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ABSTRACT
We present a cooperative framework for content-based im-
age retrieval for the realistic setting where images are dis-
tributed across multiple cooperating servers. The proposed
method is in line with bag-of-features approaches but uses
fully data-independent, randomized structures, shared by
the cooperating servers, to map image features to common
visual words. A coherent, global image similarity measure
(which is a kernel) is computed in a distributed fashion over
visual words, by only requiring a small amount of data trans-
fers between nodes. Our experiments on various image types
show that this framework is a very promising step towards
large-scale, distributed content-based image retrieval.

Categories and Subject Descriptors
H.3 [Information Systems]: Information Storage and Re-
trieval; I.4.8 [Image Processing and Computer Vision]:
Scene Analysis

General Terms
Algorithms

Keywords
Content-based image retrieval, distributed, incremental, ran-
domized algorithms, subwindows

1. INTRODUCTION

1.1 Context
Visual image search or content-based image retrieval (CBIR)

[5] aims at retrieving a ranked list of similar images to a given
query image, based on the visual content of these images.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MIR’10, March 29–31, 2010, Philadelphia, Pennsylvania, USA. This is the
author’s version of the work. It is posted here by permissionof ACM for
your personal use. Not for redistribution. The definitive version will be
published in ACM Digital Library and proceedings.
Copyright 2010 ACM 978-1-60558-815-5/10/03 ...$10.00.

In the Internet era, images and other multimedia data
are de facto distributed across multiple servers (such as on
photo-sharing websites or in institutional archives). Also,
previous to these newly introduced web services, image repos-
itories have always been distributed geographically, for ex-
ample different hospitals host different image databases. Even
within a single, large, institution or company, images can be
distributed across different computing nodes to overcome
storage capacity and memory limitations. Additionally, im-
ages are generated in an on-line manner, e.g. tens of thou-
sands of radiographies are produced per day in medium-
sized city hospitals, and terabytes of visual data are being
uploaded to popular websites every day.1

In this context, incremental image indexing and distribu-
ted image search are needed at the web scale, as well as
within networks of specialized image repositories. For ex-
ample, it is expected that the medical diagnosis field would
benefit from distributed CBIR across networks of biomedi-
cal centers [9, 21]. Generally speaking, for users, the ideal
situation would be a single entry point to initiate an image
search, without the need to use a specific search engine for
every existing image databases. On the image repository
side, the ideal situation would allow each administrator to
make its images available for external image searches, but
still keep control of the image indexing structure locally with
the possibility to update it in real-time and distribute the
data across computing nodes, and that external image search
requests do not require heavy computations, because local
computing resources might be limited (e.g. in small institu-
tions, peer-to-peer personal networks, or sensor networks).
Importantly, the amount of data that has to be transmitted
across the network should be as limited as possible.

1.2 State-of-the-art approaches
In image classification and retrieval, bag-of-features approa-

ches [4, 16, 28] have recently become popular due to their
conceptual simplicity and robust recognition performances
[38]. They are based on the extraction of local features (or

1According to [17], the universe of still (film and digital)
photographs existing in 2002 was about 900 billion which
would roughly translate to about 4.5 exabytes of data. Ac-
cording to various press releases late 2008, Flickr, Photo-
bucket and Facebook hitted 3, 6 and 10 billion pictures re-
spectively. Also, about 850 million photos are uploaded to
Facebook each month, i.e. a new image every 3 ms.



patches) in images [31], their description by fixed-size fea-
ture vectors [20, 33], the construction of a “visual vocab-
ulary” (composed of “visual words”), and image similarity
computations based on the occurences of these visual words
in the images, inspired by text retrieval approaches [1, 28].

In contrast to the text domain where bag-of-words approa-
ches rely on fixed vocabularies (they consist in language-
specific words), there is no pre-defined vocabulary for im-
ages. In practice, the so-called visual vocabularies are thus
usually built using unsupervised clustering techniques (typ-
ically k-means) on training sets of local features and visual
words are defined as the cluster centers. Recent works have
tried to optimize this step because of its computational com-
plexity that does not allow to handle millions of local fea-
tures efficiently. Techniques such as approximate k-means
(using randomized kd-trees at each k-means step) [25] and
hierachical k-means [23] are different ways to address this
computational issue. Other works in image classification
(e.g. [15, 22]) use labeled images to learn a discriminative
visual dictionary through supervised learning, but we want
here to be able to exploit a distributed environment with
unlabeled data, which is more plentiful [12].

