step better, original distribution and one step worse (la-
bels denoted by letters)

of the instance, let us call it aold, receives a weight
of A = D (min (L) ,max (L)). Other instances receive
a weight depending on their label, i.e. for a relabeled
instance a′ this weight is A − D (d (a′) , d (aold)). If
we determine a maximum weighted independent set in
this data set, we have a relabeling that minimizes the
L1 loss.

An analogous technique can be used when stochastic
monotonicity is demanded. Each feature vector has
an original collection of labels. By stepwise relabeling
all instances that received the worst label to the worst-
but-one label, we can transitively shift the distribution
to the better labels by relabeling instances. An anal-
ogous operation is possible to worsen the distribution
by relabeling the best instances to the best-but-one
label. As evidenced by Figure 2 which contains an
original distribution and the next-best and next-worst
relabeled version, such a collection of partially rela-
beled distributions can be ordered from best to worst,
with the original distribution obviously being better
than all those that have been constructed to be worse,
and worse than those that have been constructed to
be better. Weights can be assigned on the basis of the
number of instances that still carry their original la-
bel (as a 0/1 loss equivalent), or on the basis of the
number of times an instance needed to be relabeled in
order to end up with the distribution in question (as
an L1 loss equivalent). Illustrative examples will be
provided, and extensions to simultaneously minimize
the 0/1 loss and the L1 loss will be formulated.
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Abstract
The availability of structured data sets from
XML documents to biological structures,
such as sequences or graphs, has prompted
for the development of new learning algo-
rithms able to handle complex structured
output spaces. Motivated by the success of
kernel methods for handling complex input
spaces, one approach to handle complex out-
put problems is to embed the outputs into a
kernelized space and develop algorithms that
can work in such a space by exploiting the
kernel trick. In this abstract, we present our
recent work with tree-based methods in this
domain.

1. Learning in kernelized output spaces

The general problem of supervised learning may be
formulated as follows: from a learning sample LS =
{(xi, yi)|i = 1, . . . , NLS} with xi ∈ X and yi ∈ Y, find
a function f : X → Y that minimizes the expecta-
tion of some loss function over the joint distribution of
input/output pairs:

Ex,y{ℓ(f(x), y)}. (1)

Let us suppose now that we have a kernelized output
space, ie. an output space Y endowed with a kernel
k : Y × Y → IR, and let us denote by φ : Y → H the
feature map defined by k. In this paper, we consider
problems where the loss function is defined as follows:

ℓ(y1, y2) = ||φ(y1)− φ(y2)||2
= k(y1, y1) + k(y2, y2)− 2k(y1, y2), (2)

which depends only on the output kernel.

The resolution of this problem usually involves two
steps (see Figure 1):

φ y( )

x y
f

f φ φ
φ−1

Figure 1. Learning with kernelized outputs

1. Learn an intermediate function fφ : X → H that
maps each input vector into the Hilbert space and
minimizes the following loss:

Ex,y{||fφ(x) − φ(y)||2}. (3)

2. From a prediction fφ(x) in H, get a prediction
f(x) in the original output space Y by solving:

f(x) = arg min
y∈Y

||φ(y)− fφ(x)||2. (4)

For this solution to be practically feasible, we need
to be able to write the algorithm from pairwise dot-
products only. Solutions for the learning stage are usu-
ally obtained by using the kernel trick at the output
of some standard supervised learning method that can
handle a vectorial output. For example, Cortes et al.
(2005) propose a kernelization of the output of ker-
nel ridge regression. The methods that we present
below are obtained by kernelizing the output of (mul-
tiple output) regression trees and gradient boosting.
The optimization problem (4) is the so called preim-
age problem, whose solution is kernel specific.

Like other kernel methods, this formulation of the su-
pervised learning problem has the advantage of decou-
pling the design of the algorithm from the design of
the kernel. Given the important literature that exists
on kernels, it allows one to develop generic algorithms
that can potentially handle a large range of problems
in terms of loss functions and output spaces.

61



2. Output kernel trees

In (Geurts et al., 2006), we propose a kernelization of
the output of regression trees that we called OK3 for
output kernel trees. The idea of standard regression
trees is to recursively split the learning sample with bi-
nary tests based on the input variables, trying at each
split to reduce as much as possible the (empirical) vari-
ance of the output in the left and right subsamples of
learning cases corresponding to that split. Our ker-
nelization of this method is based on the exchange of
this variance for the average square distance from the
center of mass in H that can be computed from kernel
values only:

1
N

N∑
i=1

||φ(yi)− 1
N

N∑
i=1

φ(yi)||2 =

1
N

N∑
i=1

k(yi, yi)− 1
N2

N∑
i,j=1

k(yi, yj)

Predictions at tree leaves are then written as linear
combinations of learning sample outputs, which makes
expression (4) again computable from kernel values
only.

The use of ensemble methods is usually necessary
to make tree-based methods competitive with other
methods in terms of accuracy. The extension of en-
semble methods based on randomization, such as bag-
ging or random forests, to kernelized output spaces is
straightforward as these methods only rely on score
computations to grow the trees and combine predic-
tions by simply averaging them. The extension of
boosting methods is however generally not trivial as
these methods manipulate the outputs. In (Geurts
et al., 2007b), we show however that a particular type
of boosting algorithm, gradient boosting with square
loss, can be also modified to handle a kernelized output
space. Just like in standard classification and regres-
sion settings, the use of ensemble methods usually im-
proves very much with respect to single output kernel
trees.

3. Supervised graph inference

One application of these methods is supervised graph
inference. In this problem, we assume that we have a
set of vertices {vi, i = 1, . . . , m} that are related be-
tween each other by a graph. Each vertex is further-
more described by an input feature vector x(vi) ∈ X
and the goal is to find a function g(x(v), x(v′)) :
X×X → {0, 1} that predicts as well as possible the ex-
istence of a connection between two (potentially new)
vertices v and v′ described by their input vectors.

Our solution is based on a kernel embedding of the
graph (e.g., by a diffusion kernel) and the application
of output kernel trees in the resulting kernelized out-
put space. This application gives a model fφ(.) and
edge predictions are then obtained by thresholding the
dot-product between the predictions of this model for
two (new) input vectors:

g(x, x′) = 1(〈fφ(x), fφ(x′)〉 > kth).

Since fφ is expressed as a linear combination of out-
puts from the learning sample, this latter expression
can again be computed from kernel values only.

In (Geurts et al., 2007a), we have applied this method-
ology to the supervised inference of two biological net-
works between Yeast genes (protein-protein interac-
tion network and enzyme network) from various in-
formation about these genes (microarray expression,
localization, and phylogenetic information). Our ap-
proach yields competitive results with respect to ex-
isting methods.
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Abstract

Multi-target models, which predict multi-
ple target variables simultaneously, may pre-
dict some of the targets more accurately,
and other targets less accurately than a
single-target model. This raises the question
whether it is possible to find, for a given main
target, a subset of the other targets that,
when combined with the main target in a
multi-target model, results in the most ac-
curate model for the main target. We pro-
pose Selective Inductive Transfer, an algo-
rithm that automatically finds such a subset.

1. Introduction

We consider simultaneous prediction of multiple vari-
ables, which is known as multi-target or multi-
objective prediction. In this setting, the input is as-
sociated with a vector of target variables, and all of
them need to be predicted as accurately as possible.
Multi-target prediction is encountered, e.g., in ecologi-
cal modelling, where the domain expert is interested in
(simultaneously) predicting the frequencies of different
organisms in agricultural soil or river water.

It has been shown that multi-target models can be
more accurate than predicting each target individually
with a separate single-target model (Caruana, 1997).
This is a consequence of the fact that when the tar-
gets are related (e.g., if they represent frequently co-
occurring organisms in the ecological modelling appli-
cations mentioned above), they can carry information
about each other; the single-target approach is unable
to exploit that information, while multi-target models
naturally exploit it. This is a form of inductive trans-
fer: the information a target carries about the other
targets is transferred to those other targets.

Multi-target models do, however, not always lead to
more accurate prediction. For a given target variable,
the variable’s single-target model may be more accu-

rate than the multi-target model. That is, inductive
transfer from other variables can be beneficial, but it
may also be detrimental to accuracy. Therefore, the
subset of targets that, when combined with a given
target (the main target) in a multi-target model, re-
sults in the most accurate model for the main target,
may be non-trivial, i.e., different from the empty set
and from the set of all targets. We call this set the
support set for the main target.

2. Selective Inductive Transfer

We propose Selective Inductive Transfer (SIT), a
greedy algorithm that approximates the support set
for a given main target, and that works as follows.

1. Initialize the support set to the empty set.

2. Consider the multi-target model with as targets
the main target and the current support set. Use
this model to predict only the main target and
estimate the resulting accuracy. (We use 10-fold
cross validation to estimate accuracy.)

3. Add each candidate support target in turn to the
current support set and estimate the main target’s
accuracy for each resulting multi-target model.

4. Select the candidate support target (if any) that
yielded the largest increase in accuracy over the
accuracy of the current support set and add it
permanently to the support set. If no candidate
improves accuracy, then return the current sup-
port set.

5. Go to step 2.

SIT has a number of advantages over related methods.
First, other algorithms that exploit transfer selectively,
such as the Task Clustering algorithm of Thrun and
O’Sullivan (1996), often incorrectly assume transfer to
be symmetric. This results in suboptimal models. SIT
does not assume transfer to be symmetric; if a is a
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support target for main target b, then b is not nec-
essarily a support target for a. A second shortcom-
ing of other methods, such as the η-MTL algorithm of
Silver and Mercer (1996), is that they rely on heuris-
tics, such as the linear correlation of the targets, to
approximate transfer. Such heuristics may poorly ap-
proximate transfer. SIT measures transfer empirically
(using cross validation). Therefore, it does not suffer
from this problem. A third advantage of SIT is that
it is a general method that can be combined with any
multi-target learner.

3. Experimental Evaluation

The aim of our experiments is to test to which extent
SIT, for a given main target, succeeds in finding a good
set of support targets. To this end, we compare SIT to
two common baseline models: a single-target model for
the main target (ST), and a multi-target model that
includes all targets (MT).

SIT has been implemented in the decision tree induc-
tion system Clus, which also implements single- and
multi-target regression trees (Blockeel et al., 1998),
and is available as open source software from http:
//www.cs.kuleuven.be/~dtai/clus/.

We compare for each target variable of 6 ecological
modelling multi-target regression datasets, the pre-
dictive performance of a traditional single-target re-
gression tree (STRT), a tree constructed by SIT with
all other targets as candidate support targets, and a
multi-target tree including all targets (MTRT).

Table 1 shows for each method, the cross validated
Pearson correlation, averaged over all targets. (This
measure is common in ecological modelling; we also
use it as accuracy estimate in the internal cross vali-
dation performed by SIT.) SIT performs significantly
better than STRT for 5 out of 6 datasets and never
performs significantly worse. It performs comparable
to MTRT or significantly better than MTRT in 5 out
of 6 datasets. For one dataset (Soil 2 ), SIT still signif-
icantly outperforms STRT, yet it is significantly worse
than MTRT. Here, SIT selects too few of the targets
(it selects 4.2 out of the 38 targets on average in the
different folds). The most likely cause is the large num-
ber of targets. SIT implements a greedy hill-climbing
search that stops too early and ends up in a local op-
timum for this dataset.

4. Conclusions & Further Work

We proposed Selective Inductive Transfer (SIT), an
algorithm that searches for the set of support targets

Table 1. 10-fold cross validated Pearson correlation aver-
aged over all targets and five runs. •,◦ denote a statistically
significant improvement or degradation of SIT or MTRT
over STRT. Significance is determined by the corrected re-
sampled t-test (Nadeau & Bengio, 2003) with significance
level 0.01. �,� denote a statistically significant improve-
ment or degradation of SIT over MTRT.

Dataset STRT SIT MTRT
Sigmea 0.63±0.40 0.64±0.40 0.64±0.40
Soil 1 0.60±0.18 0.63±0.13• 0.64±0.13•
Soil 2 0.34±0.40 0.41±0.35•� 0.48±0.29•
Soil 3 0.19±0.23 0.24±0.23• 0.26±0.22•
Water 1 0.26±0.17 0.29±0.15•� 0.27±0.15
Water 2 0.37±0.27 0.41±0.25•� 0.39±0.23

that, when predicted together with the main target
in a multi-target model, maximally improves the pre-
dictive performance with regard to the main target.
Experiments show that, in all but one dataset, SIT
finds a good set of support targets.

In further work, we plan to compare SIT to other
methods that exploit transfer selectively and investi-
gate alternative search strategies to the greedy hill-
climbing approach implemented by SIT.
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Abstract

We present a snapshot of our current work on
learning visual object models in the form of
Markov networks, point out interesting rela-
tions to biological vision, and illustrate their
performance on diverse tasks such as object
recognition and 3D pose estimation.

1. Introduction

Cortical visual processing involves both bottom-up
propagation of perceptual stimuli and modulation by
top-down signals. Lee and Mumford (2003) suggested
that the visual processing stream from the LGN via
V1, V2 and V4 to IT might perform Bayesian infer-
ence within an undirected Markov chain. A cortical
layer xi (say, V1) computes its activity P (xi | xk 6=i) =
P (xi | xi−1, xi+1) = P (xi−1 | xi)P (xi | xi+1)/Zi , that
is, a posterior probability distribution given bottom-
up input from xi−1 (LGN), under top-down priors
xi+1 (V2). The parameters of the Markov network
are specified via pairwise compatibility potentials ψ,
where P (xi | xi−1, xi+1) = ψ(xi−1, xi)ψ(xi, xi+1)/Zi.
These potentials must be learned from experience with
the world; Lee and Mumford (2003) do not comment
on how this might be done. A crucial aspect of this
model is that ambiguities at low levels should persist
and propagate upwards until they can be resolved by
integrating larger-scale evidence or top-down expecta-
tions. As a biologically plausible implementation of
inference with arbitrary, possibly multi-modal proba-
bility densities, Lee and Mumford (2003) suggest belief
propagation using particle representations. Moreover,
they provide a wealth of neurophysiological and psy-
chophysical evidence for such a computational model.

