Introduction to basics electronics principles Bio-electronic, 2015

$\operatorname{SCHMITZ}$ Thomas

Department of Electrical Engineering and Computer Science, University of Liège

February 25, 2015

Common Mode

Section 1

Basics principles

Impedance

Ohms law :

Impedance

Electrical impedance is the measure of the opposition that a circuit presents to a current when a voltage is applied.

It extends the concept of resistance to AC circuit.

$$Z(\omega) = \frac{U(\omega)}{I(\omega)}$$
(2)

Passive components

Component	Impedance	if frequency \nearrow impedance :
Resistor	R	\rightarrow
Capacitor	$\frac{1}{j\omega C}$	\searrow
Inductor	jωL	7

Kirchhoff law

nodes law

The sum of currents flowing into a node is equal to the sum of currents flowing out of that node

voltage law

The directed sum of the electrical potential differences (voltage) around any closed network is zero

usefull examples

Ūg

Figure: Parallel impedance

$$U = Z_{1} \cdot I_{1} = Z_{2} \cdot I_{2} = Z * I$$

$$I_{2} = \frac{Z_{1}}{Z_{2}} I_{1}$$

$$I = I_{1} + I_{2}$$

$$I = I_{1} + \frac{Z_{1}}{Z_{2}} I_{1} = I_{1} \cdot \frac{Z_{2} + Z_{1}}{Z_{2}}$$
(3)
$$Z * I_{1} \cdot \frac{Z_{2} + Z_{1}}{Z_{2}} = Z_{1} \cdot I_{1}$$

$$Z = \frac{Z_{2} \cdot Z_{1}}{Z_{1} + Z_{2}}$$
(5)

usefull examples

Figure: potentiometric divider

Laws

Section 2

Common Mode

Common and differential mode voltage

Figure: Common mode voltage

Example : Electrodes to inverter amplifier