While these methods yield state-of-the-art results on me-
dium-sized datasets on a single computer (up to hundreds of
thousands of images), they were not designed for incremen-
tal and distributed environments. A foreseeable problem
when transposed to such settings is that the structures im-
plemented by each local server, i.e. its visual dictionary and
its similarity measures between images, strongly depend on
the locally available data which offers only a limited view, at
a given time, of the rapidly evolving “visual world” available
at the global scale. Therefore, the image similarities induced
by a local server that uses such data-dependent mapping
structures are not directly comparable to the similarities of
other servers, and not equivalent to the case where all data
are available at a single point. Hence, an additional filtering
or re-ranking step would be needed at a central location in
order to get reliable results. For example, simple pathologi-
cal cases include the situation where a local server does not
have any relevant images to the query and/or an unbalanced
total number of images compared to other servers, two sce-
narios that might downweight/upweight the similarity mea-
sure in an unwanted fashion. Furthermore, these local data-
driven structures are not designed with the possibility to
be easily updated as the size of their visual dictionary (the
number of clusters) is fixed a priori. Adaptive schemes [19,
37, 36] have been suggested but these concretely require the
update, rebuilding, and/or transfer of the structures across
the network from time to time, and the permanent storage
or re-extraction of the local features used for their construc-
tion.

More recently, several approaches have reconsidered the
use of simple methods (such as nearest neighbors) and/or
global “gist”descriptors on tiny (32×32) images [8, 29, 30] to
reduce computational and memory requirements and there-
fore be able to exploit very large amounts of unlabeled data
on a single computer (indexing up to 110 million images).
Interesting results were there obtained for near-duplicate de-
tection or recognition of the most represented classes (such
as faces). However, bag-of-features approaches yield signif-
icantly better results compared to approaches using global
descriptors for object/location recognition [8]. Still, these
approaches currently require more ressources and they are

not well suited for an incremental and distributed setting,
as mentionned above.

1.3 Method rationale and related work
In this paper we propose a bag-of-features framework for

large-scale content based image retrieval, in a context where
the images are distributed across multiple servers. In this
framework, new images as well as additional image servers
may be seamlessly added within the distributed repository.
Our approach is totally unsupervised and essentially free of
any manual tuning. Similarities among images are computed
by letting each image server exploit a common standardized
catalog of visual words, which allows to align its similarity
measure with those of the other servers.

Our framework is based on the following key components:

• A central server (that might be the user client) that
is aware of and communicates with a network of co-
operating image servers; each image server stores and
indexes a part of the complete dataset of images;

• A mapping structure that uses multiple vectors of tests
on the values of individual pixels of an image patch,
so as to assign multiple visual words to each patch of
a given image. The exact same mapping structure is
deployed on all servers;

• A global ranking of images based on a similarity mea-
sure computed and averaged locally by each server
over visual words, but as if we were in a situation
where each local server would be aware of the com-
plete dataset of images.

Instead of using data-dependent approaches to locally build
bag-of-features image representations, our framework uses a
common mapping that is built once and for all by selecting
a very large number of visual words, each one being defined
by a fixed number of binary tests on the pixel values and
being chosen in a random, data-independent fashion.

Our work is inspired by the randomized algorithms that
were proposed recently for diverse purposes. Extremely and
totally randomized trees [10] were notably used for super-
vised image classification and unsupervised image retrieval
[18, 22, 19]. Random ferns or randomized lists are vectors
of random tests used to store class posterior probabilities
for object tracking applications and image classification in
a supervised setting [24, 34, 3]. Random projections in lo-
cality sensitive hashing [11] were used to map data points
into buckets where linear search is performed to find ap-
proximate nearest points (so all local features need to be
explicitely stored). Random hyperplane hashing was used
in [27] to construct binary features, sent by local servers
to a central server, and used as input of a linear classifier
for text classification. Random features are used by [26] for
large scale supervised learning problems.