2. Principle

We are currently developing representations and meth-
ods for visual inference that constitute, at least at the
vague level of detail given above, a working computer

implementation of central aspects of Lee and Mum-
ford’s model. Without making explicit reference to
specific cortical layers, our approach is based on a
Markov network such as the didactic example shown
in the figure, with vertices arranged in layers corre-
sponding to those of Lee and Mumford’s. Each vertex
is a random variable representing the spatial proba-
bility density of the presence of a feature. At level 0,
a primitive feature x0,j is the spatial probability den-
sity of a given type of locally observable feature. It is
inferred from local image appearance yj via its obser-
vation potential φ(x0,j , yj). At higher levels, a com-
pound feature (recursively) represents the presence of
both of its children, and the compatibility potentials
ψ represent pairwise spatial relationships. For exam-
ple, in the figure, feature x3,1 represents the spatial
probability density of features x2,1 and x2,3 occurring
in the relative configuration encoded by ψ(x2,1, x3,1)
and ψ(x2,3, x3,1).

We construct such networks, including their topol-
ogy and compatibility potentials, using unsupervised
learning. The input layer y, fixed at the outset, is
successively exposed to visual stimuli. The system
records the occurrences of known features (primitive
or compound), as well as the spatial relations between
them. When reoccurring constellations of features
xi,a and xi,b are detected, the observed non-uniform
spatial co-occurrence probability densities are turned
into the compatibility potentials ψ(xi,a, xi+1,c) and
ψ(xi,b, xi+1,c) with respect to a newly-instantiated fea-
ture xi+1,c, located between them.
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3. Results

In practice, we arrive at networks of on the order of 10
layers and on the order of between 10 and 100 vertices
per layer. What they represent depends on the train-
ing data. For example, we have trained networks that
represent individual objects, from a fixed viewpoint or
from a variety of viewpoints. If a network is trained on
images of several distinct objects, higher-level vertices
will specialize to become view-tuned cells of specific
objects. If objects share common parts, these are likely
to be represented by the same lower-level subgraphs.

Networks learned in this way can be instantiated on a
given input stimulus by computing the observations y,
optionally instantiating higher-level vertices according
to prior expectations, and performing nonparametric
belief propagation using particle representations (sim-
ilar to Sudderth et al., 2003) throughout the network
until convergence. Thanks to bidirectional propaga-
tion, the network converges to a globally coherent in-
terpretation of the scene, where each vertex xi,j con-
tains its best possible interpretation of its children,
under the priors provided by the parents. We have
used this procedure successfully for object detection,
recognition, and pose estimation, in 2D and in 3D, as
well as for inference of occluded object parts.
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Abstract

This paper describes a novel technique, called
D-walks, to tackle semi-supervised classifi-
cation problems in large graphs. We in-
troduce here a betweenness measure based
on passage times during random walks of
bounded lengths in the input graph. The
class of unlabeled nodes is predicted by
maximizing the betweenness with labeled
nodes. This approach can deal with di-
rected or undirected graphs with a linear
time complexity with respect to the num-
ber of edges and the maximum walk length
considered. Preliminary experiments on the
CORA database show that D-walks outper-
forms NetKit (Macskassy & Provost, 2007)
as well as Zhou et al. algorithm (Zhou et al.,
2005), both in classification rate and comput-
ing time.

1. Introduction

This paper is concerned with semi-supervised classifi-
cation of nodes in a graph. Given an input graph with
some nodes being labeled, the problem is to predict the
missing node labels. This problem has numerous ap-
plications such as classification of individuals in social
networks, linked documents categorization or protein
function prediction, to name a few.

Several approaches have been proposed to tackle semi-
supervised classification problems in graphs. Kernel
methods (Zhou et al., 2005; Tsuda & Noble, 2004)
embed the nodes of the input graph into an Euclidean

feature space where a classifier, such as a SVM, can
be estimated. Despite of their good predictive perfor-
mance, these techniques cannot easily scale up to large
problems due to their high time complexity. NetKit is
an alternative relational learning approach (Macskassy
& Provost, 2007). It has a lower computational com-
plexity but is less simple conceptually and may require
to fine tune several of its components.

The approach proposed in this paper, called D-walks,
relies on random walks performed on the input graph
seen as a Markov chain. More precisely, a betweenness
measure, based on passage times during random walks
of bounded length, is derived for each class (or label
category). Unlabeled nodes are assigned to the cate-
gory for which the betweenness is the highest. The D-
walks approach has the following properties: (i) it has
a linear time complexity with respect to the number of
edges and the maximum walk length considered; such
a low complexity allows to deal with very large graphs,
(ii) it can handle directed or undirected graphs, (iii)
it can deal with multi-class problems and (iv) it has a
unique hyper-parameter that can be tuned efficiently.

2. Discriminative random walks

We are given an input graph G containing a set of
nodes N and edges E . The (possibly weighted) adja-
cency matrix is denoted A. The graph G is assumed
partially labeled. The nodes in the labeled set L ⊂ N
are assigned to a category from a discrete set Y. The
unlabeled set is defined as U = N \ L.

Random walks in a graph can be modeled by a
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discrete-time Markov chain (MC) describing the se-
quence of nodes visited during the walk. Each state
of the Markov chain corresponds to a distinct node
of the graph. The MC transition probability matrix
is simply given by P = D−1A, with D the diagonal
matrix of node degrees. We consider discriminative
random walks (D-walks, for short) in order to define
a betweenness measure used for classifying unlabeled
nodes.

Definition 1 (D-walk) Given a MC defined on the
state set N , a class y ∈ Y and a discrete length l >
1, a D-walk is a sequence of state q0, . . . , ql such that
yq0 = yql

= y and yqt 6= y for all 0 < t < l.

The notation Dy
l refers to the set of all D-walks of

length l, starting and ending in a node of class y. We
also consider Dy

≤Lreferring to all D-walks up to a given
length L. The betweenness function BL(q, y) measures
how much a node q ∈ U is located “between” nodes
of class y ∈ Y. The betweenness BL(q, y) is formally
defined as the expected number of times the node q is
reached during Dy

≤L-walks.

Definition 2 (D-walk betweenness) Given an un-
labeled node q ∈ U and a class y ∈ Y, the D-walk
betweenness function U × Y → R+ is defined as fol-
lows: BL(q, y) , E [pt(q) | Dy

≤L], where pt(q) is the
passage times function N → R+ counting the number
of times a node q has been visited.

This betweenness measure is related to the one pro-
posed by Newman in (Newman, 2005). Our measure
is however relative to a specific class y rather than to
the whole graph. It also considers random walks up to
a given length instead of unbounded walks. Bounding
the walk length has two major benefits: (i) better clas-
sification results are generally obtained with respect to
unbounded walks (ii) the betweenness measure can be
computed very efficiently (in Θ(|E|L)) using forward
and backward recurrences, similar to those used in the
Baum-Welch algorithm for HMM parameter estima-
tion. Finally, an unlabeled node q ∈ U is assigned to
the class with the highest betweenness.

3. Experiments

We report here preliminary experiments performed on
the Cora dataset (Macskassy & Provost, 2007) con-
taining 3582 nodes classified under 7 categories. As
this graph is fully labeled, node labels were randomly
removed and used as test set. More precisely, we have
considered 9 different proportions of labeled nodes in
the graph: {0.1, 0.2, . . . , 0.9} and for each labeling
rate, 10 random deletions were performed. Compara-

tive performances obtained with NetKit (Macskassy
& Provost, 2007) and with the approach of Zhou
et al. (Zhou et al., 2005) are also provided. The
hyper-parameters of each approach have been tuned
using ten-fold cross-validation. Figure 1 shows the
correct classification rate on test data obtained by
each approach for increasing labeling rates. The D-
walk approach clearly outperforms its competitors on
these data. The D-walks approach is also the fastest
method. It requires typically 1.5 seconds of CPU1 for
every graph classification including the auto-tuning of
its hyper-parameter L. NetKit takes about 4.5 sec-
onds per graph classification and our implementation
of Zhou et al. approach typically takes several min-
utes. Large graphs (several millions of edges) were
also successfully classified in a few minutes with D-
walks while neither NetKit nor Zhou et al. methods
could be applied on such large graphs.
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Figure 1. Classification rate of D-walk and two competing
methods on the Cora dataset. Error bars report standard
deviations over 10 independent runs.
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Abstract
This work introduces a link-based covariance
measure between the nodes of a weighted, di-
rected, graph where a cost is associated to each
arc. To this end, a probability distribution on
all possible paths through the network is defined
by minimizing the sum of the expected costs be-
tween all pairs of nodes while fixing the total
relative entropy spread in the network. This
results in a probability distribution on the set
of paths such that long paths occur with a low
probability while short paths occur with a high
probability. The covariance measure is then com-
puted according to this probability distribution:
two nodes will be highly correlated if they of-
ten co-occur together on the same – preferably
short – paths. The resulting covariance matrix
between nodes (say n in total) is a Gram ma-
trix and therefore defines a valid kernel matrix
on the graph; it is obtained by inverting a n× n
matrix. The proposed model could be used for
various graph mining tasks such as computing
betweenness centrality, semi-supervised classifi-
cation, visualization, etc, as shown in the exper-
imental section.

1. The sum-over-paths covariance
measure

Basic notations and definitions. Consider a
weighted directed graph or network, G, with a set of n
nodes V (or vertices) and a set of arcs E (or edges). The
graph is supposed to be strongly connected. To each arc
linking node k and node k′, a number ckk′ > 0 is associ-
ated, representing the immediate cost of following this
arc. The cost matrix C is the matrix containing the im-
mediate costs ckk′ . In a first step, a random walk on
this graph will be defined. The choice to follow an arc will
be made according to transition probabilities representing
the probability of jumping from a node k to another node

k′ belonging to the set S(k) of neighboring nodes (succes-
sors S) that can be reached from node k. The transitions
probabilities defined on each node k will be denoted as
pkk′ = P(k′|k) with k′ ∈ S(k). Furthermore, P will be
the matrix containing the transition probabilities pkk′ as
elements. If there is no arc between k and k′, we simply
consider that ckk′ takes a large value, denoted by ∞; in
this case, the corresponding transition probability will be
set to zero, pkk′ = 0. The natural random walk on the
graph will be defined by pref

kk′ = c−1
kk′/

P
k′ c
−1
kk′ and the cor-

responding transitions-probabilities matrix Pref. In other
words, in this natural random walk, the random walker
chooses to follow a link with a probability proportional to
the inverse of the immediate cost, therefore favoring links
having a low cost. These transition probabilities will be
used as reference probabilities later; hence the superscript
ref.

Definition of the probability distribution on the
set of paths. Let us first consider two nodes, an initial
node i and a destination node j. We define the (possibly in-
finite) set of paths (including cycles) connecting these two
nodes asRij = {℘rij}. Thus, ℘rij is path number rij , with
path index rij ranging from 1 to ∞. Let us further define
the set of all paths R =

S
ij Rij and a probability distri-

bution on this set R representing the probability P(℘rij )
of following the path numbered rij . The main idea will be
to use the probability distribution P(℘rij ) minimizing the
expected cost-to-go among all the probability distributions
having a fixed relative entropy with respect to the natural
random walk on the graph.

Let us also denote as Erij the total cost associated to the
path rij , referred to as the energy associated to that path.
We assume that the total cost associated to a path is ad-
ditive, i.e. E(℘rij ) =

Ptf

t=1ckt−1kt where k0 = i is the
initial state and ktf = j is the destination state; tf is the
time (number of steps) needed to reach node j. Here, we
assume that ℘rij is a valid path from the initial state to
the destination state, that is, every ckt−1kt 6=∞ along that
path.
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We now have to find the path probabilities mini-
mizing the sum of the expected energy for reach-
ing node j when starting from i. In other works,
we are seeking path probabilities, P(℘rij ), minimiz-
ing

Pn
i,j=1

P∞
rij=1P(℘rij )E(℘rij ) subject to the con-

straint −P∞
rij=1P(℘rij ) ln(P(℘rij )/Pref(℘rij )) = J0 where

Pref(℘rij ) represents the probability of following the path
℘rij when walking according to the natural random walk,
i.e. when using transition probabilities pref

kk′ . Here, J0 is
provided a priori by the user, according to the desired de-
gree of randomness he is willing to concede. By defining
the Lagrange function

L =
nX

i,j=1

∞X
rij=1

P(℘rij )E(℘rij )

+ λ

"
nX

i,j=1

∞X
rij=1

P(℘rij ) ln
P(℘rij )

Pref(℘rij )
+ J0

#

+ µ

"
nX

i,j=1

∞X
rij=1

P(℘rij )− 1

#
, (1)

we obtain the following probability distribution

P(℘rij ) =
Pref(℘rij ) exp [−θE(℘rij )]

nX
i,j=1

∞X
rij=1

Pref(℘rij ) exp [−θE(℘rij )]

(2)

where θ = 1/λ. Thus, as expected, short paths (having
small E(℘rij )) are favoured in that they have a large prob-
ability of being followed. When θ → ∞, only shortest
paths are considered in R while when θ → 0 all paths
corresponding to the natural random walk are taken into
account.

Definition of the covariance measure. We now
show that the sum-over-paths covariance measure can be
computed from a key quantity, defined as

Z =
nX

i,j=1

∞X
rij=1

Pref(℘rij ) exp [−θE(℘rij )] , (3)

which corresponds to the partition function in statistical
physics [2]. It can be shown that the partition function
can easily be computed from the cost matrix by inverting
a matrix [4].

