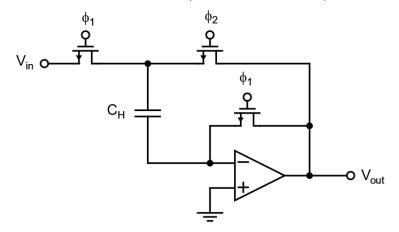
ELEN0037 Microelectronics Tutorials

Pouyan Ebrahimbabaie, Vinayak Pachkawade, Thomas Schmitz

With special thanks to Vincent Pierlot

University of Liège - Montefiore Institute EMMI Unit: Electronics, Microsystems, Measurements, and Instrumentation

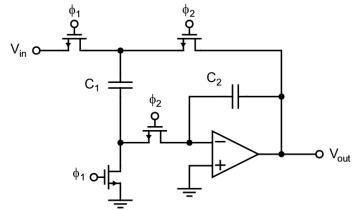
Tutorial 3: Sample and Holds, Switched-Capacitor circuits


Exercise 1 (1st, P8.2/2nd, P11.4)

In the following S/H circuit, assume V_{in} is a 20 *MHz* sinusoid with a 2 V_{pp} amplitude. Also assume that ϕ_{clk} is a 100 *MHz* square wave having a peak amplitude of $\pm 2.5 V$ with rise and fall times of 1.5 ns. What is the maximum time difference between the turn-off times of the n-channel and p-channel transistors?¹ Ignore the body effect $(V_{tn} = 0.8 V, V_{tp} = -0.9 V)$.

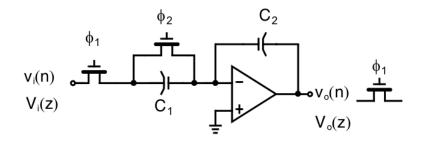
 $^{1}|\Delta\phi|_{max} = 2.1 V, \ \Delta t_{max} = 0.63 \ ns$

Exercise 2 (1st, P8.6/2nd, P11.8)


Assume the opamp of the following S/H circuit has a finite gain of A, and offset voltage V_{offset} . Derive the output voltage in terms of V_{in} , A, and V_{offset} during hold mode (i.e., when ϕ_2 is high).²

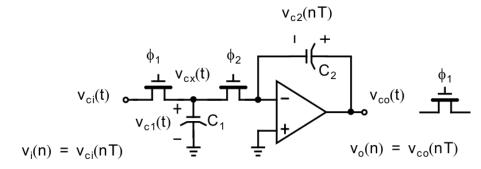
$$^{2}V_{out}=rac{A}{A+1}V_{in}+rac{A}{\left(A+1
ight)^{2}}V_{offset}$$

Exercise 3 (1st, P8.7/2nd, P11.9)


Derive the frequency-domain transfer function of the following S/H circuit (use $z = e^{j\omega T}$), and find the cut-off frequency f_{-3dB} . Make the assumption that $e^{j\omega T} \cong 1 + j\omega T$ for $\omega T \ll 1.^3$

$${}^{3}H(z) = rac{z^{-1}}{1+C_2/C_1(1-z^{-1})}, \ f_{-3dB} = rac{1}{2\pi}rac{C_1}{C_2}f_s$$

Exercise 4 (1st, P10.2/2nd, P14.4)


Ignoring the effect of parasitic capacitances, find the discrete-time transfer function of the following switched-capacitor circuit.⁴

 $^{4}H(z) = -\left({^{C_{1}}\!/^{C_{2}}}
ight) rac{1}{1-z^{-1}}$ (delay-free inverting integrator)

Exercise 5 (1st, P10.4/2nd, P14.6)

Compute the transfer function of the following discrete-time integrator, when the opamp has a finite gain of A.⁵ Also show that this transfer function has a DC gain of -A and a pole that is located slightly to the left of 1.

$${}^{5}H(z) = - \left({}^{C_{1}\!/C_{2}}
ight) \left({}^{A\!/A+1}
ight) rac{z^{-1}}{1 - \left(1 - {}^{C_{1}\!/C_{2}(A+1)}
ight) z^{-1}}, \; z_{p} = 1 - rac{C_{1}}{C_{2}} rac{1}{A+1} \lesssim 1$$