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Abstract: This paper is concerned with methods for suboptimal control of
nonlinear systems. A new approach to the synthesis of approximate optimal
controllers is presented. The new methodology is compared to various known
techniques on three complex examples systems that correspond to practical
processes. The strengths and weaknesses of the different methods are pointed out.
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1. INTRODUCTION

Optimal control is an attractive approach to con-
trol design for general nonlinear systems. Al-
though there is extensive literature on the theory
of optimal control, it is very difficult, if not im-
possible, to obtain the optimal feedback law for
real world processes. Therefore many methods to
calculate approximations of the optimal feedback
law have been proposed over the last four decades.

The first class of approximate techniques consists
of approaches that seek control laws that ap-
proximately satisfy the Hamilton-Jacobi- Bellman
equation (HJBE). With power series expansion
techniques truncated power series of the control
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law can be obtained either as a power series of
the state vector of the plant (Al’Brekht, 1961;
Lukes, 1969; Garrard and Jordan, 1977), or as a
power series of a scalar perturbation parameter
(Garrard, 1972; Nishikawa et al., 1971). A dif-
ferent approach is taken in (Beard et al., 1997),
where a technique is developed for successive im-
provement of approximations of solutions to the
HJBE based on projection methods. The method
of state-dependent Riccati equations parallels the
technique for linear systems to find suboptimal
control laws (Wernli and Cook, 1975; Cloutier et
al., 1996). Further methods include state and con-
trol discretization in order to use discrete dynamic
programming techniques, reinforcement learning,
approaches via piecewise linear control, feedback
linearization, regularization and inverse optimal-
ity techniques.

Instead of searching approximate solutions for the
HJBE one can numerically compute optimal tra-
jectories for a finite number of initial conditions
and then construct the optimal feedback by inter-
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polation, for example by triangulation, neural nets
or Green’s functions (Ito and Schroeter, 1998).

In this work, a technique is presented that be-
longs to the second class, i.e. to the interpolation
techniques. The approximate control law is iden-
tified by a technique stemming from nonlinear-
ity quantification techniques (Schweickhardt and
Allgöwer, 2004a). The purpose of this work is to
display the capabilities of the different methods
and to evaluate the benefits of the novel approach
regarding former techniques. A first comparative
study of suboptimal schemes was achieved in
(Beeler et al., 2000). It involves, however, less
methods and considers test problems that present
only polynomial nonlinearities.

This paper is organized as follows. In Section 2 the
control problem is stated. In Section 3 we briefly
review some known suboptimal control methods.
In Section 3.5 we introduce a new class of methods
based on nonlinearity measures. In Section 4 we
present and discuss the simulation results for three
example systems that correspond to real world
applications. The paper ends with conclusions in
Section 5.

2. PROBLEM STATEMENT

For a nonlinear plant ẋ = f(x, u) with the state
x ∈ Rn and the control input u ∈ Rp the
control law u = k(x) is sought that minimizes the
performance functional Jx0(u) =

∫∞
0

G(x, u)dt for
any initial condition x0 in a specified region of
Rn. We assume that the problem is well-posed
in the sense that for each x0 an optimal control
trajectory exists and is unique. Then, the optimal
control policy depends on the current state of the
plant x(t) only and can be expressed as a function
of the state u(t) = k(x(t)). We furthermore
assume that this resulting control law k(x) is
continuous in x, although this may be a significant
restriction.

3. CONSIDERED METHODS FOR
NONLINEAR SUBOPTIMAL CONTROL

3.1 Methods based on power series expansions of
the HJBE

These methods construct a control law as a power
series of the plant’s state vector. In Al’Brekht’s
and Lukes’ approach (Al’Brekht, 1961; Lukes,
1969), the solution of the HJBE (i.e the cost
function), the optimal control u∗(x) as well as
the system function driven by the optimal control
f∗(x) = f(x, u∗(x)) are expanded in power series
of the states. Substituting these expansions into
the HJBE and setting the sums of coefficients of
like powers to zero yields a set of equations that

contains one algebraic Riccati equation (ARE)
and many linear equations. The ARE gives the
second order term of the cost function and the first
order term of the optimal control law, which cor-
responds to the LQR controller of the linearized
problem at the origin. The linear equations render
higher order terms. Garrard and Jordan (1977)
simplified this technique in case of input-affine
systems and quadratic performance indices.