Indeed, the expected number of times the link k → k′ and
the link l → l′ are traversed together along a path can be
computed by taking the second-order derivative

η(k, k′; l, l′) =
1

θ2
∂2(lnZ)

∂cll′∂ckk′

=
nX

i,j=1

∞X
rij=1

P(℘rij ) δ(r
ij ; k, k′)δ(rij ; l, l′)

−
"

nX
i,j=1

∞X
rij=1

P(℘rij ) δ(r
ij ; k, k′)

#2

(4)

where δ(rij ; k, k′) indicates the number of times the link
k → k′ is present in path number rij , and thus the number

of times the link is traversed. This last quantity clearly
corresponds to the covariance between link k → k′ and
link l→ l′.

Now, the covariance measure between node k′ and node
l′ is simply defined as

cov(k′, l′) =

nX
k,l=1

η(k, k′; l, l′) (5)

which corresponds to the main quantity of interest. This
quantity can thus easily be computed from the partition
function (the calculus are similar to the one apprering in
[4]).

2. Preliminary experiments
Notice that the experiments investigating the betweenness
and the visualization capabilities are not reported in this
paper because of the lack of space.

Semi-supervised classification. Preliminary exper-
iments on semi-supervised classification have been per-
fomed on the IMDb dataset (described in [3]). We compare
the proposed sum-over-paths kernel to the regularization
kernel proposed by [5], the commute-time kernel [1] and
the diffusion map kernel [1] in a semi-supervised classifica-
tion task of unlabeled nodes. An alignment procedure is
used in order to classify the unlabeled nodes, as described
in [5], for each of the four studied kernels. The hyper-
parameters of each algorithm have been tunned by using
a 5-fold cross-validation and the best value has been re-
tained for the estimation of the classification rate on the
test set. In order to reduce random effects on our results,
the labeled nodes have been sampled randomly 10 times,
and averaged results are finally reported on these ten runs.

The results (ommitted because of the lack of space) show
that the sum-over-paths kernel provides competitive results
in comparison with the other standard kernels on a graph.
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Abstract
We present a non-parametric technique ca-
pable of performing classification directly on
incomplete data, optionally performing im-
putation. The technique works by sparsely
representing the available data in a basis of
example data. Experiments on a spoken digit
classification task show significant improve-
ment over a baseline missing-data classifier.

1. Introduction

Classification on incomplete data is a challenging task
because parametric techniques require that the dimen-
sionality of the data doesn’t change between train-
ing and classification while non-parametric techniques
which can handle incomplete data such as k-nearest-
neighbors often deliver suboptimal classification accu-
racies. In practice, the missing data is often estimated
prior to classification through imputation. Most impu-
tation methods estimate the missing coefficients based
on local information and/or do not fully exploit the
structure of the underlying signal. Based on work in
Compressed Sensing (Donoho, 2006; Candes, 2006) we
present a non-parametric method which can not only
perform classification directly on the available data
but optionally imputes the missing data. The method
is based on the premise that a signal can be sparsely
represented in a basis of example signals (Yang et al.,
2007) and that this sparse representation can be ex-
actly recovered even if only a small part of the data is
available (Zhang, 2006). We show the effectiveness of
this approach on a spoken digit classification task.

2. Method

2.1. Sparse representation

We consider observation vector y of unknown class and
dimensionality K to be a linear combination of feature
vectors di,n, where the first index (1 ≤ i ≤ I) denotes

one of I classes and the second index (1 ≤ n ≤ Ni) a
specific exemplar vector of class i with Ni the number
of examples in that class. We write:

y =
I∑

i=1

Ni∑
n=1

αi,ndi,n

with weights αi,n ∈ R. The set of exemplars span a
K ×N dimensional basis (N = N1 +N2 + . . .+NI):

A = (d1,1 . . . d1,N1 . . . dI,1 . . . dI,NI
) (1)

Thus, we can express y as:

y = Ax (2)

with x an N -dimensional vector that ide-
ally will be sparsely represented as x =
[0 . . . 0 αi,1αi,2 . . . αi,Ni

0 . . . 0]T (i.e., most coeffi-
cients not associated with class i are zero).

Taking into account that the observation vector y is
incomplete we denote its available coefficients by ya

and the missing coefficients ym. Now we can solve
the system of linear equations of Eq. 2 using only the
available coefficients ya and the basis Aa, formed by
only retaining the rows of A indicated by the available
coefficients. Research in the field of compressed sens-
ing (Donoho, 2006; Candes, 2006) has shown that if x
is sparse, x can be recovered exactly by solving:

min||x||1 subject to ||ya −Aax||2 ≤ ε (3)

with a small constant ε such that the error e satisfies
||e||2 < ε and ||.||1 the l1norm.

2.2. Sparse classification (SC)

Following (Yang et al., 2007), we perform classifica-
tion by comparing the support of ya in parts of Aa

associated with different classes i. In other words, we
compare how well the various parts of x associated
with different classes i can reproduce ya. The repro-
duction error is called the residual. The residual of
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class i is calculated by setting the coefficients of x not
associated with i to zero while keeping the coefficients
associated with i unchanged. Thus the residual is:

ri(yr) = ||ya −Aaδi(x)||2 (4)

with δi(x), the vector selecting only the columns of A
that correspond to class i. The class c that is assigned
to an observed vector y is the one that gives rise to
the smallest residual:

c =argmin
i

ri(yr). (5)

2.3. Sparse imputation (SI)

Alternatively, one can use the sparse representation
x to impute the missing coefficients. Without loss of
generality we reorder y and A as in (Zhang, 2006) so
that we can write:

ŷ =
[
ya

yi

]
=
[

ya

Amx

]
(6)

with Am pertaining to the rows of A indicated by the
missing coefficients in y and yi an estimate for the
missing coefficients ym. This yields a new observation
vector ŷ after which ordering can be restored.

3. Experiments

We apply the described method to missing data spoken
digit classification task (AURORA-2). In noisy speech,
with digits represented by fixed length observation vec-
tors, coefficients are considered missing if their values
(representing speech energy in a time-windowed spec-
trographic representation) are dominated by speech
energy rather than noise energy. We explore the ef-
fectiveness of our approach by selecting the missing
coefficients using knowledge of the true speech and
noise signals. Using a setup described in detail in
(Gemmeke & Cranen, 2008) we compare the sparse
classification technique with a baseline, state-of-the-
art, HMM-classifier which performs imputation on a
frame-by-frame basis (Van hamme, 2006). Addition-
ally we compare classification accuracies obtained by
combining sparse imputation and the baseline classi-
fier.

While not strictly linear as a function of signal-to-noise
ratio (SNR), the percentage missing coefficients ranges
from 0% (clean speech) to 80− 95% (at SNR −5 dB).
In Table 1 it is shown that the sparse classification
and sparse imputation methods significantly outper-
form the baseline, frame-based classifier.

Table 1. AURORA-2 single digit classification accuracy.

SNR
method clean 15 10 5 0 -5
Baseline 99.3 99.1 98.7 96.6 88.4 61.0
SC 98.4 98.4 98.0 97.5 95.8 91.0
SI 99.3 99.0 98.5 97.7 96.5 91.3

4. Discussion and conclusions

Results show that both sparse methods give consider-
able improvement over the baseline, suggesting that a
correct sparse representation can be found even when
the majority of the data is missing, provided the re-
dundancy in the structure of the data is exploited by
use of example whole-digit observations vectors. The
slightly better results using sparse imputation rather
than sparse classifications seem to suggest that the
sparse classification method does not generalize to ob-
served digits as well as the HMM-based (parametric)
approach.
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Abstract

A key problem in multi-agent reinforcement
learning remains dealing with the large state
spaces typically associated with realistic dis-
tributed agent systems. As the state space
grows, agent policies become more and more
complex and learning slows. One possible so-
lution for an agent to continue learning in
these large-scale systems, is to learn a pol-
icy which generalizes over states, rather than
trying to map each individual state to an
action. In this paper we present a multi-
agent learning approach capable of aggre-
gating states, using associative reinforcement
learners called generalized learning automata
(GLA).

1. Introduction

Reinforcement learning (RL) has already been shown
to be a powerful tool for solving single agent Markov
Decision Processes (MDPs). Basic RL techniques are
not suited for problems with very large state spaces,
however, as they mostly rely on a tabular represen-
tation for policies and enumerating all possible state-
action pairs is not feasible (the so called curse of di-
mensionality). Because of these issues, several exten-
sions have been proposed to reduce the complexity of
learning. Methods for representing the agent’s policy
such as neural networks, decision trees and other re-
gression techniques are already widely used. To our
understanding, relatively little work has been done on
extending RL for large state spaces to MAS, so far.

2. Generalized Learning Automata

A Generalized Learning Automaton (GLA) is an asso-
ciative reinforcement learning unit. The purpose of a
GLA is to learn a mapping from given inputs or con-

texts to actions. At each time step the GLA receives an
input which describes the current system state. Based
on this input and its own internal state the unit then
selects an action. This action serves as input to the en-
vironment, which in turn produces a response for the
GLA. Based on this response the GLA then updates
its internal state.

Formally a GLA can be represented by a tuple
(X,A, β, u, g, T ), where X is the set of possible in-
puts to the GLA and A = {a1, . . . , ar} is the set of
outputs or actions the GLA can produce. β ∈ [0, 1]
denotes the feedback the automaton receives for an
action. The real vector u represents the internal state
of the unit. It is used in conjunction with a probability
generating function g to determine the action probabil-
ities, given an input x ∈ X. T is a learning algorithm
which updates u, based on the current value of u, the
given input, the selected action and response β. In this
paper we use a modified version of the REINFORCE
(WILLIAMS, 1992) update scheme. In (Thathachar
& Sastry, 2004) it is shown, that this update mech-
anism, converges to local maxima of f(u) = E[β|u],
showing that the automata find a local maximum over
the mappings that can be represented by the internal
state in combination with the function g.

We propose to use the GLA described above in Multi-
agent Reinforcement learning problems. In such a sys-
tem each agent internally uses a set of GLA to learn
the different regions in the state space where different
actions are optimal. We use the following set-up for
the GLA. With every action ai ∈ A the automaton
can perform, it associates a vector ui. This results in
an internal state vector u = [u1

τ . . .ur
τ ] (where τ de-

notes the transpose). With this state vector we use
the Boltzmann distribution as probability generating
function:
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g(x, ai, u) =
e

xτ ui
T∑

j e
xτ uj

T

(1)

Of course since this function is fixed in advance and the
environment in general is not known, we have no guar-
antee that the GLA can represent the optimal map-
ping. For instance when using the function given in
Equation 1 with a 2-action GLA, the internal state
vector represents a hyperplane. This plane separates
context vectors which give a higher probability to ac-
tion 1 from those which action 2. If the sets of context
vectors where different actions are optimal, are not
linearly separable the GLA cannot learn an optimal
mapping.

GLA 1 GLA m

GLA 1 GLA m
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...

...

Figure 1. Learning set-up. Each agent receives factored
state representation as input. GLA decide action to be
performed.

To allow a learner to better represent the desired map-
ping from context vectors to actions, we can utilize sys-
tems composed of multiple GLA units. For instance
the output of multiple 2-action GLAs can be combined
to allow learners to build a piecewise linear approxi-
mation of regions in the space of context vectors. In
general, we can use systems which are composed of
feedforward structured networks of GLA. In these net-
works, automata on one level use actions of the au-
tomata on the previous level as inputs . If the feedfor-
ward condition is satisfied, meaning that the input of
a LA does not depend on its own output, convergence
to local optima can still be established (Phansalkar &
Thathachar, 1995).

Figure 1 shows the general agent learning set-up. Each
time step t a vector x(t) giving a factored representa-
tion of the current system state is generated. This
vector is given to each individual agent as input. The
agents internally use a set of GLA to map an action
to the current state. The joint action a(t)of all agents
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Figure 2. Typical results for approximations for parabola
learnt by agents.

serves as input to the environment, which responds
with a feedback β(t) that agents use to update the
GLA.

3. Experiments

In a first simple experiment 2 agents move around ran-
domly in a 2 dimensional state space. Each time step
both agents receive the current state (x, y)-values as
input. The agents have to learn which joint actions
are optimal in different regions of the state space. In
this case there are 2 regions determined by a parabola.
In region I, given by the inside of the parabola action
(a1, a1) is optimal with a reward of 0.9. When the
joint location of the agents falls outside the parabola,
however, action (a2, a2) is optimal with reward 0.5. In
both cases all other joint actions have a pay-off of 0.1.

Both agents use a system consisting of 2 GLA, con-
nected by an AND operation. Both GLA have 2 ac-
tions: 0 and 1. If the automata both choose 1 the
agents performs its first action a1 else it performs ac-
tion a2. Figure 2 shows typical results for approxima-
tions that the agents learn for the parabola.
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1. Learning timed models efficiently

This paper describes an efficient algorithm for learn-
ing a timed model from observations. The algorithm is
based on the state merging method for learning a de-
terministic finite state automaton (DFA). This method
and its problem have been the subject of many studies
within the grammatical inference field, see e.g. (de la
Higuera, 2005). Consequently, it enjoys a sound the-
oretical basis which can be used to prove properties
of our algorithm. For example, while it has long
been known that learning DFAs is NP-complete, it
has been shown that DFAs can be learned in the
limit from polynomial time and data (efficiently in the
limit) using a state merging method.

