Content-based Image Retrieval by Indexing Random Subwindows with Randomized Trees

Raphaël Marée, Pierre Geurts, Louis Wehenkel

GIGA Bioinformatics Platform Dept. EE & CS (Montefiore Institute) University of Liège Belgium

ACCV, 22th November 2007, Tokyo

Content-Based Image Retrieval (CBIR)

Goal

• Given a reference database of *unlabeled* images, retrieve images similar to a new query image based only on visual content.

Challenges

- To be robust to uncontrolled conditions
- To be fast (efficient indexing structures) and accurate (rich image descriptions)
- To avoid tedious manual adaptation specific to a task

Content-Based Image Retrieval (CBIR)

Goal

• Given a reference database of *unlabeled* images, retrieve images similar to a new query image based only on visual content.

Challenges

- To be robust to uncontrolled conditions
- To be fast (efficient indexing structures) and accurate (rich image descriptions)
- To avoid tedious manual adaptation specific to a task

Starting point: our method at CVPR05

 Image classification with labeled training images and single class prediction

- Fast method
 - Random subwindow extraction
 - Extremely randomized decision trees [Geurts et al. 2006]
- Good accuracy results on various tasks

This work: extension for CBIR

Overview

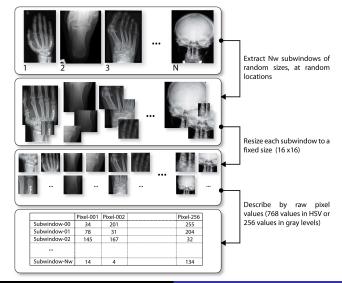
Detector: random subwindows

Descriptor: subwindow raw pixel values

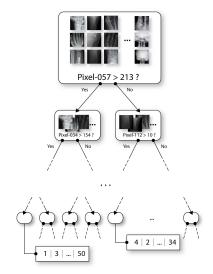
Indexing subwindows: totally randomized trees

 Image similarity measure: derived from similarity measure between subwindows defined by trees

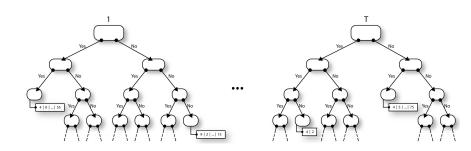
Extraction of Random Subwindows



Indexing subwindows with one Totally Randomized Tree



Indexing subwindows with an Ensemble of T Trees



Parameters

- T: the number of totally randomized trees
- n_{min} : the minimum node size, stop-spliting of a node if $\#node < n_{min}$

Similarity between two subwindows (one tree)

A tree ${\mathcal T}$ defines a similarity between two subwindows s and s' :

$$k_T(s,s') = egin{cases} rac{1}{N_L} & ext{if } s ext{ and } s' ext{ reach the same leaf } L ext{ containing } N_L ext{ subwindows,} \\ 0 & ext{ otherwise} \end{cases}$$

Two subwindows are **very similar** if they fall in a same leaf that has a **very small** subset of training subwindows

Similarity between two subwindows (ensemble of T trees)

The similarity induced by an *ensemble* of T trees is defined by:

$$k_{ens}(s,s') = \frac{1}{T} \sum_{t=1}^{T} k_{\mathcal{T}_t}(s,s')$$
 (1)

Two subwindows are similar if they are considered similar by a large proportion of the trees

Similarity between two images

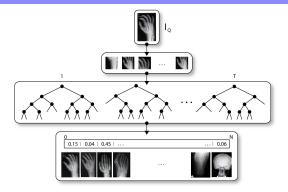
We derive a similarity between two images I and I' by:

$$k(I,I') = \frac{1}{|S(I)||S(I')|} \sum_{s \in S(I), s' \in S(I')} k_{ens}(s,s')$$
 (2)

The similarity between two images is thus the average similarity between all pairs of their subwindows

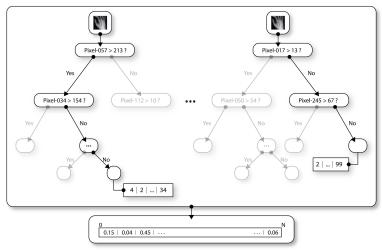
(2) is estimated by extracting at random from each image an a priori fixed number of subwindows

Similarities between I_Q and all reference images...



... are obtained by propagating subwindows from I_Q , and by incrementing, for each subwindow s of I_Q , each tree \mathcal{T} , and each reference image (I_R) , the similarity $k(I_Q,I_R)$ by the proportion of subwindows of I_R in the leaf reached by s in the tree \mathcal{T} , and by normalizing the resulting score.

Propagation of one subwindow into trees



Extensions

 Model recycling: Given a large set of unlabeled images we can build an ensemble of trees on these images, and then use this model to compare new images from another set.

 Incremental mode: It is possible to incorporate the subwindows of a new image into an existing indexing structure by propagating and recording their leaf counts. If a leaf happens to contain more than n_{min} subwindows, split the node.