Other approaches introduce a scalar perturba-
tion parameter ε into the system equations and
construct a control law as a power series of ε
(Garrard, 1972; Nishikawa et al., 1971). The term
corresponding to ε0 requires the solution of an
ARE and is again equivalent to the LQR con-
troller of the linearized system. The second or-
der term is easily computed by simple matrix
operations. Higher order terms are, however, dif-
ficult to compute unless the system equation is
polynomial. In this case these methods become
equivalent to that of Al’Brekht and Lukes.

All these power series expansions are asymptoti-
cally stable in a neighborhood of the origin what-
ever the order of truncation.

3.2 Methods based on the state-dependent Riccati
equation

These methods are a heuristic generalization of
the LQR theory. In case the system equation and
performance index are factorized to a linear-like
structure with state-dependent coefficients,

ẋ = A(x)x + B(x)u and

Jx0(u) =

∞∫
0

(xT Q(x)x + uT R(x)u)dt,

a state-feedback control can be obtained by
u(x) = −R−1(x)BT (x)P (x)x, where P (x) is the
unique symmetric positive-definite solution of the
state-dependent Riccati equation (SDRE)

A(x)T P (x) + P (x)A(x) + Q(x)

−P (x)B(x)R(x)−1B(x)T P (x) = 0.

Two options are found in literature that use the
SDRE approach. For the first method, a pertur-
bation parameter ε is introduced into the system
equation and the solution P (x) is constructed as a
power series in ε (e.g. (Wernli and Cook, 1975)).
The second option, the Frozen Riccati Equation
(FRE) method, is found in many recent applica-
tions (Cloutier et al., 1996). For a fixed sampling
interval, the SDRE is solved numerically at each
sampling time, where x is taken to be equal to
the current state of the process. The solvability of
the ARE at each current state assures the local
stability of the resulting controller. As the online
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computational effort considerably dominates the
off-line computational effort, the FRE method is,
in fact, more of an online control scheme (like
model-predictive control) than a method to com-
pute the optimal control law.

3.3 Successive Galerkin approximation

Beard (Beard et al., 1998) transforms the solu-
tion of the HJBE into an iterative process that
starts from an initial stabilizing control law the
performance of which is improved at each itera-
tion. The difficulty of the solution of the HJBE is
reduced to the solution at each iteration of the so-
called generalized Hamilton-Jacobi-Bellman equa-
tion (GHJBE), which is a first order linear par-
tial differential equation (with non-constant coef-
ficients). A technique based on Galerkin’s spectral
method is used to solve this equation. Its solution
is expanded in a set of basis functions with un-
known coefficients and plugged into the GHJBE.
The coefficients of the expansion are computed
from a set of linear equations that are obtained by
setting the error projected onto the basis functions
to zero. Some conditions assuring a uniform con-
vergence toward the optimal control are derived
in (Beard et al., 1997).

3.4 Interpolation via Green’s functions

The idea of the interpolation techniques is to avoid
the solution of the HJBE by computing optimal
trajectories for several initial states and construct-
ing afterwards a feedback control based on these
data. Ito and Schroeter propose an interpolation
technique based on Green’s functions (Ito and
Schroeter, 1998). First, assume the optimal state
trajectories x∗

x0
(·) and control trajectories u∗

x0
(·)

are computed for all x0 in a finite set of initial
conditions X0. Then, a finite set Σ of M couples
{x(i), ū(x(i))} is built up, where ū(x∗

x0
(t)) = u∗

x0
(t)

is the optimal control corresponding to the par-
ticular state x∗

x0
(t) at time t. The approximate

feedback is defined by

u(·) =

M∑
i=1

G(·, x(i))ηi, (1)

where the Green’s functions are of the type
G(x, y) = |x−y|α with 1 ≤ α ≤ 4. The coefficients
{ηi}

M
i=1 are chosen so that the feedback (1) corre-

sponds to the optimal control at the collocation
points u(x) = ū(x) for {x, ū(x)} ∈ Σ.

