ELEN0037 Microelectronics Tutorials

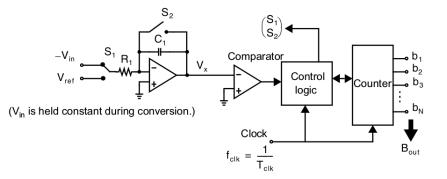
Pouyan Ebrahimbabaie, Vinayak Pachkawade, Thomas Schmitz

With special thanks to Vincent Pierlot

University of Liège - Montefiore Institute EMMI Unit: Electronics, Microsystems, Measurements, and Instrumentation

Tutorial 7: Nyquist rate and oversampling A/D Converters

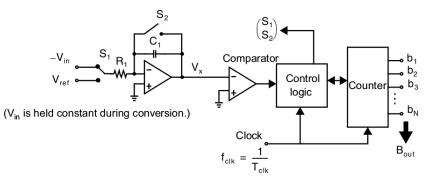
Signal to Quantization Noise Ratio (summary)


converter type	SQNR _{max}	
Nyquist rate	6.02N + 1.76	
Oversampling with no noise shaping	$6.02N + 1.76 + 10 \log OSR$	
Oversampling with 1^{st} -order noise shaping	$6.02N + 1.76 - 5.17 + 30 \log OSR$	
Oversampling with 2 nd -order noise shaping	$6.02N + 1.76 - 12.9 + 50 \log OSR$	

 $OSR = \frac{f_s}{2f_0}$

Note that these formulae are valid for an input sine wave (otherwise remove the +1.76 term), when the input signal spans the full range of the converter.

Exercise 1 (1st, P13.1/2nd, P17.1)


What is the worst-case conversion time for an 18-bit dual-slope integrating A/D converter when the clock frequency is 5 MHz?¹

$${}^{1}T_{conv,max} = \left(2.2^{N}+1
ight)T_{clk} = 105\,ms$$

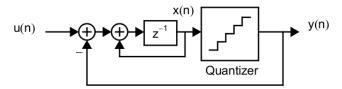
Exercise 2 (1st, P13.2/2nd, P17.2)

Consider an 18-bit dual-slope integrating A/D converter, where V_{ref} equals 10 V, $C_1 = 100 \, pF$, and a clock frequency of 1 *MHz* is used. What value of R_1 should be chosen such that the opamp output never exceeds 10 V when 0 V < $V_{in} < 10 \, V$?²

Exercise 3 (1st, P13.5,6/2nd, P17.5,6)

What input-signal frequencies are completely attenuated by a 16-bit dual-slope integrating A/D converter, having a clock frequency of 1 MHz?³ For this same converter, what is the attenuation of an input signal at 60 Hz?⁴ Repeat the same, when $f_s = 100 kHz$.⁵

³all frequencies multiple of $1/\tau_1 = 1/2^N \tau_{clk} = 15.26 \text{ Hz}$ ⁴ $A_{f=60 \text{ Hz}} = 1.98 10^{-2} = -34 \text{ dB}$ ⁵all frequencies multiple of 1.53 Hz, $A_{f=60 \text{ Hz}} = 5.09 10^{-3} = -46 \text{ dB}$


Exercise 4 (1st, P14.1)

Assuming oversampling with no noise shaping, find the approximate sampling rate required in order to obtain a maximum SQNR of 80 dB on a signal with a $1 \, kHz$ bandwidth using a 1-bit quantizer.⁶ Repeat the same problem, assuming a first-order modulator is used.⁷ Repeat the same problem, assuming a second-order modulator is used.⁸

 $^{6}OSR = 16672472, f_{s} = 33.35 GHz$ $^{7}OSR = 380, f_{s} = 760 kHz$ $^{8}OSR = 50.4, f_{s} = 100.8 kHz$

Exercise 5 (1st, P14.2,3,4/2nd, P18.4,5,6)

Find the output and state values of a 1^{st} -order $\Sigma\Delta$ modulator using a 1-bit quantizer (±1 output levels, *threshold* = 0), when a dc input u(n) = 0.4 is applied, and assuming the initial state $x(0) = 0.1.^9$ At what frequency would a tone appear (relative to f_s)?¹⁰

The state equations of the first-order $\Sigma\Delta$ modulator are given by:

$$y(n) = Q(x(n)) e(n) = y(n) - x(n) x(n+1) = x(n) + u(n) - y(n)$$

$$^{9}\text{see}$$
 next slide $^{10\,f_{\rm s}/10}$

Exercise 5 (continued)

The output and state values are given in the following table. Also, compute $e_{rms} = \Delta/\sqrt{12}$, $\sqrt{(E\{e^2(n)\})}$, and $E\{y(n)\}$.¹¹

n	u (n)	<i>x</i> (<i>n</i>)	y (n)	e (n)	x(n+1)
0	0.4	0.1	1	0.9	-0.5
1	0.4	-0.5	-1	-0.5	0.9
2	0.4	0.9	1	0.1	0.3
3	0.4	0.3	1	0.7	-0.3
4	0.4	-0.3	-1	-0.7	1.1
5	0.4	1.1	1	-0.1	0.5
	:	:		:	:
10	0.4	0.1	1	0.9	-0.5

¹¹ $e_{rms} = 0.577 V$, $\sqrt{(E\{e^2(n)\})} = 0.611 V$, $E\{y(n)\} = 0.4 V$

Exercise 5 (continued)

Repeat the same problem, with a dc input u(n) = 1.1, and the same initial state, to see if the internal state x(n) of the modulator saturates.¹²

n	u (n)	x (n)	y (n)	e (n)	x(n+1)
0	1.1	0.1	1	0.9	0.2
1	1.1	0.2	1	0.8	0.3
2	1.1	0.3	1	0.7	0.4
:		:	:	:	÷

 $^{^{12}}x(n)$ increases by 0.1 at each clock cycle, until saturation occurs

Exercise 5 (continued)

Repeat the same problem, with the following input sequence: $\{10, -10, 10, -10, 10, \ldots\}$, and the same initial state, to see if the internal state x(n) of the modulator saturates.

n	u (n)	x (n)	y (n)	e (n)	x(n+1)
0	10	0.1	1	0.9	9.1
1	-10	9.1	1	-8.1	-1.9
2	10	-1.9	-1	0.9	9.1
3	-10	9.1	1	-8.1	-1.9
:		:	:		:

Exercise 6 (1st, P14.5,6/2nd, P18.3,7)

Given that an 8-bit A/D converter has a SQNR of 50 dB but is linear to 12 bits, what is the sampling rate required to achieve 12 bits of accuracy using straight oversampling on a signal bandwidth of 1 MHz?¹³ What becomes the sampling rate if this 8-bit A/D converter is placed inside a first-order $\Sigma\Delta$ modulator?¹⁴ What becomes the sampling rate if the 8-bit A/D converter is placed inside a second-order $\Sigma\Delta$ modulator?¹⁵

¹³ OSR = 256, $f_s = 512 MHz$ ¹⁴ OSR = 9.44, $f_s = 18.88 MHz$ ¹⁵ OSR = 5.49, $f_s = 10.98 MHz$