Also of relevance, though not randomized and applied for
image (pixelwise) classification, is the vector quantization
method with a regular lattice [32]. It discretizes the feature
space of image patches by performing 4 data-independent,
fixed, subdivisions for every 128 SIFT-like descriptor dimen-
sions, giving a potentially huge visual vocabulary of 4128

bins. The success of such a simple discretization scheme is
probably due to their additional class-specific discriminative
bin selection step, and certainly to their very dense, expen-



sive, local feature sampling as about 1.5 million features
were extracted from each 640 × 480 image.

Instead, we build many mapping structures, and for each
one we randomly select a subset of dimensions and subdivi-
sion thresholds to map image patches to visual words. Be-
cause these structures are data-independent and identical
across the cooperating servers, it is possible to index new
images incrementally, and search images by computing in
a distributed fashion a coherent, global similarity measure
between distributed images ie. without the need of a re-
ranking step. The work is achieved by each server by aver-
aging patch frequencies over non-empty visual words found
in its indexing structure for the query image, inspired by [19]
that computes a similarity measure over leaves of ensembles
of totally randomized trees, a measure reminiscent of tf-idf
in information retrieval [1, 28].

The remainder of the paper proceeds as follows. We de-
scribe the method steps in Section 2, show experimental re-
sults in Section 3 and discuss computational requirements.
We discuss general properties of the method and suggest
future work in Section 4. Finally, we conclude.

2. METHOD
In this section, we describe our indexing structures, the

image similarity measure exploiting these structures, and
the distributed computation framework we propose.

2.1 From randomized trees to shared random-
ized visual vocabularies

Our approach is derived from [19], where an ensemble of
totally randomized trees is grown to define the visual vo-
cabulary, from a sample of image subwindows of random
sizes extracted at random locations within images of the
reference dataset. Subwindows are rescaled to a 16 × 16
patch and then represented by their vector of attributes de-
rived from its pixel values (768 HSV color components, or
256 gray levels). In this method, the binary tests chosen to
split tree nodes are randomized but they still depend on the
original dataset, and also the depth of the leaves (i.e. the
number of binary tests defining a particular visual word) is
data-dependent.

To get rid of these data-dependencies, we made the two
following adaptations to this method:

• In our method, the tree depth is uniform and fixed a
priori, independently of the dataset; note that the tree
depth is equal to the number of binary tests defining
a visual word (or a leaf of the tree).

• To select a binary tree t of depth m, a vector Vt com-
posed of m binary tests (test1(t), ..., testm(t)) is gen-
erated randomly, where each test testi(t) ≡ 1(xji

<
thi) compares a randomly chosen attribute xji

(among
those describing the patches) to a randomly chosen
threshold thi (in the range of possible values of that
attribute). These tests are then attached to the inter-
nal nodes of the tree, by replicating at each internal
node at level i (i = 1 corresponding to the root) the
testi. This means that instead of 2m−1 different tests,
the tree structure in our method is actually defined by
only m tests, which allows us to exploit trees of much
larger depth than the method of [19].

As in [19], we use an ensemble of T trees (but here all of
the same depth), or equivalently an ensemble of T vectors

Vt (t = 1 . . . T ) each one composed of m binary tests. Ac-
cording to these tests, each patch is mapped by each Vt to
a binary code B = b1b2...bm where each bi = equals to 1
if testi(t) is true, 0 otherwise. Each pair (B, t) identifies a
“visual word” (or leaf) among the T2m ones induced by an
ensemble of size T , a potentially huge vocabulary for large
m (e.g. values of T = 50 and m = 50 are used in some of
our experiments).

2.2 Local image indexing
All servers use the same mapping structure to index their

local subset of images. To this end, each server populates
the vectors Vt (t = 1 . . . T ) locally and incrementally with its
own images in the following fashion. From each new refer-
ence image IR stored in the local dataset, NIR

subwindows
of random sizes are extracted at random locations, then re-
sized to a patch of fixed size of 16 × 16 pixels and encoded
by its raw pixel values.2 Each patch is then mapped by each
test vector Vt to a visual word B of m bits, which is indexed
through a hash table or inverted index file for future constant
time access. Initially empty, the local index will be progres-
sively populated, with non-empty visual words. For each t
and each non-empty word B, we maintain a (sparse) list of
pairs composed of local image identifiers IR and a count of
the number NIR,B,t of patches of IR mapped by Vt to that
visual word, as well as the total count NBlocal,t of patches of
the local image set mapped to this visual word. Notice that
indexing a new image is O(TNIR

m), i.e. independent of the
number of reference images stored in the local dataset.