3.5 New interpolation methods based on nonlinear-
ity measures

The technique described in this section is based
on a generalization of the closed-loop optimal

control law nonlinearity measure (Schweickhardt
and Allgöwer, 2004b). This measure represents
the relative prediction error of the best linear
approximation of the optimal controller. The ap-
proximation procedure can be generalized to a
more general class of approximating control struc-
tures by defining the closed-loop optimal control
law suitability measure for a controller structure
Kd(x)

φX0
Kd

def
= inf

d∈RD
sup

x0∈X0

∥∥u∗
x0

− Kd

(
x∗

x0

)∥∥
L2∥∥u∗

x0

∥∥
L2

,

with u∗
x0

and x∗
x0

being the optimal control and
state trajectories for the initial condition x0 ∈ X0.
If φX0 is small, the controller for which the mini-
mum is achieved represents a good approximation
to the behavior of the optimal controller for the
considered optimal trajectories. The measure is
bounded above by one. The suboptimal controller
Kd(x) is parameterized by D real parameters. It
can be shown that the minimization problem for d
has a solution (that does not need to be unique).
Furthermore, this optimization problem is convex,
if the parameterization of the suboptimal control
is linear. One first advantage to this interpolation
method is the contribution of the entire trajecto-
ries to the controller synthesis and not only of a
finite number of points as in the previous method.

Three possible structures for Kd will be used in
the sequel. First, a power series expansion in the
state x

Kd(x) = d0 + D1x +

(
n∑

i=1

D2,ixi

)
x + . . .(2)

is a possible linear parameterization, where d
contains the parameters d0 ∈ Rm, D1 ∈ Rm×n,
D2 ∈ Rm×n×n and so on. Unlike the controllers
of Section 3.1, the law (2) is not local optimal,
but represents a better approximation on a larger
domain about the origin.

A second possibility is the truncated Fourier series

Kd(x) =
N1∑

i1=−N1

. . .

Nn∑
in=−Nn

ci1,...in
e

iπ
∑n

k=1
ik

xk
lk ,

(3)

where Nk is the order of approximation in the k-
th dimension of the state space and lk denotes the
maximal deviation from steady state in the same
direction. The complex coefficients c have to be
chosen so that ci1,...,ij ,...,in

= c̄i1,...,−ij ,...,in
for any

j in order to guarantee the control variable to be
real valued. If one of the design parameters Nk is
set to 0, then the k-th direction is represented by
a constant only and the control law is independent
of the corresponding state variable. This fact
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can be used to synthesize partial state feedback
controllers.

The third suggested structure assumes an input-
affine system ẋ = f(x)+g(x)u(x) and a index that
is quadratic in the control Jx0(u) =

∫∞
0

(l(x) +
uT Ru)dt. Then, the optimal control is explicitly
related to the cost function V (x) by u(x) =
− 1

2R−1gT (x)∂V
∂x (x). and the controller structure

can be obtained indirectly by parameterization of
the cost function V (x). Since V (x) is a positive
definite function, it is a natural idea to expand
V (x) in a sum of squares (SOS)

V (x) =
N∑

i=1

(pi(x))2 = ZT QZ, (4)

where pi(x) is a polynomial in x of order i, Z the
vector of monomials up to a prescribed order and
Q a positive semi-definite matrix.

4. COMPARATIVE ASSESSMENT

These methods were all applied on three real
world problems. For sake of convenience, the fol-
lowing abbreviations will be used:

- LQR, Linear Quadratic Regulator,
- LUK, HJBE and power series expansion,
- SDR, SDRE and power series expansion,
- FRE, Frozen Riccati equation,
- SGA, Successive Galerkin approximation,
- GRE, Interpolation via Green’s functions,
- IPS, Interpolation by Power series (2),
- IFS, Interpolation by Fourier series (3),
- SOS, Interpolation by a control structure,

whose cost function is a sum of squares (4).

Each method has to compute the most efficient
control law within a reasonable computation time.
The closed loops corresponding to each controller
are simulated from N = 30 random initial states
in order to get representative results. The follow-
ing comparison criteria will be considered:

- the average distance from optimality δ, de-

fined by δ = 1
N

∑N
i=1

(
Jxi

(ũ)−Jxi
(u∗)

Jxi
(u∗)

)
, where

Jxi
(ũ) is the performance of an approximate

controller for an initial state xi and Jxi
(u∗)

is the performance of the optimal controller
for the same initial state,

- t1, the time required for the computation of
the approximate controller,

- t2, the average time required by the ODE
solver to compute the closed-loop trajecto-
ries.