A DFA is a language model. A language is a set of
finite sequences of symbols σ = s1s2 . . . sn known
as strings. Adding time to a string can be done by
giving every symbol a time value t ∈ N1, result-
ing in a sequence of symbol-time value pairs τ =
(s1, t1)(s2, t2) . . . (sn, tn). Every time value in such a
timed string represents the time that has elapsed since
occurrence of the previous symbol. A set consisting of
timed strings is called a timed language. There are two
main reasons why we want to learn a timed model
instead of an untimed model. First, in many appli-
cations the data that is obtained by observing a sys-
tem contains timestamps. For example, this is the
case when time series data is obtained from sensors.
Second, we believe that learning a timed model from
such data is more efficient than learning an untimed
model from this data. The reason is that, while it is
possible to construct for any timed model an equiva-
lent untimed model by sampling the time values, this
untimed model is of size exponential in the size of the
timed model. Thus, an efficient algorithm that learns
a timed system using an untimed model is by defini-
tion an inefficient algorithm since it is exponential in
time and data in the size of the timed model. In con-
trast, we show it is possible to learn certain types of

1It is more common to use R for time values. In practice,
there always is a finite precision of time and hence this only
makes the timed models unnecessarily complex.

timed models efficiently. Naturally, we want to focus
on learning models that are efficiently learnable.

We assume familiarity with the theory of languages
and automata. The timed models we consider are
known as timed automata (TA) (Alur & Dill, 1994). In
these models, time is represented using a finite num-
ber of clocks. A clock can be thought of as a stopwatch
that measures the time since it was last reset. When a
transition of a TA executes (fires) it can optionally re-
set the value of a clock. This clock then measures the
time since the last execution of this transition. The
value of clocks are used to constrain the execution of
transitions in a TA. A transition in a TA can contain a
boolean constraint, known as a clock guard, that speci-
fies when this transition is allowed to be executed de-
pending on the values of clocks. If the clock values
satisfy the constraint, the transition can be executed.
Otherwise, it cannot be executed. Thus a transition is
executed only if the TA is currently in its source (or
parent) state, the current symbol is equal to the tran-
sition label, and the current clock values satisfy the
transitions clock guard. In this way, the execution of
a TA depends not just on the symbols, but also on the
time values occurring in a timed string.

We focus on learning algorithms for a simple timed
model known as a deterministic real-time automa-
ton (DRTA) (Dima, 2001) based on the state merg-
ing method. A DRTA is a TA that contains a single
clock that is reset by every transition. Hence, the ex-
ecution of a DRTA depends on the symbols, and on
the time between two consecutive events of a timed
string. The reason for restricting ourselves to these
simple TAs is that the before-mentioned learnability
results for DFAs can quite easily be adapted to the
case of DRTAs. In other words, we can show that
DRTAs are efficiently learnable using a state merg-
ing method. Due to the expressive power of clocks,
we can also show this does not hold for determinis-
tic TAs (DTAs) in general: any algorithm that tries to
learn a DTA A will sometimes require an input set of
size exponential in the size of A. Other methods we
know of for learning timed models try to learn a sub-
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class of DTAs known as event recording automata,
see e.g. (Grinchtein et al., 2005). These automata are
more powerful than DRTAs. However, due to this ex-
tra power an algorithm that learns these models is in-
efficient in the amount of data it requires.

We are currently finishing these (in)efficient learnabil-
ity proofs. Our aim is to discover the most powerful
timed model that is efficiently learnable.

2. Learning from observations

We constructed an algorithm for learning DRTAs
from labeled data (Verwer et al., 2007). A high-level
view of this algorithm is given in Algorithm 1. The al-
gorithm starts with a prefix tree A that is constructed
from the input set S. This is a DRTA that is such that:
all the clock guards are equal to true (it disregards
time values), there exists exactly one execution one
path to any state (it is a tree), and it is such that the ex-
ecution ofA on any timed string from S ends in a state
inA. Starting from this prefix tree, our algorithm per-
forms the most consistent merge or split as long as
consistent merges or splits are possible. A merge of
two states a and b replaces a and b with a new state
c that contains all the input and output transitions of
both a and b. Afterwards, it is possible that A con-
tains some non-deterministic transitions. These are
removed by continuously merging the target states of
these transitions until none are left.

A transition splitting process is used to learn the clock
constraints of the DRTA. A split of a transition d, at
time t removes d from A and adds a transition e that
is satisfied by all the clock values that satisfy d up to
time t, and a transition f that is satisfied by all the
clock values that satisfy d starting at t. The timed
strings from S that have an execution path over e and
f are subsets of the timed strings from S that had an
execution path over d. Therefore, the prefix tree is re-
calculated starting from the new transitions e and f .

Algorithm 1 State merging and splitting DRTAs
Require: A set of timed strings S.
Ensure: The result is a small consistent DRTA A.

Construct a timed prefix A tree from S.
while States can be merged or split consistently
do

Evaluate all possible merges and splits.
Perform the most consistent merge or split.

end while
Return the constructed DRTA A.

There is one important part of Algorithm 1 that we
left undefined: What does it mean to be consistent?

In the original setting of our algorithm the answer to
this question was simple: The algorithm got a labeled
data set as input and consistency was defined using
these labels. However, for many applications this set-
ting is unrealistic: Usually, only positive data is avail-
able. We adapted our algorithm to this setting by us-
ing statistics as a consistency measure for our models.

This seems a very natural thing to do and it has
been done for the problem of learning probabilistic
DFAs (Kermorvant & Dupont, 2002). The main prob-
lem to overcome is to come up with a good statistic
for the (dis)similarity of two states based on the pre-
fix trees of their suffixes. In our approach, two states
in such a tree are treated as being similar if the dis-
tributions with which they generate (next) symbols
are not significantly different. In addition, since we
deal with a timed model, we require that the distribu-
tions generating the time values of these symbols are
not significantly different. There properties are tested
for every state in the prefix tree using Chi-square and
Kolmogorov-Smirnov hypothesis tests. The result is
many p-values, which we combine into a single test
using a standard method for multiple hypothesis test-
ing. The method that was used to learn DFAs does not
make use of a multiple hypothesis testing method: it
simply rejects if any of the tests fails.

Initial tests of our algorithm on artificial data show
that the uses of timed models and multiple hypothe-
sis testing are promising.
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Abstract

More and more genomes are being sequenced,
and to keep up with the pace of sequencing
projects, automated annotation techniques
are required. One of the most challenging
problems in genome annotation is the iden-
tification of the core promoter. Better core
promoter prediction can improve genome an-
notation and can be used to guide experimen-
tal work.

Comparing the average structural profile
of transcribed, promoter and intergenic se-
quences demonstrates that the core promoter
has unique features that cannot be found
in other sequences. We show that unsuper-
vised clustering by using self-organizing maps
can clearly distinguish between the structural
profiles of promoter sequences and other ge-
nomic sequences. An implementation of this
promoter prediction program, called Pro-
SOM, is available and has been compared
with the state-of-the-art.

1. Introduction

Currently, the genomic sequence of over 50 eukaryotic
organisms is available. So it is important to automate
the identification of genes and regulatory sequences.

The core promoter is the region immediately upstream
of the TSS, where the transcription initiation complex
assembles.

Core promoters have distinct features that can be used
to distinguish them from other sequences. One such
property models the local base-stacking energy. High
values denote regions that destack or melt easily. Two
regions that seem to melt easily are located around -30
from the TSS and on the TSS, and are embedded in a
large-scale region that is significantly more stable. We

used this large-scale feature in earlier work to predict
promoter regions in a wide range of species.

We present a novel promoter prediction technique,
called ProSOM, that uses an unsupervised self-
organizing map (SOM) to distinguish core promoter
regions from the rest of the genome.

2. Material and methods

2.1. Data

We used the human genome assembly (hg17, May
2004). The cap analysis gene expression (CAGE)
dataset was retrieved from the Fantom3 project. It
contains 123,400 unique TSSs for human. The En-
sembl gene annotation has been retrieved using the
BioMart tool for Ensembl release 37. Sequences and
annotation were retrieved from the ENCODE project.
For the training of the SOM we retrieved promoter,
transcribed and intergenic sequences from DBTSS and
Ensembl.

2.2. Structural profiles

The nucleotide sequence is converted into a sequence
of numbers (i.e., a numerical profile). This is done
by replacing each dinucleotide with its energy value,
which is obtained from experimentally validated con-
version tables. We have used the conversion tables for
base-stacking energy from Florquin et al. 2005.

2.3. Clustering and promoter prediction

The clustering technique we used is the self-organizing
map (SOM), a special type of artificial neural network
that can be used both for clustering and class predic-
tion. A SOM consists of a rectangular grid of clus-
ters, each of which has a weighted connection to every
input node. In our case, the input nodes represent
the different values of a structural profile associated
to a potential promoter region. The SOM provides a
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Figure 1. The structural profile of promoter (left), tran-
scribed (center) and intergenic (right) human sequences.
The profiles are the averages over all sequences in the re-
spective training sets. We used the base-stacking energy as
physical property. The left panel shows the region [-200,50]
around the TSS, while for the other two panels there is no
reference point and the location are numbered from 0 to
250.

mapping from a higher-dimensional feature space (the
structural profile) to a lower-dimensional cluster space.

2.4. Validation

The validation of our technique was done on two se-
quence sets; first on the entire human genome assem-
bly (hg17, May 2004) and secondly on the ENCODE
regions. For both sets we retrieved a set of experimen-
tally characterized TSSs and a gene annotation.

An aggregate measure for the performance of a clas-
sifier that is often used in the machine learning field
is the F-measure. This is the harmonic mean of the
recall (sensitivity) and the precision (specificity).

We have proposed a more objective way to assess
the performance of a PPP based on the genome-wide
screening for TSSs. This technique is based on the
CAGE datasets that have been described earlier. The
dataset contains locations where transcription starts.
A TP is a known site that has a prediction within 50
bp of a true TSS, a FN is a TSS without a prediction
and a FP is a prediction that has no associated TSS
in the reference set within 50 bp.

3. Results

Figure 1 shows the average structural profile of base-
stacking energy of the three datasets we used for train-
ing the SOM. The promoter sequences show a very
striking profile with overall lower values than the other
two graphs. It has two clear peaks at position -30
(TATA binding protein) and position 0 (TSS).

We used the trained SOM to predict promoter regions.
To each cluster we attached a probability that a given
sequence assigned to that cluster is a promoter. If the
structural profile of a sequence maps to a cluster that
has a probability equal to or above the threshold, we

Table 1. Evaluation of promoter prediction programs using
the CAGE dataset with a maximum allowed distance of 50
bp.

program recall prec. F
ProSOM 0.17 0.30 0.22
Eponine 0.14 0.35 0.20
EP3 0.11 0.27 0.16
ARTS 0.11 0.27 0.15
FirstEF 0.13 0.15 0.14

predict it as a promoter region.

To validate our predictions we use the dataset of
CAGE-tags from and a set of genes from Ensembl.
To compare with the state-of-the-art, we used a max-
imum allowed distance from the TSS of 50 bp. Table
1 shows the performance of ProSOM versus a number
of other PPPs.

We also analyzed the ENCODE regions of the human
genome in more detail. The ENCODE project tries to
annotate one percent of the human genome in great
detail. ProSOM gets an F-measure of 0.28 on this
validation set.

4. Discussion and conclusion

Self-organizing maps provide an intuitive way to clus-
ter DNA sequences. They are unique among unsuper-
vised clustering techniques in their ability to distin-
guish core promoters from other sequences. We pack-
aged this technique as a full-fledged promoter predic-
tion tool, called ProSOM, that performs as well as the
best existing software packages.
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Abstract

Accurately extracting information from text
is a challenging discipline because of the com-
plexity of natural language. We have studied
state-of-the art systems that extract biolog-
ical relations from research articles. It has
become clear that this field is still struggling
with a heterogeneous collection of data sets,
data formats and evaluation methods. While
recent developments look promising, there is
still plenty of room for improvement.

1. Introduction

In the field of life sciences it is vital to automatically
link experimental results to data already published in
online literature resources. Fully automated systems
that extract biological knowledge from text have thus
become a necessity. We have studied the feasibility of
applying machine learning approaches for the extrac-
tion of protein-protein interactions (PPIs). During our
comparative study, it became clear that there is a great
need for the standardization of evaluation procedures.

2. Corpora

Over the past few years, different methods have been
proposed to extract biological relations from text. The
development of standard benchmarking data sets is a
step forward towards meaningful comparison between
these systems. Such corpora include LLL, AImed and
BioInfer, which have all been published in different
dataformats. Only recently, software has been intro-
duced to convert these and two smaller data sets into
a common dataformat (Pyysalo et al., 2008), which
facilitates comparison between different methods.

Figure 1. Dependency parse for ‘The results show that
myogenin heterodimerizes with E12 and E47 in vivo.’

3. PPI extraction

Sentences selected from biomedical text usually con-
tain complex structures with multiple subordinate
clauses. Interacting proteins often occur in a sen-
tence with some distance between them. Therefore,
pattern-based approaches and algorithms using word
order suffer from low recall. On the other hand, tech-
niques solely based on co-occurrence of named entities
exhibit low precision. To better capture the semantics
of a sentence, recent systems make use of information
derived from dependency trees (see Fig 1).

By extracting properties from dependency trees, ex-
plicit features can be obtained for each pair of pro-
teins. These feature vectors are used by classifiers
such as decision trees, BayesNet and SVM to identify
sentences which express a protein-protein interaction.
Useful features relate to lexical and syntactic informa-
tion about the children and ancestors of the proteins
in the tree, the presence of common interaction words
and depth of the named entities in the tree.
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4. Ideas to improve benchmarking

4.1. Common set of benchmark data

A comparative study between different PPI extraction
systems is a non trivial task as different studies often
benchmark on different data sets. The RelEx system
of Fundel et al. (2006) has been reimplemented with
the goal of evaluating it on different corpora (Pyysalo
et al., 2008). An F score of 0.77 was obtained when
benchmarking on LLL, and a score between 0.41 and
0.44 when evaluated on AImed and Bioinfer. We ob-
tain similar results when applying the walk kernel of
Kim et al. (2008) to the AImed data set, which results
in an F score of 0.44. In contrast, the original paper
reports a score of 0.77 for the evaluation on LLL. This
shows that for the same extraction method, perfor-
mance can differ up to 36% depending on the choice
of the corpus. It is therefore meaningful to evaluate
new algorithms on a collection of different data sets.

