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Content-Based Image Retrieval (CBIR)

o Goal

o Given a reference database of unlabeled images, retrieve images
similar to a new query image based only on visual content.

@ Challenges
¢ To be robust to uncontrolled conditions
@ To be fast (efficient indexing structures) and
accurate (rich image descriptions) @
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o To avoid tedious manual adaptation specific to a task de Livge "
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Starting point: our method at CVPR05

@ Image classification with /abeled training images and single
class prediction
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@ Fast method

@ Random subwindow extraction
o Extremely randomized decision trees [Geurts et al. 2006]

@ Good accuracy results on various tasks
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This work: extension for CBIR

Overview

@ Detector: random subwindows
@ Descriptor: subwindow raw pixel values
@ Indexing subwindows: totally randomized trees

@ Image similarity measure: derived from similarity measure
between subwindows defined by trees
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Extraction of Random Subwindows

2 3

Extract Nw subwindows of
random sizes, at random
locations

Resize each subwindow to a
fixed size (16 x16)

-~ Describe by raw pixel
Pixel-001 | Pixel-002 Pixel-256 values (768 values in HSV or
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Indexing subwindows with one Totally Randomized Tree
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Indexing subwindows with an Ensemble of T Trees

@ Parameters
o T: the number of totally randomized trees
® Nmip: the minimum node size, stop-spliting of a node if &
#node < Npin Ve g g
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Similarity between two subwindows (one tree)

A tree T defines a similarity between two subwindows s and s’ :
1

= H / .. .
kr(s,s) =4 M if s and.s reach the same leaf L containing N subwindows,
0 otherwise

Two subwindows are very similar if they fall in a same leaf that
has a very small subset of training subwindows
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Similarity between two subwindows (ensemble of T trees)

The similarity induced by an ensemble of T trees is defined by:

.
1
Kens(5:5') = 5 >_ kni(s:s') 1
t=1

Two subwindows are similar if they are considered similar by a
large proportion of the trees
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Similarity between two images

We derive a similarity between two images / and I’ by:

1
k(1) = —— Kens (s, s’ 2
¢ SIS sesu)gesuf) 5:5) @

The similarity between two images is thus the average similarity
between all pairs of their subwindows

(2) is estimated by extracting at random from each image an a
priori fixed number of subwindows
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Similarities between /g and all reference images...
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. are obtained by propagating subwindows from lg, and by

incrementing, for each subwindow s of lg, each tree T, and each
reference image (Ir), the similarity k(lg, Ir) by the proportion of =
subwindows of Ig in the leaf reached by s in the tree T, and by U"ivemté@

.. . de Li
normalizing the resulting score. o itee
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Similarity measure defined by trees

Propagation of one subwindow into trees
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Extensions

@ Model recycling: Given a large set of unlabeled images we can
build an ensemble of trees on these images, and then use this
model to compare new images from another set.

@ Incremental mode: It is possible to incorporate the
subwindows of a new image into an existing indexing structure
by propagating and recording their leaf counts. If a leaf
happens to contain more than ny;, subwindows, split the
node.
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ZuBuD (1/3): images of 201 buildings
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ZuBuD (2/3): results

@ Protocol
o 1005 unlabeled reference images (640 x 40)
o 115 /abeled test images (320 x 240)
o Recognition rate of the first ranked image

@ Results
Dataset Is/ts us OMO05 OM02
ZuBuD | 1005/115 || 96.52% | 93« to 98.2% | 100v%

(with 10 trees, 1000 subwindows per image, nmin = 2 ie. fully

developed trees)
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ZuBuD (3/3): query — top 10 retrieved images
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I RM A (1/3): X_ Ray images (from http://irma-project.org/)
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IRMA (2/3): Results

@ Protocol

o 9000 unlabeled reference images (approx. 512 x 512)
o 1000 /abeled test images (57 classes)
o Recognition rate of the first ranked image

@ Results
Dataset Is/ts us naive | NN | KDGNO7
IRMA | 9000/1000 || 85.4% || 29.7% | 63.2% 87.4v

(with 10 trees, 1000 subwindows per image, nmin = 2 ie. fully
developed trees)
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IRMA (3/3): query — top 5 retrieved images
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UkBench (1/2): images of 2550 “objects”
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UkBench (2/2): results

@ Protocol

o 10200 unlabeled reference images (640 x 480)
@ Same images for test (labeled)
o Recognition rate of the top-4 ranked images

(Number of correct images in first 4 retrieved images /40800) = 100%

@ Results

Dataset | Is=ts us NS06 PCISZ07
UkBench | 10200 || 75.25% || 76.75% to 82.35% | 86.25%

(with 10 trees, 1000 subwindows per image, nmin = 4)
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META (1/2): images from various sources

Sources: LabelMe Setl-16, Caltech-256, Aardvark to Zorro, CEA
CLIC, Pascal Visual Object Challenge 2007, Natural Scenes A. )
Oliva, Flowers, WANG, Xerox6, Butterflies, Birds. Universire‘@

de Liege O
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META (2/2): results

@ Protocol

@ 205763 unlabeled reference images
@ 10200 UkBench /abeled test images
o Recognition rate of the top-4 ranked images

(Number of correct images in first 4 retrieved images /40800) * 100%

@ Results
Dataset Is/ts us NS06
META/UkBench | 205763/10200 || 66.74 % || 54% to 79 «

(with 10 trees, 50 subwindows per META image, 1000
subwindows per UkBench image, nmin = 2 ie. fully developed

trees) @5
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Number of subwindows per training image: more is better

ZuBuD: Influence of nb. training subwindows (T=10, Nig=1000, nyy;,=1) IRMA: Influence of nb. training subwindows (T=10, Ns=1000, nyyi,=1)
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Number of trees T: more is better

ZuBuD: Influence nb. trees T (1000 subwindows per image, Ny,=1) IRMA: Influence of nb. trees (1000 subwindows per image, Ny,=1)
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Tree depth (minimum node size np;,): deeper is better

ZuBuD: Influence of ny, stop splitting (T=10, 1000 subwindows per image) IRMA: Influence of ny;, stop splitting (T=10, 1000 subwindows per image)
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Number of subwindows per query image: more is better

ZuBuD: Influence of nb. query subwindows (T=10, Nig=1000, n;;=1) IRMA: Influence of nb. query subwindows (T=10, Njg=1000, ny,;,=1)
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Summary

Summary

@ A simple method that yields quite good results on various
tasks...
@ Unlabeled reference images
e Extraction of random subwindows
o Description by raw pixel values
o Indexing with totally randomized trees
o Image similarity derived from trees
@ ... and has some nice practical properties
@ Only a few parameters
o Fast indexing, fast prediction (parallelization also possible)
o Model recycling, incremental mode
s (Implementation in Java, check
http://www.montefiore.ulg.ac.be/~maree/) @
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Prospects

@ Applications

Prospects

o Tackle even more challenging visual tasks

o Deal with bigger databases (Flickr hits two billion images)
¢ Image near-duplicate detection

@ Indexing of other types of data (e.g. audio)

@ Method

@ Combination with features/descriptors
@ Mechanisms like relevance feedback, sub-image retrieval, ...

Marée et al.
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