δ is a measure of the quality of the approxima-
tion, t1 is the off-line computation time and t2
allows to assess the online computational effort.

The computation of the optimal open-loop tra-
jectories for a given initial state was done by
solving numerically a two-point boundary value
problem. Finally, the reader should take heed that
the continuity assumption of the optimal control
could be proven for none of the problems.

4.1 Continuous stirred tank reactor

The first problem deals with the regulation of a
continuous stirred tank reactor (CSTR), for de-
tails on the model see (Chen et al., 1995). The
model is of fourth order with the state repre-
senting two concentrations and two temperatures.
Two control variables are available: the input flow
rate and the heat removed by the cooler. The
performance objective considered here is to keep
the product concentration as close to its optimal
value as possible, so the cost functional is chosen
to be quadratic J =

∫∞
0

(x̄T Qx̄ + ūT Rū) dt with
Q = diag{1, 100, 0, 0} and R = diag{0.01, 0.001}
and where x̄ and ū denote the deviation from
steady state of the state and the control, respec-
tively. The simulation results are summarized in
Table 1. It can be observed that the LQR con-

Table 1. Results for the CSTR example.

Method δ [%] t1 [sec] t2 [sec]

LQR 124.90 14 12.09

LUK - O(x2) 3.01 16 12.39

SDR - O(ε0) 4.56 66 12.83
SGA - 10 basis fct. 7.42 86 12.80

GRE - 64 int. points 1.62 163 20.67

IFS(1) - 62 param. 5.82 10800 13.47

IFS(2) - 34 param. 1.09 7778 13.57

IPS(1) - 8 param. 48.48 148 12.90

IPS(2) - 28 param. 1.13 1538 13.43

IPS(3) - 68 param. 0.36 6830 13.42

SOS - 10 param. 0.87 465 13.65

troller leads to poor performance, while already
a second order expansion of the control law gives
very satisfactory results. A disadvantage of the
LUK method is however that it does not present
a uniform convergence toward the optimal control,
the best approximation being given by the second
order in this case (see Fig. 1).

The SDR method was limited to the zero-order
controller, as higher orders were computationally
not tractable. Note that an ARE had to be solved,
as for the LQR method, but with a different
system matrix. The FRE method failed because
no state-dependent factorization could be found
that is well-defined everywhere in the domain of
interest of the state space. The SGA considers
only 10 basis functions since a bigger basis set
lead to ill-conditioned problems.

The Green’s function interpolation method (GRE)
is a very good compromise between off-line com-
putation time and achieved performance. The dif-
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Fig. 1. Non-uniform convergence of the LUK con-
trollers (δ: solid line ; t1: dashed line).

ferent controller structures used by the interpo-
lation method based on the suitability measure
are detailed in Table 2. It should be mentioned

Table 2. Controller structures, φ being
the resulting suitability measure.

Description φ

IFS(1) N1 = N2 = N3 = N4 = 1 in (3) 0.3278

IFS(2) N1 = N2 = 2 ; N3 = N4 = 0 in (3) 0.2310

IPS(1) First order polynomial 0.6726

IPS(2) Second order polynomial 0.1031

IPS(3) Third order polynomial 0.0675

SOS V (x) Second order polynomial 0.1330

that the IFS(2) is a partial state feedback, which
needs the measurement of the two concentrations
only. Some of these methods belong to the best
in terms of performance, but in view of large
computation times, only the SOS method seems
to be attractive. By comparing the results, it can
be seen that the suitability measure φ correlates
with the relative performance of the methods.

4.2 Satellite

The second application considers the regulation of
the altitude of a spacecraft. The plant is of sixth
order and has three inputs. Since the open-loop
system oscillates about the origin, the regulator
has to asymptotically stabilize the body toward
the origin while minimizing a given performance
index. Details about the modeling and the consid-
ered performance index can be found in (Lawton
and Beard, 1999). Table 3 collects the average
simulation results. Already the LQR solution gives

Table 3. Results for the satellite.