2.3 Deriving image similarities
Our similarity measure between images is a straightfor-

ward adaptation of the similarity measure derived in [19]
from ensembles of trees. We first define the notion of patch
similarity and then derive an efficient computation of the
image similarity as the average of the similarities of patches
extracted from them.

The similarity between two patches s1 and s2 is first de-
fined for a given vector Vt by:

kt(s1, s2) =











1
NB,t

if s1 and s2 are mapped to the same

word B by Vt

0 otherwise,

where NB,t is the total count of patches from the global
dataset that are mapped to the visual word B by Vt. For
a list of T such vectors, the aggregated similarity between
two patches is then obtained by:

kT (s1, s2) =
1

T

T
∑

t=1

kt(s1, s2). (1)

Intuitively, this measure says that two patches are similar
if they share many visual words and that they are more
similar if they share visual words that are less frequently
present in the reference images. Main theoretical properties
of this kernel are given in Appendix A.3

2Any other extraction/description scheme could be used but
we favor the former method because of its simplicity and
excellent performances in a large range of conditions [18].
3As suggested by our notation, both the patch similarity
measure and the induced image similarity measure are in-
deed (semi)positive-definite kernels [19].



Given a query image IQ and a reference image IR, their
similarity is then defined, according to [19], as the average
similarity between all pairs of their patches:

k(IQ, IR) =
1

|S(IQ)||S(IR)|

∑

sQ∈S(IQ),sR∈S(IR)

kT (sQ, sR),

(2)
where S(IQ) and S(IR) are the sets of all patches that can
be extracted from IQ and IR respectively.

The sets S(IQ) and S(IR) are in practice of very large
size (on the order of (w × h)2 where w (resp. h) denotes
the width (resp. height) of the original images). Hence,
we estimate expression (2) by Monte-Carlo, by sampling a
finite number of patches from each image. Denoting by NIQ

and NIR
the number of patches sampled respectively from

IQ and IR, we show in Appendix B that the finite sample
version of (2) may be rewritten as:

k(IQ, IR) =
T

∑

t=1

1

T

∑

B∈VIQ,t

1

NB,t

NIQ,B,t

NIQ

NIR,B,t

NIR

, (3)

where the inner sum is over the set VIQ,t of non-empty visual
words induced by the vector Vt for the query image IQ, NB,t

is the number of patches from all reference images that are
mapped to word B by Vt, and NIQ,B,t (resp. NIR,B,t) is the
number of patches from IQ (resp. IR) that are mapped to
B by Vt.

In our method, the sampling of patches from the reference
images is carried out once and for all and locally, when they
are incorporated into the local indexes. The patches from
the query image are, on the other hand, sampled on the fly
when the query is issued. In the next section, we show how
the similarity may be computed in a distributed fashion over
all images of the global dataset, while exploiting the locally
maintained index structures and using minimal information
exchange among severs.

2.4 Distributed image search
Assuming the user’s computer is fast enough, it can pro-

cess the image query locally ie. extract, describe, and map
patches to visual words using the common mapping struc-
tures. We note here that each patch can be processed in-
dependently by each vector of random tests, making the
method well suited for massively parallel architectures such
as graphical processor units. It is therefore reasonable to
think that a user computer is able to process the query image
locally, and only sends the non-empty visual word identifiers
and frequency counts to the central server. This process is
expected to be faster than sending the whole image across
the network (see Section 4). More precisely, the image query

IQ is thus described by a list B of triplets (B, t,
NIQ,B,t

NIQ

)

ranging over the non-empty visual words of IQ. Then,

1. The central server receives the list B and sends to each
cooperating image server the visual word identifiers
(B, t) to request their number of patches NBlocal,t;

