
Method
Results

Conclusions

Content-based Image Retrieval by Indexing

Random Subwindows with Randomized Trees
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Content-Based Image Retrieval (CBIR)

Goal
Given a reference database of unlabeled images, retrieve images
similar to a new query image based only on visual content.

Challenges
To be robust to uncontrolled conditions
To be fast (efficient indexing structures) and
accurate (rich image descriptions)
To avoid tedious manual adaptation specific to a task
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Starting point: our method at CVPR05

Image classification with labeled training images and single
class prediction

Fast method
Random subwindow extraction
Extremely randomized decision trees [Geurts et al. 2006]

Good accuracy results on various tasks
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Random Subwindows
Totally Randomized Trees
Similarity measure defined by trees

This work: extension for CBIR

Overview

Detector: random subwindows

Descriptor: subwindow raw pixel values

Indexing subwindows: totally randomized trees

Image similarity measure: derived from similarity measure
between subwindows defined by trees
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Extraction of Random Subwindows
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Indexing subwindows with one Totally Randomized Tree
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Indexing subwindows with an Ensemble of T Trees

Parameters

T : the number of totally randomized trees
nmin: the minimum node size, stop-spliting of a node if
#node < nmin
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Similarity between two subwindows (one tree)

A tree T defines a similarity between two subwindows s and s ′ :

kT (s, s ′) =

{

1
NL

if s and s ′ reach the same leaf L containing NL subwindows,

0 otherwise

Two subwindows are very similar if they fall in a same leaf that
has a very small subset of training subwindows
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Similarity between two subwindows (ensemble of T trees)

The similarity induced by an ensemble of T trees is defined by:

kens(s, s
′) =

1

T

T
∑

t=1

kTt
(s, s ′) (1)

Two subwindows are similar if they are considered similar by a
large proportion of the trees
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Similarity between two images

We derive a similarity between two images I and I ′ by:

k(I , I ′) =
1

|S(I )||S(I ′)|

∑

s∈S(I ),s′∈S(I ′)

kens(s, s
′) (2)

The similarity between two images is thus the average similarity
between all pairs of their subwindows

(2) is estimated by extracting at random from each image an a
priori fixed number of subwindows
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Totally Randomized Trees
Similarity measure defined by trees

Similarities between IQ and all reference images...

... are obtained by propagating subwindows from IQ , and by

incrementing, for each subwindow s of IQ , each tree T , and each

reference image (IR), the similarity k(IQ , IR) by the proportion of

subwindows of IR in the leaf reached by s in the tree T , and by

normalizing the resulting score.
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Propagation of one subwindow into trees
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Extensions

Model recycling: Given a large set of unlabeled images we can
build an ensemble of trees on these images, and then use this
model to compare new images from another set.

Incremental mode: It is possible to incorporate the
subwindows of a new image into an existing indexing structure
by propagating and recording their leaf counts. If a leaf
happens to contain more than nmin subwindows, split the
node.
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ZuBuD, IRMA, UKBench
META: model recycling
Influence of parameters

ZuBuD (1/3): images of 201 buildings
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ZuBuD, IRMA, UKBench
META: model recycling
Influence of parameters

ZuBuD (2/3): results

Protocol

1005 unlabeled reference images (640 × 480)

115 labeled test images (320 × 240)

Recognition rate of the first ranked image

Results

Dataset ls/ts us OM05 OM02

ZuBuD 1005/115 96.52% 93% to 98.2% 100%

(with 10 trees, 1000 subwindows per image, nmin = 2 ie. fully
developed trees)
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ZuBuD, IRMA, UKBench
META: model recycling
Influence of parameters

ZuBuD (3/3): query −→ top 10 retrieved images

−→

−→
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ZuBuD, IRMA, UKBench
META: model recycling
Influence of parameters

IRMA (1/3): X-Ray images (from http://irma-project.org/ )

Marée et al. Indexing Random Subwindows with Randomized Trees 18

http://irma-project.org/


Method
Results

Conclusions

ZuBuD, IRMA, UKBench
META: model recycling
Influence of parameters

IRMA (2/3): Results

Protocol

9000 unlabeled reference images (approx. 512 × 512)

1000 labeled test images (57 classes)
Recognition rate of the first ranked image

Results

Dataset ls/ts us näıve NN KDGN07

IRMA 9000/1000 85.4% 29.7% 63.2% 87.4%

(with 10 trees, 1000 subwindows per image, nmin = 2 ie. fully
developed trees)
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ZuBuD, IRMA, UKBench
META: model recycling
Influence of parameters

IRMA (3/3): query −→ top 5 retrieved images

−→

−→

−→
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ZuBuD, IRMA, UKBench
META: model recycling
Influence of parameters

UkBench (1/2): images of 2550 “objects”
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ZuBuD, IRMA, UKBench
META: model recycling
Influence of parameters

UkBench (2/2): results

Protocol

10200 unlabeled reference images (640 × 480)

Same images for test (labeled)
Recognition rate of the top-4 ranked images
(Number of correct images in first 4 retrieved images /40800) ∗ 100%

Results

Dataset ls=ts us NS06 PCISZ07

UkBench 10200 75.25% 76.75% to 82.35% 86.25%

(with 10 trees, 1000 subwindows per image, nmin = 4)
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ZuBuD, IRMA, UKBench
META: model recycling
Influence of parameters

META (1/2): images from various sources

Sources: LabelMe Set1-16, Caltech-256, Aardvark to Zorro, CEA
CLIC, Pascal Visual Object Challenge 2007, Natural Scenes A.
Oliva, Flowers, WANG, Xerox6, Butterflies, Birds.
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ZuBuD, IRMA, UKBench
META: model recycling
Influence of parameters

META (2/2): results

Protocol

205763 unlabeled reference images
10200 UkBench labeled test images
Recognition rate of the top-4 ranked images
(Number of correct images in first 4 retrieved images /40800) ∗ 100%

Results

Dataset ls/ts us NS06

META/UkBench 205763/10200 66.74 % 54% to 79 %

(with 10 trees, 50 subwindows per META image, 1000
subwindows per UkBench image, nmin = 2 ie. fully developed
trees)
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ZuBuD, IRMA, UKBench
META: model recycling
Influence of parameters

Number of subwindows per training image: more is better
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ZuBuD, IRMA, UKBench
META: model recycling
Influence of parameters

Number of trees T : more is better
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ZuBuD, IRMA, UKBench
META: model recycling
Influence of parameters

Tree depth (minimum node size nmin): deeper is better
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ZuBuD, IRMA, UKBench
META: model recycling
Influence of parameters

Number of subwindows per query image: more is better
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Summary

A simple method that yields quite good results on various
tasks...

Unlabeled reference images
Extraction of random subwindows
Description by raw pixel values
Indexing with totally randomized trees
Image similarity derived from trees

... and has some nice practical properties

Only a few parameters
Fast indexing, fast prediction (parallelization also possible)
Model recycling, incremental mode
(Implementation in Java, check
http://www.montefiore.ulg.ac.be/~maree/)
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Prospects

Applications

Tackle even more challenging visual tasks
Deal with bigger databases (Flickr hits two billion images)
Image near-duplicate detection
Indexing of other types of data (e.g. audio)

Method

Combination with features/descriptors
Mechanisms like relevance feedback, sub-image retrieval, . . .
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