Method δ [%] t1 [sec] t2 [sec]

LQR 7.631 8.9 0.82
LUK - O(x3) 3.395 96.0 0.83

SDR - O(ε2) 24.914 91.0 1.03

FRE 8.127 1.3 657.00

SGA - 30 basis fct. 8.617 1602.0 0.93

GRE - 320 int. points 3.131 494.0 3.29

IPS - 249 param. 3.348 6039.0 0.81

SOS - 21 param. 6.221 1369.0 0.87

good results. The best feasible approximation re-
sulting from the LUK technique, given by the
third order in this case, improves the LQR only
slightly. The SDR methods is the worst for this ex-
ample. The SGA method uses the basis functions
proposed in (Lawton and Beard, 1999). In view of
the required computational time, its performance
is not satisfactory. The FRE method gives a simi-
lar result with a much lower off-line computational
effort. The online computational effort however is
considerable and might be prohibitive for some
applications. All interpolation techniques except
the IFS lead to good or very good results, but
taking the computational effort into account, the
GRE method has a clear advantage. For the IFS
method, no controller was found that stabilizes
the closed loop for all considered initial conditions.

4.3 Underwater robot

This last application considers the station-keeping
of an underwater robotic vehicle in the horizon-
tal plane. The vehicle dynamics are derived in
(McLain and Beard, 1998). The model has six
states and three control variables. The chosen
performance index is quadratic with the follow-
ing diagonal weighting matrices : Q = 5000 ·
diag{1, 1, 0, 1, 1, 1} and R = diag{1, 1, 1}. All sim-
ulation results are given on Table 4. Since the

Table 4. Results for the robot example.

Method δ [%] t1 [sec] t2 [sec]

LQR 14.66 1.3 2.75

SGA - 7 basis fct. 32.06 36.2 2.02

FRE 22.30 0.4 2042.00

GRE - 384 int. points 1.91 249.5 14.60

IPS - 249 param. 8.52 11130.0 1.58

plant function is only once continuously differ-
entiable at the origin, the LUK and SDR are
restricted to the first order of approximation, i.e
to the LQR controller. The SGA uses the basis
set proposed in (McLain and Beard, 1998). The
IFS was again not able to compute a satisfying
controller within a reasonable computation time.
The IPS was computed until the third order. Ex-
emplary state trajectories are depicted in Fig. 2.
It can be seen that higher order controllers assure
a better damping. This system is still a chal-
lenge for control engineers. In fact, only the GRE
synthesizes a very effective controller, but with
a complex structure, as indicates the amount of
online computational time t2.

5. CONCLUSION

Different approaches towards the synthesis of ap-
proximate optimal control laws were investigated
in this work. The examples show that none of
them is an ideal one. The local LQR controller
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Fig. 2. Exemplary state trajectories of the under-
water robot, with a IPS-based controller.

sometimes gives very good results, but sometimes
also fails. The same is true for higher order local
approximations (LUK), although they can be able
to improve the LQR results significantly. The ex-
plicit state-dependent Riccati method (SDR) and
the successive Galerkin method (SGA) rendered
rather unsatisfactory results for the considered ex-
amples. Just those methods, for which only little
theoretical results are available, turn out to be
useful in practice. This is true for the interpolation
and the frozen Riccati equation (FRE) approach.
The GRE technique requires the computation of
many open-loop trajectories and results in a com-
plex control law, but a close approximation of the
optimal control is obtained. For each example sys-
tem there is at least one of the interpolation meth-
ods based on the suitability measure that achieves
very good performance. Furthermore, these meth-
ods are easily implementable, give a measure of
the quality of the approximation and can synthe-
size partial state feedback as well as static out-
put feedback. However, the extensive computation
time prevents these methods from being the first
choice. The FRE approach requires many online
computations and can be far from optimality, but
it is very practical in applications. Of all methods
in the test it was the one with the highest online
and the lowest off-line computational burden. So
examples two and three of this study favor the
”MPC-way of thinking”, where one also tries to
reduce off-line computational cost and memory
requirements for data storage at the cost of more
involved online computations.
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