4.2. Instance extraction

When benchmarking on the same corpus, different pre-
processing steps can yield different instances. Homod-
imers, which are self-interacting proteins, are some-
times simply discarded. A similar issue is raised by
annotations which are nested. The ability of the pre-
processing techniques to deal with such annotations
influences the final number of instances in the data set
and ultimately the performance of the system.

Most corpora do not deal with the construction of neg-
ative training data. It has become common practice
to adapt the closed world assumption, stating that no
interaction exists between two entities when there is
no annotated evidence. Even though AImed provides
an explicit set of abstracts with no annotated interac-
tions, these are not always used, resulting in different
numbers of negative instances in the training set.

Ideally, abstracts for the testing phase should be com-
pletely hidden during training. Saetre et al. (2008)
pointed out that some evaluations suffer from an arti-
ficial boost of performance by using features from the
same sentence in both training and testing steps of
the machine learning algorithm. This boost of perfor-
mance has been estimated between 10 and 20%.

4.3. Counting true positives

The definition of true positives varies between differ-
ent evaluation approaches. Most approaches consider
every protein pair as an individual instance and evalu-
ate whether an interaction is stated between these two
particular entities. Some however state that an inter-

action between two proteins may be expressed in the
same corpus by more than one instance. To extract a
true interaction, retrieving one such instance suffices.
The latter evaluation technique exhibits higher recall.
Even though this technique may be useful for the eval-
uation of complete information retrieval systems, we
feel the first is more representative for the subtask of
extracting interactions between named entities from
individual sentences.

4.4. Directed interactions

Finally, the definition of PPI extraction task is not
unambiguously defined across corpora. The LLL data
set and Bioinfer both consider the role of the different
proteins in their interaction and discriminate between
effectors and effectees. In AImed however, protein-
protein interactions are considered to be symmetrical.
This has led to the common practice of treating LLL
annotations as symmetrical as well, resulting in artifi-
cially higher precision rates.

5. Conclusions

The comparison of different PPI extraction methods
is hindered by the lack of standard evaluation proce-
dures. We have pointed out the main problems for
such a comparative study and indicated some practi-
cal guidelines for setting up a meaningful evaluation.
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Abstract

Proteins fulfill their biological role in spe-
cific cellular sub-compartments, and predic-
tion of protein localization is an important
topic within bioinformatics. Here we study
localization of glycosyltransferases which can
reside in any of the cis-, medial-, or trans-
Golgi compartments or in the Trans Golgi
Network (TGN) compartment. This sub-
Golgi localization is important for the order
of reactions performed in glycosylation path-
ways, but it is currently poorly understood.
We use a dataset of proteins with experi-
mentally determined sub-Golgi localizations
to develop a predictor, making use of a ded-
icated protein structure-based kernel in an
SVM.

1. Experimental dataset

Golgi-localized glycosyltransferases contain one trans-
membrane helix, which is important for their correct
sub-Golgi localization. A dataset of 59 proteins with
known sub-Golgi localization was obtained. These
were clustered (using the minimum variance method
implemented in the R function hclust) based on their
sequence identities in order to remove redundant se-
quences, which would otherwise result in unjustified
high performance of the resulting predictor. Based
on the sharp rise of maximum inter-cluster similarity
when using more clusters, 31 clusters were selected. Of

these, 18 had only one entry and 13 had multiple en-
tries with consistent localization, indicating that the
available data is consistent. Additional training se-
quences were obtained based on sequence similarity
(via ENSEMBL or BLAST), resulting in 107 sequences
with cis-Golgi localization, 117 with medial-Golgi lo-
calization, 86 with trans-Golgi localization and 89 with
TGN localization.

2. Kernel and SVM

We tested different kernels, both based on the lin-
ear sequence (string kernels) and on the modeled 3D-
structure of the transmembrane domain (structure ker-
nel). For both kernels, we applied a grouping of
amino acids where amino acids were clustered follow-
ing Shen (2007) into the following 7 groups: AGV,
ILFP, YMTS, HNQW, RK, DE, and C. For the string
kernel, we took as a starting point the conjoint triad
string kernel (Shen, 2007). Triads were redefined to
accommodate a fixed spacing of either 0 (the original
triad definition) or 1, 2 or 3 (non-sequential triads),
since such spacing determines alignment of residues to
specific sides of the transmembrane helix. The struc-
ture kernel was designed based on observed residue
contacts in 3D models of the helix. These mod-
els were obtained via structure calculations in CNS
(Brunger,1998). 1 Side-chain side-chain contacts were

1Dihedral angle and hydrogen bond restraints were de-
fined, and the anneal.inp CNS-script was used to calculate
ten structures for each helix. The lowest energy structure
was used to obtain the kernel-features.
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counted using a distance cutoff of 3.5 Åand each triplet
of amino acids within this distance cutoff was counted
as one occurrence of a triad.

As SVM implementation SVMlight (Joachims, 1999)
was applied. For each type of triad vi a normalized
count was defined as di=(fi-min)/max, where fi

is the raw count and min (max) is the minimum
(maximum) over all fi. Since the number of train-
ing examples was relatively small compared to the
dimension of the feature space, a linear kernel was
expected to be powerful enough. Leave-one-out cross
validation was applied to optimize the parameter
C, for which a grid [1,2,3,4,5,6,7,8,9,10,15,20,25,30]
was used. For the sake of completeness, the radial
basis function (RBF) kernel was also tested, where
the additional γ parameter was optimized on a grid
[500,200,100,50,10,5,1,0.1,0.01,0.001,0.0005,0.0001].
To obtain an unbiased performance estimation, nested
cross-validation was used as described previously
(Varma, 2006). The leave-one-out cross-validation
was performed cluster-wise, meaning that all se-
quences in one cluster were removed simultaneously.

3. Results

To obtain a multiclass classification, three separate
predictors were built: one for cis vs. the other three
localizations, one for cis or medial vs. trans or TGN,
and one for TGN vs. the other three localizations.
This particular ordering was chosen because it coin-
cides with the biologically relevant order cis-medial-
trans-TGN. The cis/medial vs. trans/TGN predic-
tor was used to test the performance of the various
string kernels. Table 1 shows the prediction accuracies
for the various kernels, and indicates that the string-
kernels that take structural features of the transmem-
brane domain into account perform better than ker-
nels that do not take this into account (note that a
spacing of 2 or 3 reflects the proximities of residues in
3D-space whereas a spacing of 1 does not). The 3D-
structure based kernel has the best prediction perfor-
mance. Randomly assigning class-labels to each set of
clustered sequences and retraining the SVM-predictor
resulted in much lower performance (47% accuracy),
showing that the performance obtained by the SVM-
predictor is non-trivial.

The structure kernel was subsequently used for the
other predictors, whose performance was comparable
to that of the cis/medial vs. trans/TGN predictor.
For each of these three predictors we also tested an
RBF instead of linear kernel, which gave comparable
results (data not shown). The predictors were com-
bined by using combinatorial logic, e.g. if for a given

Table 1. Classification accuracies for cis/medial vs
trans/TGN prediction

Kernel cis/medial trans/TGN all

String: spacing 1 64.0 43.0 55.2
String: spacing 0 73.4 58.5 67.2
String: spacing 3 64.2 76.6 69.4
String: spacing 2 64.3 84.3 73.0
Structure based 78.5 72.6 76.1

Table 2. Confusion table for combined predictor

Predicted

Experimental cis medial trans TGN

cis 6 3 1 2
medial 0 5 0 1
trans 0 0 3 0
TGN 1 2 1 5

sequence the cis/medial vs. trans/TGN predictor re-
turns cis/medial and the cis vs. the rest predictor
returns not cis then the prediction would be medial.
Table 2 shows the confusion table for the resulting
predictor. The cross-validated prediction accuracy is
61%.

Application to a variety of glycosyltransferases demon-
strates the power of our approach. For example, we
obtain consistent predictions when comparing human-
mouse orthologs, whereas applying a simple sequence
similarity based predictor results in much less consis-
tent predictions. In addition, comparison with a large
set of glycan structures, which are the products of the
enzymatic actions of the glycosyltransferases, demon-
strates a significant correlation between sub-Golgi lo-
calization and the predicted ordering of different steps
in glycan biosynthesis.
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Sarah Hansoul s.hansoul@ulg.ac.be

Animal Genomics
GIGA-Research, University of Liège, B4000 Belgium

1. Whole genome association studies

The majority of important medical disorders (f.i. sus-
ceptibility to cancer, cardiovascular diseases, diabetes,
Crohn’s disease) are said to be complex. This means
that these diseases are influenced by multiple, often in-
teracting environmental and genetic risk factors. The
fact that individuals differ in terms of exposure to
environmental as well as genetic factors explains the
observed inter-individual variation in disease outcome
(i.e. phenotype). The proportion of the phenotypic
variance that is due to genetic factors (heritability)
typically ranges from less than 10 to over 60 % for
the traits of interest. The identification of genes in-
fluencing susceptibility to complex traits reveals novel
targets for drug development, and allows for the imple-
mentation of strategies towards personalized medicine.

Recent advances in marker genotyping technology al-
low for the genotyping of hundreds of thousands of
Single Nucleotide Polymorphisms (SNPs) per individ-
ual at less than 0.1 eurocents per genotype, the iden-
tification of genomic regions (i.e. loci) that influence
susceptibility to a given disease can now be obtained
by means of so-called “whole genome association stud-
ies” (WGAS).

2. Supervised learning for WGAS

The basic idea behind a GWAS is to genotype a col-
lection of affected (cases) and unaffected (controls) in-
dividuals for a very large number of SNPs spread over
the entire genome. Genomic regions showing statisti-
cal differences among cases and controls are then de-
tected using this dense collection of SNPs. From a ma-
chine learning point of view, analysis of this dataset is
a binary classification problem, with a very large num-
ber of raw symbolic variables, each one corresponding
to a different SNP and having only three possible val-

ues (homozygous wild, heterozygous and homozygous
mutant). On top of this very high p/n ratio, these
problems are also generally highly noisy, and the raw
input variables are strongly correlated (which is ex-
plained by the so-called linkage desiquilibrium).

In this research we study two different representations
of the input data for the application of supervised
learning, namely the raw genotype data on the one
hand, and on the other hand the groups of strongly
correlated SNPs (i.e. the haplotype blocks) , repre-
senting the observed combinations of about 10 to 100
phased genotypes between the recombination hotspots
of the different chromosomes. We report an empirical
study based on several simulated datasets where one
or two independent or interacting causal mutations on
a single chromosome are studied. We provide com-
parative results of different ensembles of randomized
decisions trees adapted to handle the particular nature
of these two types of input variables. These methods
are assessed in terms of their predictive power as well
as their ability to help identifying the genomic regions
containing causal mutations.

3. Methods

3.1. Dataset generation

We used the program gs (Li & Chen, 2008) to gen-
erate samples based on HapMap data (Consortium,
2003) so as to keep the linkage desiquilibrium patterns
similar to those in actual human populations and fo-
cus on chromosome 5. The raw input variables were
obtained by taking SNPs spaced by 10 kilobases from
the HapMap pool to reproduce classical GWAS condi-
tions, and the causal disease loci were removed from
the input variables.

Using genotype penetrance tables, 5 different disease
models were tested: two for the one locus experiments,
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Figure 1. Haplotype block statistics. Top: block modali-
ties; Middle: block length; Bottom: scatter plot

and the three most common disease models with in-
teractions (Li & Reich, 2000) for the two locus case.
We considered different noise and penetrance values.

In the first (raw) data representation, the different
databases are composed of 14604 symbolic variables
with 3 possible values. The second representation is
a variant of the first where we group correlated vari-
ables into blocks (haplotype blocks chosen according
to HapMap hotspots). This dramatically reduces the
number of variables but it also increases their modal-
ities (up to few hundred possible combinations when
the sample comes from a broad population). In total,
this yielded 1957 haplotype blocks. Figure 1 shows the
histograms of block lengths and number of modalities.

3.2. Supervised learning

We evaluated Random Forests and Extra-Trees (see
Geurts et al., 2006 for a precise description of these
algorithms and related notions). These methods were
customized in an ad hoc way to handle the datasets
for the haplotype block variant. Various values of
their two main meta-parameters (number of tested at-
tributes and number of trees) were screened while the
trees were completely developped.

Learning was repeated 10 times on balanced learning
sets (containing between 100 and 1000 controls and as
many cases). All models were evaluated on the same
independent and balanced test set of size 5000.

The predictive power was assessed using the mean area
under the ROC curves and compared to best possi-
ble theoretical AUCs which were deduced from the se-
lected disease model.

We ranked SNPs and haplotype blocks using variable
importances based on information theory (see We-
henkel, 1998), and provide the mean rank of the SNPs
adjacent to the causal mutations, or of the block(s)
containing these mutation(s).

4. Preliminary results

Preliminary results show good perspectives. In partic-
ular, the different methods obtain rather good AUCs
as compared with the theoretical upper bound derived
from the disease models. The different methods are
also able to predict and to localize the disease loci,
rather well. We also observed that most often the
direct application of supervised learning to the raw
genotype data provides slightly superior results both
in terms of risk prediction and loci identification than
the application of these methods to haplotype blocks.
This essentially suggests that further work should fo-
cus on a better determination of the haplotype block
structure from the datasets themselves (rather than by
extrapolating these structures from other cohorts, as
it was the case in these first investigations).

Acknowledgments

This paper presents research results of the Belgian
Network BIOMAGNET (Bioinformatics and Model-
ing: from Genomes to Networks), funded by the In-
teruniversity Attraction Poles Programme, initiated
by the Belgian State, Science Policy Office. The sci-
entific responsibility rests with its authors. Vincent
Botta is recipient of a F.R.I.A. fellowship. Sarah Han-
soul is a postdoctoral research fellow of the F.R.S.-
FNRS and Pierre Geurts is a Research Associates of
the F.R.S.-FNRS.