ZuBuD (1/3): images of 201 buildings

ZuBuD (2/3): results

- Protocol
 - 1005 unlabeled reference images (640 × 480)
 - 115 labeled test images (320 × 240)
 - Recognition rate of the first ranked image

Results

Dataset	ls/ts	us	OM05	OM02
ZuBuD	1005/115	96.52%	93% to 98.2%	100%

(with 10 trees, 1000 subwindows per image, nmin = 2 ie. fully developed trees)

$\overline{\text{ZuBuD}}$ (3/3): query \longrightarrow top 10 retrieved images

IRMA (1/3): X-Ray images (from http://irma-project.org/)

IRMA (2/3): Results

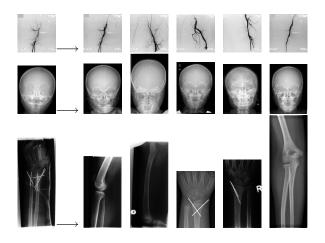
- Protocol
 - 9000 unlabeled reference images (approx. 512 × 512)
 - 1000 *labeled* test images (57 classes)
 - Recognition rate of the first ranked image

Results

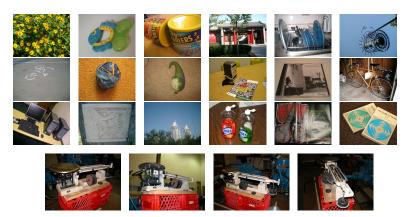
Dataset	ls/ts	us	naïve	NN	KDGN07
IRMA	9000/1000	85.4%	29.7%	63.2%	87.4%

(with 10 trees, 1000 subwindows per image, nmin = 2 ie. fully developed trees)

IRMA (3/3): query \longrightarrow top 5 retrieved images



UkBench (1/2): images of 2550 "objects"



UkBench (2/2): results

Protocol

- 10200 *unlabeled* reference images (640 × 480)
- Same images for test (labeled)
 - Recognition rate of the top-4 ranked images

(Number of correct images in first 4 retrieved images /40800) * 100%

Results

Dataset	ls=ts	us	NS06	PCISZ07
UkBench	10200	75.25%	76.75% to 82.35%	86.25%

(with 10 trees, 1000 subwindows per image, nmin = 4)

META (1/2): images from various sources

Sources: LabelMe Set1-16, Caltech-256, Aardvark to Zorro, CEA CLIC, Pascal Visual Object Challenge 2007, Natural Scenes A. Oliva, Flowers, WANG, Xerox6, Butterflies, Birds.

META (2/2): results

- Protocol
 - 205763 *unlabeled* reference images
 - 10200 UkBench labeled test images
 - Recognition rate of the top-4 ranked images

(Number of correct images in first 4 retrieved images /40800) * 100%

Results

Dataset	ls/ts	us	NS06
META/UkBench	205763/10200	66.74 %	54% to 79 %

(with 10 trees, 50 subwindows per META image, 1000 subwindows per UkBench image, nmin=2 ie. fully developed trees)

ZuBuD: Influence of nb. training subwindows (T=10, N_{to}=1000, n_{min}=1)

Number of subwindows per training image: more is better



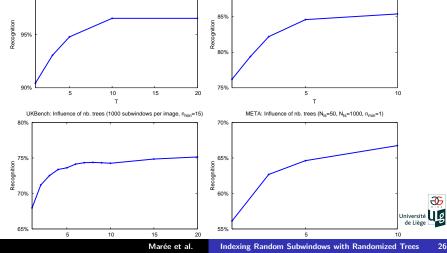
IRMA: Influence of nb. training subwindows (T=10, Nto=1000, nmin=1)

IRMA: Influence of nb. trees (1000 subwindows per image, nmin=1)

Number of trees *T*: more is better

ZuBuD: Influence nb. trees T (1000 subwindows per image, n_{min}=1)

100%



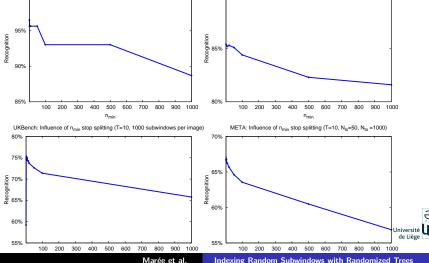
90%

ZuBuD: Influence of n_{min} stop splitting (T=10, 1000 subwindows per image)

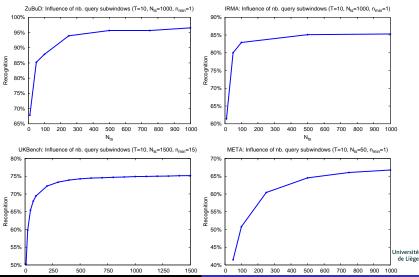
100%

IRMA: Influence of n_{min} stop splitting (T=10, 1000 subwindows per image)

Tree depth (minimum node size n_{min}): deeper is better



Number of subwindows per query image: more is better



Summary

- A simple method that yields quite good results on various tasks...
 - Unlabeled reference images
 - Extraction of random subwindows
 - Description by raw pixel values
 - Indexing with totally randomized trees
 - Image similarity derived from trees
- ... and has some nice practical properties
 - Only a few parameters
 - Fast indexing, fast prediction (parallelization also possible)
 - Model recycling, incremental mode
 - (Implementation in Java, check http://www.montefiore.ulg.ac.be/~maree/)

Prospects

Applications

- Tackle even more challenging visual tasks
- Deal with bigger databases (Flickr hits two billion images)
- Image near-duplicate detection
- Indexing of other types of data (e.g. audio)

Method

- Combination with features/descriptors
- Mechanisms like relevance feedback, sub-image retrieval, ...

Acknowledgments

Vincent Botta for figures

Walloon Region REGION WALLONNE

- European Regional Development Fund
 National Fund for Scientific Research
- FNRS
- IRMA database courtesy of TM Lehmann and T. Deselaers (RWTH Aachen, Germany)