2. Each cooperating server replies to the central server
by sending its list of non-empty pairs (B, t, NBlocal,t);

3. The central server adds these counts to compute NB,t =
∑

local
NBlocal,t and sends back to all the image servers

the list of four-tuplets (B, t, 1
NB,t

,
NIQ,B,t

NIQ

);

4. Each image server uses the received four-tuplets to
compute the global similarity measure between the
query image and its reference images using Eq. (3),
and sends back its top list of images with non-zero sim-
ilarities to the central server as pairs (IR, k(IQ, IR));

5. The central server sends the top list of pairs (IR, k(IQ, IR))
to the user, who can download the most similar images.

To sum up, the procedure is strictly equivalent to using Eq.
(3) in a non-distributed setting.

3. EXPERIMENTAL RESULTS
The long-term aim of image search is to be applicable to

any type of images, a problem that remains largely unsolved.
With this generic goal in mind, we perform experiments on
three very different image types and we use the exact same
parameter values: We build T = 10 vectors with m = 30
random tests, and we exract NIQ = NIR = 1000 patches in
each image. In order to compare our results to other works,
we compute the classification accuracy of the first retrieved
images for each query image.

3.1 IRMA-2005
IRMA-2005 dataset [7] contains 10000 X-ray images group-

ed into 57 classes that depict human body regions under dif-
ferent orientations. We used 9000 reference images (hence
a total of 9 millions reference patches), and 1000 query im-
ages, like other works. About 40 methods were evaluated
on this dataset with results ranging from 26.7% to 87.4%
[7]. We obtained 81.6% recognition rate. According to re-
sults reported in [19], our method with its distributed and
incremental capabilities are thus inferior to the use of to-
tally randomized trees (85.4%) but that approach requires
that a single server holds the entire dataset of images and
stores local features to be able to update its structures as
new images comes in. Our results are also inferior to the
best published result obtained by using a nearest-neighbor
classifier based on a distance taking into account local im-
age distortions (87.4%), but significantly better than using
euclidian distance computed on downscaled 32 × 32 images
(63.2%). We also compute recognition accuracy up to rank
5 (75.46%) and 10 (72.27%). It means on average 75.46%
of the first 5 images retrieved for each query are of the cor-
rect class. Figure 3 illustrates successful retrieval results for
several query images.

3.2 SPORTS
The Sports collection [14] contains 2449 photographs grou-

ped into five classes (baseball, basketball, football, soccer,
and tennis). We used 75% of the images as the reference set
and the remaining 25% for the query test images, similarly
to [14]. We obtain 71.02% (averaged accuracy per class). It
is better than classification results reported in [14] that were
obtained by variants of supervised approaches exploiting la-
beled training images, and that ranged from 41.56% (using a
linear SVM built on top of a bag-of-words image representa-
tion generated using k-means from local features extracted
by DoG, MSER, and affine-Harris, and described by SIFT),
to 65.28% (using domain-specific features and Selective Hid-
den Random Fields). We also compute recognition accuracy
up to rank 10 (62.25%) and rank 20 (59.89%). Figure 4 il-
lustrates top-10 retrieval results for several query images.



3.3 HISTOPATHOLOGY
Our third dataset consists in whole-slide histopathology

images. In the biomedical field, recent advances in digital
scanning systems allows to digitize the slide of a tissue into
a high resolution image within a few minutes. The potential
number of such images, their sizes, their availability accross
different hospitals, and frequent additions (as new tissues
are scanned) makes efficient, distributed and incremental
CBIR a strong need to help researchers and pathologists
to explore their data and support their findings or diagno-
sis. For example, such an approach can help to interpret a
new patient case by finding older cases which contain visual
patterns similar to a user-selected region of interest. To il-
lustrate the potential of our approach in this context, we
used 8 whole-slide images of experimental lungs generated
for a cancer project. Each whole-slide image has an average
size of roughly 20000 × 20000 pixels. We divided off-line
these large images into smaller 256× 256 pixels tiles and in-
dexed all these tiles (roughly about 53000 images) using the
same parameter values than for other datasets except that
we extract only NIQ = NIR = 500 patches in each tile. We
picked several tiles representative of different tissue types
as queries. Because ground-truth is not available for such
a large amount of data, we only show qualitative results in
Figure 5. This figure shows the method is able to retrieve
similar images using color information, texture information
(such as the repetition of elongated cells or dark round ones),
and also the global shapes of image queries. We hypothesize
this is a consequence of the randomization of the sizes of the
patches: small patches captures texture information while
large patches capture global shape information.