References

Consortium, T. I. H. (2003). The international hapmap
project. Nature, 426, 789–796.

Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely
randomized trees.

Li, J., & Chen, Y. (2008). Generating samples for associa-
tion studies based on hapmap data. BMC Bioinformat-
ics, 9, 44.

Li, W., & Reich, J. (2000). A complete enumeration and
classification of two-locus disease models. Hum Hered,
50, 334–349.

Wehenkel, L. (1998). Automatic learning techniques in
power systems.

84



Component analysis for genome-wide association studies

Gilles Meyer g.meyer@ulg.ac.be
Rodolphe Sepulchre r.sepulchre@ulg.ac.be

Department of Electrical Engineering and Computer Science,
GIGA Bioinformatics Platform,
University of Liège, Belgium.

1. Introduction

This work illustrates the application of component
analysis such as principal component analysis (PCA)
and independent component analysis (ICA) to analyze
SNP databases. The problems of association mapping
and population stratification are both addressed with
these methods.

2. Component analysis

In the general framework of component analysis, the
data matrix X ∈ Rm×n is approximated by the prod-
uct of two lower-rank matrices A ∈ Rm×k and S ∈
Rk×n with k ≤ m :

X ≈ AS (1)

where S contains the reduced data and A’s columns
are the directions spanning the subspace of the reduced
data.

If the directions are constrained to be mutually or-
thogonal and computed to retain as much variance as
possible from the original data, the factorization (1)
correspond to a principal component analysis of X.

Another possibility is to identify the directions that
make the rows of S as statistically independent as pos-
sible. This objective is pursued in independent com-
ponent analysis (Hyvärinen et al., 2001).

3. SNP databases

The human DNA sequence is about 3 billion base pairs
of nucleotides (A-T-C-G) arranged into 23 chromo-
somes. Each individual has one pair of each chromo-
some, one is inherited from the maternal side and the
other one from the paternal side.

In the world’s population, there is about 10 million
sites or loci that vary between individuals. Such loci
referred as single nucleotide polymorphisms (SNPs)

are natural candidates for the research of causal dif-
ferences responsible for diseases or other phenotypes
of interest.

At one particular SNP locus, there are usually two
alleles (specific nucleotides) observed across the popu-
lation. Thus, a SNP database can be represented as a
matrix whose elements can take 3 discrete values : 2
if the arbitrary reference allele is carried on each chro-
mosome, 1 if the two different alleles are observed and
0 if the non-reference allele is present on each chro-
mosome. To date, an order of magnitude for these
databases is the measurement of 106 SNPs for 103 in-
dividuals. These numbers are rapidly increasing with
the development of cheaper technologies.

4. Association mapping

The analysis of SNP databases aim at finding loci bio-
logically related to a measured phenotype, for example
a particular disease.

The potential of ICA to perform such analysis has been
illustrated in (Dawy et al., 2005) on simulated data.

In this work, the method is applied to a real database
concerned about the identification of loci involved in
Crohn disease.

5. Population stratification

A problem encountered in association mapping is the
presence of individuals coming from different popula-
tions. This is a source of bias into the observed allele
frequencies leading to false discoveries in the mapping
process.

In (Price et al., 2006), PCA is used to correct for this
stratification effect by computing a component linked
to the population structure and then by removing it
from the data. The issue will be discussed in the con-
text of a Crohn large database.
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Abstract

The management of many neurological dis-
orders such as traumatic brain injuries relies
on the continuous measurement of intracra-
nial pressure (ICP). Following recent studies,
the automatic analysis of ICP pulse seems
promising for forecasting intracranial and
cerebrovascular pathophysiological changes.
MOCAIP algorithm has recently been devel-
oped to automatically extract ICP morpho-
logical features (in terms of sub-peak posi-
tions) in real time. This paper extends MO-
CAIP by using a regression model instead
of Gaussian priors during the peak designa-
tion to improve the accuracy of the process.
Experimental evaluations conducted on real
clinical data indicate that the use of a regres-
sion model significantly increases the peak
designation accuracy.

1. Introduction

The management of many neurological disorders such
as traumatic brain injuries relies on the continuous
measurement of intracranial pressure (ICP). Following
recent studies (Hu et al., 2008), variations of the ICP
signal are linked to the development of intracranial hy-
pertension and cerebral vasospasm, acute changes in
the cerebral blood carbon dioxide (CO2) levels, and
changes in the craniospinal compliance. Therefore,
the automatic and continuous analysis of ICP features
appears to be promising for a better monitoring, un-
derstanding and forecasting of intracranial and cere-
brovascular pathophysiological changes.

Processing ICP signals to extract features in a continu-
ous and reliable way is, however, very challenging and
beyond most of state-of-the-art ICP analysis methods.

2. Previous Work

MOCAIP algorithm (Hu et al., 2008) (Morphological
Clustering and Analysis of ICP Pulse) has recently
been developed to extract morphological changes of
ICP pulse in real time. The algorithm relies on the
fact that the ICP waveform is triphasic (i.e. three
sub-peaks in each ICP pulse). The MOCAIP algo-
rithm offers several interesting properties: it is able
to enhance ICP signal quality, to recognize legitimate
ICP pulses and to detect the three sub-components in
an ICP pulse. This last step is done by considering
a set of peak candidates (extracted at curve inflex-
ion points), and by identifying the three peaks among
them. During this assignation, MOCAIP makes use of
Gaussian priors to set the position of each peak such
that the configuration maximizes the probability to
observe the peaks given the prior distributions. How-
ever, this can be problematic because the position of
the peaks within the pulse presents a large variation
that is translated into large variance priors and weak-
ens the effectiveness of the peak designation step.

3. Approach

This work introduces an extension of the MOCAIP
algorithm to improve the accuracy of the peak desig-
nation. The innovative idea is to consider the location
of the peaks (p1, p2, p3) as a function f(x) of the pulse
signal (discretized as a vector x) (Fig. 1). To this end,
a regression model is exploited during the peak desig-
nation, instead of the Gaussian priors, to extract the
most likely location of each peak,

y = f(x) (1)
⇔ (p1, p2, p3) = ax+ b (2)

Given a set of annotated training pulses, an efficient
Spectral Regression (SR) analysis (Cai et al., 2007) is
used to estimate the linear function f(x). The Spectral
Regression analysis is a recent method which combines
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Figure 1. A regression model f(x) is used to predict the
positions a, b and c, of the three peaks. The pulse is dis-
cretized and normalized into a vector x.

spectral graph analysis and ordinary regression. The
main idea of Spectral Regression is to use eigenvectors
of the affinity (i.e. item-item similarity) matrix to re-
veal a low-dimensional structure of high-dimensional
data. In our framework, we use a RBF kernel to
project the data into a higher dimensional space and
thus capture the nonlinear relation between the pulse
x and the position of the peaks y = (p1, p2, p3).

Once the peak positions have been predicted by the
model, a nearest-neighbor matching algorithm is used
to assign the candidates to the label of the closest pre-
diction.

4. Experiments

The effectiveness of the proposed extension is evalu-
ated by measuring the accuracy of the algorithm to
designate the three ICP peaks on real clinical data.
To do so, we assume that the ICP pulses have been
previously extracted using MOCAIP and that a set of
candidate peaks has been detected.

The dataset used during our experiments contains
13611 ICP pulses that were extracted from the ICP
signals of 66 patients. It is a particularly challenging
dataset because among the pulses, 1717 have miss-
ing P1, 265 have missing P2 and 34 have missing
P3. The average accuracy (in terms of True Posi-
tive (TP) and False Positive (FP) rates) is recorded
using a five-fold cross-validation procedure. The re-
sults obtained by the proposed method are reported
in Table 1 and compared to MOCAIP. Our exten-

sion achieves a very high true positive rate for cor-
rectly designating the first two peaks. The signif-
icant improvement in terms of True Positive and
False Positive rate is confirmed by the combined ac-
curacy (TP+FN)/(TP+FP+TN+FN); MOCAIP ob-
tains 90%, 88%, and 87% for each peak and the results
of the proposed extension are 97%, 98% and 88%.

Figure 2 illustrates detection results on four different
pulses. We can observe that the detection is successful
despite the large variability in shape of the Intracranial
Pressure Signals (ICP).

P1(TP, FP) P2 (TP, FP) P3 (TP, FP)
MOCAIP 91%, 18% 88%, 39% 86%, 53%
this work 99%, 13% 98%, 11% 88%, 56%

Table 1. Peak Identification results in terms of True Posi-
tive (TP) and False Positive (FP) rates are reported for the
MOCAIP algorithm and the proposed Spectral Regression
(SR) extension.
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Figure 2. Peak detection on four ICP pulses. The ground
truth is marked as a green dot and the output of our frame-
work is depicted as a cross.
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Abstract

Many words used in natural language are am-
biguous: they have various senses. Tradi-
tional algorithms dealing with semantic sim-
ilarity cannot cope with this ambiguity. We
present an extension of a dimensionality re-
duction algorithm called non-negative ma-
trix factorization that combines both
‘bag of words’ data and syntactic data, in or-
der to find semantic dimensions according to
which both words and syntactic relations can
be classified. The use of three way data al-
lows one to determine which dimension(s) are
responsible for a certain sense of a word, and
adapt the corresponding feature vector ac-
cordingly, ‘subtracting’ one sense to discover
another one. The intuition in this is that
the syntactic features of the syntax-based ap-
proach can be disambiguated by the topical
dimensions found by the bag of words ap-
proach.

1. Introduction

Most work on semantic similarity relies on the distri-
butional hypothesis (Harris, 1985). This hypothesis
states that words that occur in similar contexts tend
to be similar. With regard to the context used, two
basic approaches exist. One approach makes use of
‘bag of words’ co-occurrence data; in this approach, a
certain window around a word is used for gathering
co-occurrence information. Bag of words methods are
particularly good at finding topical similarity. One of
the dominant methods using this method is latent
semantic analysis (lsa, (Landauer et al., 1998)).

The second approach uses a more fine grained dis-
tributional model, focusing on the syntactic relations
that words appear with. Typically, a large text cor-
pus is parsed, and dependency triples are extracted.1

1e.g. dependency relations that qualify apple might be
‘object of eat ’ and ‘adjective red ’. This gives us depen-
dency triples like < apple, obj, eat >.

Syntax-based methods are good at finding a tighter,
synonym-like similarity. Note that the former ap-
proach does not need any kind of linguistic annota-
tion, whereas for the latter, some form of syntactic
annotation is needed.

In this research, a framework is explored that tries
to combine best of both approaches. The intuition
in this is that the syntactic features of the syntax-
based approach can be disambiguated by the topical
dimensions found by the window-based approach.

2. Methodology

2.1. Extending Non-negative Matrix
Factorization

Non-negative matrix factorization (nmf) (Lee & Se-
ung, 2000) is a group of algorithms in which a non-
negative matrix Vn×m is factorized into two other ma-
trices, Wn×r and Hr×m, subject to the constraint that
W, H ≥ 0.

Typically, r is chosen much smaller than n, m so that
both instances and features are expressed in terms of a
few components. Practically, the factorization is car-
ried out through the iterative application of update
rules.

Since we are interested in the classification of nouns
according to both ‘bag-of-words’ context and syntac-
tic context, we first construct three matrices that cap-
ture the co-occurrence frequency information for each
mode. The first matrix contains co-occurrence fre-
quencies of nouns cross-classified by dependency re-
lations, the second matrix contains co-occurrence fre-
quencies of nouns cross-classified by words that appear
in the noun’s context window, and the third matrix
contains co-occurrence frequencies of dependency re-
lations cross-classified by co-occurring context words.2

We then apply nmf to the three matrices, but we inter-
2All co-occurrence information is extracted from the

Twente Nieuws Corpus (Ordelman, 2002). The corpus has
been parsed with the Dutch dependency parser Alpino (van
Noord, 2006).
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leave the separate factorizations: the results of the for-
mer factorization are used to initialize the factorization
of the next matrix. This implies that we need to ini-
tialize only three matrices at random; the other three
are initialized by calculations of the previous step. The
process is represented graphically in figure 1.

Figure 1. A graphical representation of the extended nmf

When the factorization is finished, the three modes
(nouns, dependency relations and context words) are
classified according to latent semantic dimensions.

2.2. Sense Subtraction

Next, we want to use the factorization that has been
created in the former step for word sense discrimina-
tion. The intuition is that we ‘switch off’ one dimen-
sion of an ambiguous word, to reveal possible other
senses of the word. From matrix H, we know the im-
portance of each syntactic relation given a dimension.
With this knowledge, we can ‘subtract’ the syntactic
relations that are responsible for a certain dimension
from the original noun vector.

The last step is to determine which dimension(s) are
responsible for a certain sense of the word. In order to
do so, we embed our method in a clustering approach.
First, a specific word is assigned to its predominant
sense (i.e. the most similar cluster). Next, the dom-
inant semantic dimension(s) for this cluster are sub-
tracted from the word vector, and the resulting vector
is fed to the clustering algorithm again, to see if other
word senses emerge.

3. Results

3.1. Example

Example (1) shows the top-10 similar words for the
ambiguous proper name Barcelona, which may either
refer to the Spanish city or to the Spanish football

club. In (a), the results for the original vector are
given; the two senses of Barcelona are clearly mixed
up, showing cities as well as football clubs among the
most similar nouns. In (b), where the ‘football’ dimen-
sion has been subtracted, only cities show up. In (c),
where the ‘cities’ dimension has been subtracted, only
football clubs remain.

(1) a. Barcelona, Arsenal, Inter, Juventus, Vitesse,
Milaan ‘Milan’, Madrid, Parijs ‘Paris’, Wenen
‘Vienna’, München ‘Munich’

b. Barcelona, Milaan ‘Milan’, München ‘Munich’,
Wenen ‘Vienna’, Madrid, Parijs ‘Paris’, Bonn,
Praag ‘Prague’, Berlijn ‘Berlin’, Londen ‘Lon-
don’

c. Barcelona, Arsenal, Inter, Juventus, Vitesse,
Parma, Anderlecht, PSV, Feyenoord, Ajax

3.2. Evaluation

Our method has been embedded in an automatic clus-
tering framework and evaluated against Dutch Eu-
rowordNet (Vossen et al., 1999). Compared to Pan-
tel and Lin (2002) – considered state of the art in
word sense discrimination – our method consistently
scores higher with regard to precision, but lower with
regard to recall (e.g. with wordnet similarity thresh-
old θ = 0.50, p = 69% and r = 56% for our method –
p = 38% and r = 60% for Pantel and Lin’s).
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Abstract

Since the end of 2006 several autonomous
bots are, or have been, running on Wikipedia
to keep the encyclopedia free from vandal-
ism and other damaging edits. These ex-
pert systems, however, are far from optimal
and should be improved to relieve the human
editors from the burden of manually revert-
ing such edits. We investigate the possibil-
ity of using machine learning techniques to
build an autonomous system capable to dis-
tinguish vandalism from legitimate edits. We
highlight the results of a small but important
step in this direction by applying commonly
known machine learning algorithms using a
straightforward feature representation. This
study demonstrates that elementary features,
which are also used by the current approaches
to fight vandalism, are not sufficient to build
such a system. They will need to be accompa-
nied by additional information which, among
other things, incorporates the semantics of a
revision.

1. Experiments

We will discuss the setting for our machine learning
experiment conducted on simplewiki, the Simple En-
glish version of Wikipedia. We first consider the label-
ing of the data and its representation. Thereafter we
discuss the results of two learning algorithms put to
test: a Naive Bayes classifier on bags of words (BOW)
(McCallum 1996) and a combined classifier built using
probabilistic sequence modeling (Bratko et al. 2006),
also referred to in the literature as statistical compres-
sion models.

1.1. Labeling of Revisions

As a proof of concept and because of space and time
constraints, we run the preliminary machine learn-
ing experiments on Simple English Wikipedia, a user-
contributed online encyclopedia intended for people
whose first language is not English.

The data is labeled by inspecting comments that sig-
nal a revert action, i.e. an action which restores a page
to a previous version. This approach closely resembles
the identification of the set of revisions denoted by
Priedhorsky et al. (2007) as Damaged-Loose, a su-
perset of the revisions explicitly marked as vandalism
(Damaged-Strict).

While labeling based on commented revert actions is a
good first order approximation, mislabeling cannot be
excluded. If we regard vandalism as the positive class
throughout this abstract, then there will be both false
positives and false negatives. The former arises when
reverts are misused for other purposes than fighting
vandalism like undoing changes without proper refer-
ences or prior discussion. The latter occurs when van-
dalism is corrected but not marked as reverted in the
comment, or when vandalism remains undetected for
a long time. Estimating the number of mislabelings
is very hard and manual labeling is out of question,
considering the vast amount of data.

1.2. Revision Representation

In this case study we use the simplest possible data
representation. As for ClueBot (Carter 2007) and
VoABot II, the two active vandal fighting bots on
Wikipedia nowadays, we extract raw data from the
current revision and from the history of previous ed-
its. In particular, for each revision we use its text, the
text of the previous revision, the user groups (anony-
mous, bureaucrat, administrator . . . ) and the revision
comment. We also experimented with including the
lengths of the revisions as extra features. The effect
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on overall performance is however minimal and thus
we discard them in this analysis. Hence the focus lies
here more on the content of an edit.

As the modified revision and the one preceding it dif-
fer slightly, it makes sense to summarize an edit. Like
ClueBot, we calculate the difference using the standard
diff tool. Processing the output gives us three types
of text: lines that were inserted, deleted or changed.
As the changed lines only differ in some words or char-
acters from each other, we again compare these using
wdiff. Basically, this is the same as what users see
when they compare revisions visually.

1.3. Analysis and Discussion

Table 1 indicates the performance of a simplified ver-
sion of ClueBot. It is lower than the performance of
the original ClueBot which relies on a user whitelist
for trusted users and only reverts edits done by anony-
mous or new users (Carter 2007). Table 2 shows the
results of the machine learning experiments on a 40%
test set.

1.3.1. BOW + Naive Bayes

The precision of the Naive Bayes classifier only tak-
ing into account the revision diff features as bags of
words, both with or without user group information
and revision comments, is almost the same as in Ta-
ble 1. A significant increase can be noticed in terms
of recall and F1, especially when including user group
information and comment.

1.3.2. Probabilistic Sequence Modeling

Interesting to note is that the recall is much higher,
but that the precision drops unexpectedly. We lack a
plausible explanation for this strange behaviour, but
the effect can be diminished by setting the threshold
parameter to a score higher than zero. This is shown
in Figure 1, where we plot the precision/recall curves
for varying thresholds for the probabilistic sequence
models and for the Naive Bayes models, both with
and without user groups and comments. The marks
show the results when the log ratio threshold is equal
to 0. The tendency is that, despite the worse behav-
ior shown in Table 2, the overall accuracy measured
in term of precision and recall is better for the com-
pression based models than for the bag of words model
using Naive Bayes.
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Table 1. Performance of ClueBot (without user whitelist)
on Simple English Wikipedia.

ACC PRE REC F1

ClueBot 0.9270 0.6114 0.1472 0.2372

Table 2. Results for Naive Bayes and Probabilistic Se-
quence Modeling.

(a) revision diff

ACC PRE REC F1

NB 0.9303 0.6166 0.2503 0.3561
PSM 0.8554 0.3117 0.7201 0.4351

(b) revision diff + commment + user groups

ACC PRE REC F1

NB 0.9314 0.5882 0.3694 0.4359
PSM 0.8436 0.3209 0.9171 0.4755

Figure 1. Precision/Recall curves.
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1. Short term electricity generation
planning

Short term electricity generation aims at deciding
which generation units will be in operation for a cer-
tain time period and how much they will produce.
Typical generation pools contain a mix of generation
units: classical thermal plants, nuclear plants, hydro-
electric generators, wind turbines, ... Wind turbines
can be considered as non controllable in a time horizon
of one day and can be seen as negative loads. On the
other hand, the operation of thermal plants and hydro-
electric generators has to be planned. Although this
problem can be formulated as a multi-stage stochas-
tic programming problem, its complexity is by far too
large to allow for an exact solution by available meth-
ods. In current practice, the generation plans are gen-
erally optimized deterministically, based on a demand
forecast and generation units availability assumptions.
The generation plans are typically computed the day
before they are executed and adjusted in-real-time by
good practice rules so as to cope with the differences
between real-time conditions and forecasts.

We propose a simulation based approach which uses
deterministic optimization methods to compute opti-
mal plannings for a set of possible scenarios and ex-
tracts by machine learning recourse strategies from
these simulations for the next day.

2. Problem description

In the context of short term generation planning, the
generation pattern must satisfy some coupling con-
straints (CC) linking all the generation units. First, as
the electricity cannot be stored in sufficient quantities,
generation must always be close to demand. Secondly,
for some more technical reasons, some levels of an-
cillary services are required. The generation pool is
typically divided in 2 categories: thermal units and
hydro-electric generation valleys, themselves contain-

ing reservoirs, turbines and pumps. The operation of
the thermal generation units is restricted by some dy-
namical constraints (DC), because the thermal units
must stay in operation for a minimum duration, and
because the levels of hydro-reservoirs must stay be-
tween acceptable limits. One has thus to decide when
to start and when to stop thermal units and to fix their
set point if they operate, and for the hydro-valleys one
has to decide when to use water to generate electric-
ity, when to store some water by pumping and when
to spill water out of dams.

The objective of the generating company is to min-
imize generation costs including fuel costs, thermal
units start-up costs, and opportunity costs for the uti-
lization of water in hydropower plants.

2.1. Mathematical model

For appropriate choices of cost functions and for an
appropriate formulation of dynamical constraints, this
problem can be modeled as a Mixed Integer Linear
Program (MILP):

min
pi,si,p′,s′

∑
i∈I

Ci(pi) +
T∑

t=1

CP (p′t) +
T∑

t=1

CS(s′t)(1)

s.t. p′t = DPt −
∑
i∈I

pi,t, ∀t ∈ {1, ..., T} (2)

s′t = DSt −
∑
i∈I

si,t, ∀t ∈ {1, ..., T} (3)

pi ∈ Di, si ∈ Si, ∀i ∈ I. (4)

The optimization is performed over T time periods.
The letter i indexes the set of generating units I. pi

(respectively si) is the production (ancillary services
level) of unit i all along the planning period (pi =
(pi,1, ..., pi,T )). The constraints (4) indicate that pi

and si must stay inside sets encoding the DC. Ci(·)
accounts for all the costs linked to generation units.
To model the CC, we define some slack variables p′
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(2) and s′ (3). p′ is the mismatch between generation
and demand. s′ represents the mismatch between the
required level of ancillary services and the actual level
that is provided. These slack variables penalize the
objective though the functions Cp(·) and Cs(·).
To solve this problem efficiently, we use a state of the
art branch and cut algorithm (ILOG, 2007).

3. Learning of recourses strategies

As mentioned in Section 1, a unique planning is sub-
mitted one day before its execution, but it is admit-
ted to take recourses at predefined time steps during
the day, say every two hours. Because complete re-
computation of the plannings is not achievable during
the day, we propose to use the time that is available
off-line to make some simulations and to infer some
recourse strategies applicable in real-time.

Consider a set D of demand patterns, and a set O
of generation units which could become unavailable
next day. Let π? be the optimal planning associated
to a reference demand scenario D? ∈ D. Suppose
that we want to compute an optimal recourse strat-
egy σ∗tr

(ξtr
) for a single a priori fixed recourse time

tr ∈ {1, 2, . . . , T}, i.e. we want to know the modifica-
tions to bring to all the units from time tr+1 to T once
the real behavior ξtr of the system between time 1 and
tr is known. Let S be the set of scenarios made of one
demand of D and of a unit outage of O imposed at a
time in {1, ..., tr}. First, we compute the plannings πs

for each scenario s ∈ S by imposing the planning π?

for times 1 to tr and using the optimization problem
formulation of Section 2.1 to adjust the planning for
time tr + 1 to T . The difference πs−π? illustrates the
impact of the demand variation and the unit outage of
scenario s on the reference planning. We exploit these
simulations to formulate a supervised learning problem
in order to derive a function σ̂∗tr

(ξtr ) that will serve as
a recourse strategy. The learning set is illustrated in
Table 1.

Inputs output

• state of the system at tr,

• observed demand derivation
from forecasting until tr,

• unit failure before tr,

• prediction time t > tr,

• ON/OFF sta-
tus of unit i at
t,

• and/or power
of unit i at t.

Table 1. An item of the Learning set.

To simplify the learning phase, we propose to learn

separately the adjustements for the different units and
time steps t ∈ {tr + 1, . . . , T}. This approach has the
advantage to lead to a (relatively) simple supervised
learning formulation, but it points out two issues:

1. Since we apply a time decomposition, the units
DC may not be satisfied; an additional phase will
be needed to impose them.

2. Since the strategies are learned unit by unit, the
global view of the system is weakened and global
constraints are not satisfied; they will also have
to be enforced a posteriori.

Although we focus here on the construction of a re-
course strategy for a single priod tr, we can derive
strategies for multiple periods during the day by ap-
plying this procedure iteratively for an increasing se-
quence of tr ∈ {1, 2, ..., T}.

4. Validation of the learned strategies

We want to assess the optimality of the learned strate-
gies and to compare them to the ones that are cur-
rently used. The latter option is difficult to achieve
while this research is carried out through simulations
on a reduced generation pool. On the other hand, we
can evaluate our strategies on scenarios obtained by
Monte-Carlo simulations and compare their cost to

• the reference planning perfectly adjusted to the
uncertainties by re-optimization from time tr + 1
to T (lower bound),

• the reference planning not adjusted (upper
bound).
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Abstract

In this paper, we introduce a novel and
modular framework that is used to evalu-
ate the performance of several user local-
ization techniques in a wireless sensors
environment. Three different stages are
considered: (i) the signal acquisition and
the corresponding distance model, (ii)
the terminal positioning, and (iii) the fil-
tering of the estimates over time. More-
over, we investigated how an accelerome-
ter could be included in the filters model
in order to further refine the accuracy.

Different implementations of the above-
stated modules have been implemented
and combined and the corresponding
performance is investigated.

1. Motivation

Our research is specific in that it does not aim at
implementing a single localization technique but
rather focuses on the development of a testbed
suitable for evaluating the performance of dif-
ferent positioning approaches. The hardware
we used includes a mesh of pre-deployed sen-
sors (TMote Invent with CC2420 Chipcon radios
and accelerometer) whose position is known. A
lightweight computer worn by the user embeds the
localization software and collects the real-world
data.