3.4 Influence of parameters
Figure 1 shows the influence of the number of vectors, and

the number of random tests in each vector, on IRMA-2005
database. As expected, increasing the number of random
vectors improves recognition results for the first retrieved
image, from 67.5% with T = 1 up to 83.4% with T = 50.
Similar trends are observed at rank 5 and 10. The number of
random tests m in each vector should be neither too small,
nor too large. The best value appears to be 45 random tests
(among 16×16 = 256 dimensions for our patches encoded by
gray values) with 82.6% recognition rate at rank 1. As illus-
trated by Figure 2, low values of m yield a small number of
visual words which are highly populated (m = 10 yields on
average 807 non-empty visual words per vector with 11151
patches each), so they are not distinctive enough. On the
opposite, higher values of m yield a higher number of non-
empty visual words but with only a few patches (m = 100
yields on average 5212007 non-empty visual words per vec-
tor with 1.76 patches each). With such detailed vectors, a
high proportion of patches of query images fall into empty
visual words so these patches do not contribute to image
similarity computations (on average 55% of patches from all
test images are mapped to empty visual words with m = 100
while it is about 0.01% with m = 10).
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Figure 1: Influence of the number T of random vec-
tors and m of random tests on the recognition rate
up to rank 10 on IRMA-2005.
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3.5 Computational and memory requirements
The method provides various ways to meet specific com-

putational requirements. Because of the sparsity of the bag-
of-words representation, the list B sent by the user for a
query image contains much less elements than the poten-
tial size of the visual vocabulary T2m, a maximum of TNIQ

identifiers and frequency counts being sent by the user over
the network in the pessimistic case where all patches are
mapped to distinct visual words. Assuming we use 8 bytes
to identify a visual word (unsigned long integer), 4 bytes
for a local image identifier (unsigned integer), 4 bytes for
frequency counts and similarities (float), the maximum data
transfered during the distributed search is TNIQ

(8 + 4) +
TNIQ

S(3 × 8 + 3 × 4) + SK(2 × 4) + K × 4 bytes, where
S is the number of local servers, and K the number of de-
sired retrieved images. For example, if T = 10, NIQ

= 1000
and the user wants to retrieve the top K = 10 images, the
client emits 120 kbytes and the total network trafic between
the central and local servers is S × 360 kbytes which can
be further reduced downto S × 200 kbytes if servers cache
visual words identifiers. We note that T and NIQ

can be
adjusted if speed and data transfers are a primary concern,
but at the risk of less relevant results. Another way to re-
duce data transfers is to neglect the NB,t term of Eq. (3) so
that the similary measure is equivalent to a simple counting
measure that does not require data transfers to gather the
global NB,t. However, our recognition results were less good
using this variant. We also note that following step 3 of the
distributed search, the central server might implement stop
lists [1] to avoid data transfers and computations based on
widely populated visual words (NB,t >>). Indeed, the influ-
ence of such visual words on the similarity measure should
be limited due to the 1

NB,t
term.

Overall, the size of the mapping structures is small (with
Tm tests), each patch can be processed in parallel, and the
whole set of patches do not need to be stored in contrast to
approaches that need to re-construct or adapt their struc-
tures incrementally. However, like with other bag-of-features
approaches, the critical point is the size of the inverted in-
dexes (implemented as hash tables) that can rapidly exceed
the amount of RAM of a single server. The proportion of
non-empty visual words and their average number of patches
essentially depend on the number of reference images, the
amount of spatial redundancy in images, the patch extrac-
tion scheme, the patch descriptor, and the number of ran-
dom tests m (higher numbers of tests typically yield more
visual words with less patches). As already mentionned,
Figure 2 illustrates the influence of the number of random
tests on the average number of non-empty visual words and
the average number of patches in each of them. On IRMA-
2005, we obtained with m = 30 on average for each vector
Vt less than 0.03% non-empty visual words (288292 among
230) where each non-empty visual word indexes on average
31.22 patches. On SPORTS it was less than 0.04% (415975)
with 4.41 patches each, and on HISTOPATHO it was less
than 0.05% (535287) with 49.80 patches each. Assuming an
average of 4 patches per visual word, T = 10, NIR = 1000,
and 10000 reference images, we roughly need 200 Mbytes
to store visual word keys (a total of 25 million unsigned
long integers), and 400 Mbytes to reference image identifiers
(100 million unsigned integers). To reduce memory require-
ments, tailored compression mechanisms with efficient en-