The localization process is achieved trough the
consecutive steps, as presented on Figure 1. For

Radio Signal 
Collection

Position
Estimation

Filtering

Motion vs. Static
Classification

Localization

Signal to 
Distance Model

Fixed
Sensors

Mesh

Mobile 
Sensor

&
User

Terminal

Figure 1. The modular architecture of the localization
framework. The three modules on the left of the schema
have multiple implementations.

each step, we provide multiple implementations.
First, since the radio signal in an indoor envi-
ronment presents large variations over time and
different beaconing protocols are evaluated to
average and de-noise the estimate of the sig-
nal strength. Second, we consider several vari-
ants of the multilateration technique (Savvides
et al., 2003). These are: (i) the simple, (ii)
the subsampled, (iii) the nearest-neighbour, and
(iv) the weighted nearest-neighbour multilatera-
tion. Third, we investigate how the data issued by
the accelerometer can be used to detect the user
mobility vs. a natural body movement (which is
considered as noise). The corresponding instan-
taneous position estimate and the data of the ac-
celerometer are merged into a recursive filtering
module. Three different Kalman filters (Brown &
Hwang, 1996) are provided, each of them having
a different underlying model.
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2. Results

The experiments were conducted in the basement
of an indoor building made of large corridors and
metal structures. In a first round, the data issued
from the accelerometer were processed. It has
been noted that the variance of the acceleration is
a good estimator to detect the user’s behaviour,
i.e., whether it is static or in motion. On Figure 2,
the variance of the acceleration in the x-axis and
the y-axis is reported and the corresponding be-
haviour is annotated. A classification technique
knows as Support Vector Machine (Shawe-Taylor
& Cristianini, 2000) was used with an overall ac-
curacy of up to 90%.
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Figure 2. Classification of the terminal mobility. It is char-
acterized by the variance of the acceleration along the two
axes of the mobile sensor.
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Figure 3. Distribution of the RMSE of the position as eval-
uated by the the multilateration algorithm.

The Figure 5 presents the underlying model for
various filter we implemented. We will now focus

0 5 10 15 20 25
RMSE of the distance estimation [m]

O
cc

ur
en

ce
s

Localization error Multilateration + Kalman

mean error= 340.5329790047 var error= 25431.7746455835

errorsk

F
re

q
u
e
n
c
y

0 500 1000 1500 2000 2500

0
5

1
0

1
5

2
0

2
5

Figure 4. Distribution of the RMSE of the position after
filtering and fusion with the information of the accelerom-
eter.

on the joint use of the accelerometer to further
improve a Kalman filter.

The Figure 3 reports the Root Mean Square Error
(RMSE) of the position estimated by the multi-
lateration technique without additional filtering.
One can observe that its average positioning er-
ror is µ = 5.4 m and that this technique presents
a significant variance (σ = 4.9 m). In a second
experiment, shown on Figure 4, the samples were
collected at the accelerometer and used to further
refine the filter model. In that case, the average
RMSE of the estimation falls to 3.4 m while, at
the same time, the variance of the error is divided
by 3, i.e., σ = 1.6 m. Our results suggest that the
fusion of multiple sensors has a significant, posi-
tive impact on a non-supervised user localization
and tracking.
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Abstract

We propose an opponent modeling approach
for No-Limit Texas Hold’em poker that
starts from a (learned) prior, i.e., general
expectations about opponent behavior and
learns a relational regression tree-function
that adapts these priors to specific oppo-
nents. An important asset is that this ap-
proach can learn from incomplete informa-
tion (i.e. without knowing all players’ hands
in training games).

1. Introduction

For many board and card games, computers have at
least matched humans in playing skill. An exception
is the game of poker, offering new research challenges.
The complexity of the game is threefold, namely poker
is (1) an imperfect information game, with (2) stochas-
tic outcomes in (3) an adversarial multi-agent environ-
ment. One promising approach used for AI poker play-
ers applies an adaptive imperfect information game-
tree search algorithm to decide which actions to take
based on expected value (EV) estimates (Billings et al.,
2006). This technique (and related simulation algo-
rithms) require two estimations of opponent informa-
tion to accurately compute the EV, namely a predic-
tion of the opponent’s outcome of the game and pre-
diction of opponent actions. Therefore learning an op-
ponent model is imperative and this model should in-
clude the possibility of using relational features for the
game-state and -history.

In this paper we consider a relational Bayesian ap-
proach that uses a general prior (for outcomes and ac-
tions) and learns a relational regression tree to adapt
that prior to individual players. Using a prior will
both allow us to make reasonable predictions from the
start and adapt to individual opponents more quickly
as long as the choice of prior is reasonable.

2. Learning an Opponent Model

We learn an opponent model for players in the game
of No-Limit Texas Hold’em poker. To make the model
useful for an AI player, we must be able to learn this
model from a limited amount of experience and (if pos-
sible) adapt the model quickly to changes in the oppo-
nent’s strategy. An added, and important, difficulty
in poker is that we must be able to learn this model
given a large amount of hidden information. We pro-
pose to start the opponent model with a prior distri-
bution over possible action choices and outcomes. We
will allow the model to adapt to different opponents by
correcting that prior according to observed experience.

Consider a player p performing the i-th action ai in
a game. The player will take into account his hand
cards, the board Bi at time point i and the game his-
tory Hi at time point i. The board Bi specifies both
the identity of each card on the table (i.e., the com-
munity cards that apply to all players) and when they
appeared, and Hi is the betting history of all players
in the game. The player can fold, call or bet. For sim-
plicity, we consider check and call to be in the same
class, as well as bet and raise and we don not consider
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the difference between small and large calls or bets at
this point.1

We limit the possible outcomes of a game rp for a
player p to: 1) p folds before the end of the game
(rp = lose), 2) p wins without showing his cards (rp =
win) and 3) p shows his cards (rp = cards(X,Y )).
This set of outcome values also allows us to learn from
examples where we did not see the opponent’s cards,
registering these cases as win or lose, without requir-
ing the identities of the cards held by the player. The
learning task now is to predict the outcome for an op-
ponent P (rp|Bi,Hi) and the opponent action (given a
guess about his hand cards) P (ai|Bi,Hi−1, rp)

2.1. Learning the Corrective Function

We propose a two-step learning approach. First, we
learn functions predicting outcomes and actions for
poker players in general. These functions are then used
as a prior, and we learn a corrective function to model
the behavior and statistics of a particular player. The
key motivations for this are first that learning the dif-
ference between two distributions is an elegant way to
learn a multi-class classifier (e.g. predicting distribu-
tions over 2+(52*53/2) possible outcomes) by gener-
alizing over many one-against-all learning tasks, and
second that even with only a few training examples
from a particular player already accurate predictions
are possible.

In the following description, the term example refer-
ences a tuple (i, p, ai, rp,Hi−1, Bi) of the action ai per-
formed at step i by a player p, together with the out-
come rp of the game, the board Bi and the betting
history Hi−1.

Consider the mixture Dp+∗ of two distributions: the
distribution D∗ of arbitrarily drawn examples from all
players and the distribution Dp of arbitrarily drawn
examples from a particular player p. Then, consider
the learning problem of, given a randomly drawn ex-
ample x from Dp+∗, predicting whether x originated
from D∗ or from Dp. For a given learning setting (ei-
ther predicting actions from outcomes or predicting
outcomes from actions), it is easy to generate exam-
ples from D∗ and Dp, labeling them with ∗ or p, and
learning the function P (Dp|x), giving for each example
x the probability the example is labeled with p. We
do so by using the relational probability tree learner
Tilde (Blockeel & De Raedt, 1998). From this learned
’differentiating’ model, we can compute the probabil-

1We will consider the difference between small and large
calls or bets as features in the learned corrective function.

ity P (x|Dp), for every example x by using Bayes’ rule:

P (x|Dr) = P (Dr|x) · P (x)/P (Dr) (1)

Since we have chosen to generate as many examples
for D∗ as for Dp in the mixture,

P (Dp) = P (D∗) = 1/2 (2)
P (x) = P (D∗)P (x|D∗) + P (Dp)P (x|Dp) (3)

and substituting (2) and (3) into (1) gives:

P (x|Dp) =
(

P (Dp|x) ·
(

1
2
P (x|Dp) +

1
2
P (x|D∗)

))
/
1
2

= P (Dp|x)P (x|Dp) + P (Dp|x)P (x|D∗).

From this, we easily get:

P (x|Dp) =
P (x|D∗) · P (Dp|x)

1 − P (Dp|x)
(4)

Here, P (x|D∗) is the learned prior and P (Dp|x) is the
learned differentiating function.

Having now explained how to learn a player-specific
prediction function given a prior, the question remains
as how to learn the prior. We learn the prior by (again)
learning a differentiating function between a uniform
distribution and the distribution formed by all exam-
ples collected from all players. Even though the uni-
form distribution is not accurate, this is not really a
problem as sufficient training examples are available.

3. Experiments and Results

We observed cash games (max 9 players per game)
played in an online poker room and extracted exam-
ples for players who played more than 2300 games.
We randomly selected 20% of the games for the test
set, while the remaining games were used to learn an
opponent model. We learned one decision tree for all
examlpes in the preflop phase and another for all re-
maning examples from the other phases, i.e, the post-
flop phases. The language bias used by Tilde (i.e., all
possible tests for learning the decision tree) includes
tests to describe the game history Hi at time i (e.g.
game phase, number of remaining players, pot odds,
previously executed actions etc.), board history Bi at
time i, as well as tests that check for certain types of
opponents that are still active in the game. For exam-
ple, we may find tests such as ”there is an opponent
still to act in this round who is aggressive after the
flop, and this player raised earlier in this game”.

To evaluate our learning strategy, we report the log-
likelihoods of the learned distributions and compare
them with reasonable priors. A model with a higher
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likelihood directly allows an algorithm to sample and
estimate the actions and outcome more accurately.

Figure 1 and 2 plot log-likelihoods averaged over 8
players for different training set sizes. The priors are
clearly better than uninformed priors (i.e. not using
learning). After having observed 200 games, in general
the likelihood improves with the size of the training
set.

Predicting the Outcome of a Player
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Figure 1. Experiment predicting the outcome, given board
and game history. The x -axis represents the number of
games used for the training set, and the y-axis the averaged
log-likelihood scores on examples in the test set.

Predicting the Action of a Player
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Figure 2. Experiment predicting the action, given out-
come, board and game history. The axis are similar to
those in Figure 1.

4. Conclusions

We presented a Bayes-relational opponent modeling
system that predicts both actions and outcomes for
human players in the game of No-Limit Texas Hold’em
poker. Both these sources of opponent information are
crucial for simulation and game-tree search algorithms,
such as the adaptive tree search method by (Billings
et al., 2006). The Bayes-relational opponent modeling

approach starts from prior expectations about oppo-
nent behavior and learns a relational regression tree-
function that adapts these priors to specific opponents.
Our experiments show that our model adapts to spe-
cific player strategies relatively quickly.
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Abstract

Reservoir Computing is a novel technique
which can be applied to a wide range of ap-
plications. In this work we demonstrate that
Reservoir Computing can be used for black
box nonlinear system modeling.We will use
Reservoir Computing to model the output
flow of a heating tank with variable dead-
time.

1. Introduction

Many control engineering techniques, in particular
Model Predictive Control strategies, are based on pro-
cess models. These models are obtained from physi-
cal principles or data-driven models (Camacho et al.,
2007). Most of the data-driven models are black box
models based on Analog Neural Networks (Camacho
et al., 2007) which cannot cope with problems that
have a strong temporal aspect. Therefore some re-
search has focused on the use of Recurrent Neural
Networks which have memory due to the loops inside
the network. But unfortunately Recurrent Neural Net-
works are hard to train.

Reservoir Computing is a recently developed technique
for very fast training of Recurrent Neural Networks
which has been successfully used in many applications
(Jaeger, 2001) such as speech recognition (Skowronski
& Harris, 2007; Verstraeten et al., 2007), robot con-
trol (Antonelo et al., 2007) and time-series generation
(Jaeger, 2001). To accomplish this, Reservoir Comput-
ing uses an untrained dynamic system (the reservoir),
where the desired function is implemented by a lin-
ear, memory-less mapping from the full instantaneous
state of the dynamical system to the desired output
which can be trained by using linear regression tech-
niques such as ridge regression (Wyffels et al., 2008a).
A schematic overview is given in Figure 1.

In this work we will use Reservoir Computing to model

K input nodes Reservoir with N state nodes L output nodes

- dotted lines: trained interconnections

- solid lines: random but fixed interconnections

Figure 1. Schematic overview of the Reservoir Computing
technique.

the behavior of a nonlinear dynamical system with
variable dead-time.

2. Experimental setup

The task at hand is the modeling of a heating tank
with a variable cold water inlet and a hot water outlet.
The heating element of the tank has a constant power
thus, the outlet temperature is controlled by varying
the cold water flow. Because the temperature of the
outlet flow is measured after flowing through a long
small pipe, the system has a variable dead-time which
adds an extra difficulty in predicting the model. A full
description of the plant can be found in (Cristea et al.,
2005).

In contrast to most modeling techniques, we don’t
make any assumptions about the plant neither we split
up the plant in different parts. We model both, the
tank and the outlet pipe, by using only one reservoir
consisting of 400 randomly connected band-pass neu-
rons (see (Wyffels et al., 2008b) for an introduction).
The spectral radius was tuned to give the reservoir a
near-stable behavior. In order to give the reservoir
more nonlinear properties each neuron adds an auxil-
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iary input with a constant bias. Because of the variable
dead-time, we needed to increase the fading memory
of the reservoir by adding feedback from the output
to all the neurons. The readout function was trained
using 10,000 samples of random input-output exam-
ples extracted by simulation. Next, the reservoir was
left predicting 3,500 samples based on its input, 1,000
samples were discarded for warming up to eliminate
transient effects.
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Figure 2. Validation of the model: real outlet tempera-
ture (gray solid line), predicted outlet temperature (dashed
line).

3. Results

In Figure 2, a comparison of the desired outlet tem-
perature and the predicted outlet temperature is given.
Using the previously described reservoir configuration,
the outlet temperature was predicted in connection to
a variable input flow which was not seen by the reser-
voir during training. One can see that the reservoir is
able to give accurate predictions of the outlet temper-
ature.

4. Conclusions

In previous work, many techniques for system model-
ing are proposed. But most of them need a lot of ex-
perience in the application domain or are difficult to
train. In this work we showed that by using Reservoir
Computing one is able to model a nonlinear system
with variable dead-time based on input-output record-
ings of the plant. No knowledge in the application
domain was needed. For future work we wish to inves-
tigate the use of Reservoir Computing as a controller

in control engineering tasks.
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