coding/decoding operations could be investigated [35]. Our
framework could be seen as a complementary way to address
that problem by distributing images across multiple comput-
ing nodes and implementing locally populated indexes.

4. DISCUSSION
An essential property of the proposed framework is that

the query image is neither propagated, nor processed by any
server, since only visual word identifiers, image identifiers,
and feature counts are sent over the network. Thus only
the mapping structures (i.e., an initial random seed, the
numbers T of vectors and m of tests per vector) need to
be shared. Each cooperating server is autonomous and only
effectively indexes its own images. Moreover, a cooperating
server can be easily added/removed within this framework
without any disruption. Once a new local server is added to
the distributed framework, subsequent image search results
will instantly be based on image similarities that take into
account new images brought by the new server.

In our experiments, our purpose was to show the general
performances of the approach, rather than trying to opti-
mize its results on each dataset. Our experiments show that
such a generic and simple bag-of-features approach based
on raw pixel values of randomly extracted patches and data-
independent mapping structures yields interesting results on
real-world images while being straightforward to implement,
so it should be of great interest for practitioners. In partic-
ular, we believe the incremental and distributed capabilities
of our method makes it a good candidate for very large image
retrieval studies. Future research work should then regard
more extensive experiments to face the huge “visual world”
reality and take advantage of large, recently available image
datasets [6, 29, 2]. Somehow similarly, other recent works
[13, 29] have shown that simple methods can work reason-
ably well for challenging computer vision tasks given that
very large collections of images are available.

In practice, if the objective is to obtain the best results
within a network of specialized images, one could try to op-
timize parameters (such as the numbers and sizes of patches,
the number of random tests, the number of vectors, etc.).
The approach might also benefit from other ideas that could
be combined to refine retrieval results: computations of di-
verse image descriptors (such as local color invariant fea-
tures [33] or application-specific features), matching strate-
gies that encode spatial information or perform verification
of spatial consistency (if global image geometry is relevant
for the problem at hand), integration of other types of data
if available (textual tags, gps coordinates, ...), and relevance
feedback mechanisms (one can imagine to update image sim-
ilarities based on an adaptation of Eq. (3) where more
weights are given to visual words corresponding to user-
selected relevant images).

5. CONCLUSIONS
In recent years, approaches based on bag-of-features image

representations yielded state-of-the-art results for content-
based image retrieval but they were not originally designed
for incremental image indexing and distributed search there-
fore limiting their practical usefulness.

In this paper, we have shown that this family of methods
can be adapted for real-world settings through lightweight,
fast, randomized mapping structures, and simple exchange



mechanisms between cooperative servers. We hope these
technical ideas and our promising results on real-world im-
ages will foster research in large-scale image search.

Finally, we seek to apply our approach on very large-scale
and very high-resolution biomedical imaging datasets. Ap-
plications with other multimedia sources such as audio and
video data are also possible.
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APPENDIX

A. PATCH KERNEL PROPERTIES
Forgetting the normalization by NB,t in (1) and assuming,

without loss of generality, that all attributes are scaled in
[0, 1], we show here that:

k∞(s1, s2) = lim
T→∞

kT (s1, s2) = (1 −
1

n
||x(s1) − x(s2)||1)m,

(4)
where n is the number of attributes describing the patches,
x(s1) and x(s2) are the attribute vectors (in our case gray
levels or HSV values) corresponding to patches s1 and s2,
m is the number of tests in each vector, and ||.||1 is the L1

norm. Indeed, the quantity

k∞(s1, s2) = lim
T→∞

kT (s1, s2) (5)

represents the probability that the two subwindows are map-
ped into the same word by a random vector of m tests, each
of the form xi < th that compares the value of an attribute
xi (randomly selected among n) to a threshold th (randomly
choosen in the interval of variation of that attribute). De-
noting by xi(s), i = 1 . . . n, the value of the ith attribute
for the patch s and assuming without loss of generality that
the range of variation of these attributes is [0, 1], the prob-
ability that a single random test on the ith attribute will
not separate two patches s1 and s2 is 1 − |xi(s1) − xi(s2)|,
i.e. the probability to select a threshold outside the interval
] min(xi(s1), xi(s2)), max(xi(s1), xi(s2))]. When m = 1, we
thus have:

k∞(s1, s2) = 1 −
n

∑

i=1

1

n
|xi(s1) − xi(s2)|

= 1 −
1

n
||x(s1) − x(s2)||1,

since the probability to select a particular attribute is 1/n.

All tests in a vector being selected independantly of the
others, we have for m tests:

k∞(s1, s2) =

m
∏

i=1

(1 −
1

n
||x(s1) − x(s2)||1),

which proves (4).
Our indexing structure thus provides a finite sample ap-

proximation of (4) and the number of tests per vector, m,
determines the spreading of the similarity. The introduction
of the factor NB,t in (1) has the effect of deflating (inflating)
the similarity in regions of the attribute spaces which are
very much (very little) populated by patches from the ref-
erence image set. We noticed that this scaling significantly
improved the results in our experiments.

B. IMAGE KERNEL COMPUTATION
We show here how to derive (3) from (2) in the finite sam-

ple case. Denoting by Ŝ(IQ) (Ŝ(IR)) the set of NIQ
(NIR

)
subwindows extracted from the image IQ (IR) to estimate
(2), one gets:

k(IQ, IR) =
1

NIQ
NIR

∑

sQ∈Ŝ(IQ),sR∈Ŝ(IR)

kT (sQ, sR). (6)

Writing kT (sQ, sR) as:

kT (sQ, sR) =
1

T

T
∑

t=1

∑

B∈Vt

1

NB,t

1(sQ ∈ B)1(sR ∈ B), (7)

with Vt the set of visual words induced by the vector Vt, and
plugging this expression in (6), one gets:

k(IQ, IR) =
1

NIQ
NIR

∑

sQ,sR

1

T

T
∑

t=1

∑

B∈Vt

1

NB,t

1(sQ ∈ B)1(sR ∈ B)

=
1

T

T
∑

t=1

∑

B∈Vt

1

NB,t

∑

sQ
1(sQ ∈ B)

NIQ

∑

sR
1(sR ∈ B)

NIR

=
T

∑

t=1

1

T

∑

B∈VIQ,t

1

NB,t

NIQ,B,t

NIQ

NIR,B,t

NIR

,

given the definitions of VIQ,t, NIQ,B,t, and NIR,B,t in (3).

C. REFERENCES
[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern

Information Retrieval. Addison Wesley, May 1999.

[2] P. Bolettieri, A. Esuli, F. Falchi, C. Lucchese,
R. Perego, T. Piccioli, and F. Rabitti. CoPhIR: a test
collection for content-based image retrieval. CoRR,
abs/0905.4627v2, 2009.

[3] A. Bosch, A. Zisserman, and X. Munoz. Image
classification using random forests and ferns. In Proc.
ICCV, 2007.

[4] C. Dance, J. Willamowski, L. Fan, C. Bray, and
G. Csurka. Visual categorization with bags of
keypoints. In ECCV International Workshop on
Statistical Learning in Computer Vision, 2004.

[5] R. Datta, D. Joshi, J. Li, and J. Z. Wang. Image
retrieval: Ideas, influences, and trends of the new age.
ACM Computing Surveys, 39(65), 2007.



−→

−→

−→
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Figure 4: SPORTS. Top: Illustration of the database content with several images for each of the 5 classes.
Bottom: Illustration of several retrieval results ranked according to their similarity to three query images
(left).
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Figure 5: HISTOPATHO. Top: Illustration of two whole-slide images and several 256 × 256 tiles actually
indexed. Bottom: Illustration of several retrieval results ranked according to their similarity to eight query
image tiles (left).
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