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Abstract

We study the problem of finding a local minimum of a multilinear function E over the discrete set {0, 1}n.
The search is achieved by a gradient-like system in [0, 1]n with cost function E. Under mild restrictions on
the metric, the stable attractors of the gradient-like system are shown to produce solutions of the problem,
even when they are not in the vicinity of the discrete set {0, 1}n. Moreover, the gradient-like system
connects with interior point methods for linear programming and with the analog neural network studied by
Vidyasagar [Vid95] in the same context.
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1 Introduction

Several problems, such as the Maximum Likelihood Decoding problem [BB89], or finding a k-dominating
set in a graph [HPV99], can be formulated as the local minimization of a multilinear function E over the
discrete set {0, 1}n. A multilinear function is a polynomial in which the variables appear with power 0 or 1.
It has the characteristic property of being affine in each variable when the other variables are fixed; the term
“multilinear” is thus an abuse of language and some authors prefer “multiaffine”. The local minimization
problem considered here can be formalized as follows.

Problem 1 Let E : [0, 1]n → R be multilinear, i.e.

E(x) =

m
∑

i=1

wi

∏

j∈Si

xj (1)

where wi ∈ R and Si are subsets of {1, . . . , n}, i = 1, . . . ,m. Let

Ê = E|{0,1}n (2)
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be the restriction of E on {0, 1}n. The problem is to find a local minimum of Ê, i.e. a point v∗ ∈ {0, 1}n

such that Ê(v∗) ≤ Ê(v) for all v ∈ N(v∗) where

N(v∗) = {v ∈ {0, 1}n : ‖v − v∗‖ = 1}

is the set of all neareast neighbours of v∗ in {0, 1}n (with respect to the Hamming distance).

This problem is equivalent to finding a local minimum of a pseudo-boolean function [HR68] or finding a
local solution of the unconstrained 0-1 nonlinear programming problem [BM84]. It can be solved by local
search algorithms [SY91] which search among adjacent corners of the hypercube [0, 1]n whether the cost can
be decreased until it reaches a local minimum (see e.g. Hopfield’s two-state neural network [Hop82]). Such
algorithms can however be very inefficient: in the worst case, they visit all the set {0, 1}n before convergence
occurs.

In the spirit of interior-point methods, one way to speed up the process is to relax the problem and
consider algorithms evolving in the solid hypercube [0, 1]n. In the neural networks community this idea led
to analog neural networks such as Hopfield’s [Hop84]. In [Vid95] Vidyasagar studies the possibility of solving
Problem 1 by means of a generalization of Hopfield’s neural network described by the differential equations

u̇i = −
ui

αi
−

∂E

∂xi
(x) + bi, xi = g(λui), i = 1, . . . , n, (3)

where g is a sigmoidal nonlinearity satisfying some mild assumptions. Stated in an informal way, the main
result in [Vid95] is that “for almost all sufficiently small bias vector b, for all sufficiently large sigmoidal
gains λ, solution trajectories of (3) starting from almost all initial conditions converge to a corner of the
hypercube [0, 1]n. Moreover, each such corner is a local minimum of the [multilinear] objective function E
over the discrete set {0, 1}n”. Vidyasagar suggests in practice to use a “small” bias vector b and a “large”
sigmoidal gain.

In the present paper, the minimization of Ê (Problem 1) is realized by means of the gradient-like system

ẋi = −h(xi)
∂E

∂xi
(x), (4)

which, for a suitable choice of h, can be viewed as (3) in the limit b = 0 and α = +∞. The function h,
which we term the temporizing function, is assumed throughout to verify the following assumption.

Assumption 1 The function h : [0, 1] → R is C1 on [0, 1], strictly positive on (0, 1) and satisfies h(0) =
h(1) = 0.

The purpose of the function h is to confine the solutions of (4) in the closed hypercube [0, 1]n. An interest of
system (4) is that it encompasses several classical interior point methods of mathematical programming. For
instance, as explained in [Vid95], an approach proposed by Faybusovich in [Fay91] yields h(x) = 2x(1 − x),
and the affine-scaling vector field [BL89, section VIII] yields h(x) = x2(1 − x)2/(x2 + (1 − x)2).

As shown in Section 2, the stable equilibria of (4) are local minima of the function E. A difficulty
however is that stable points of (4) need not belong to {0, 1}n and are therefore not necessarily solutions
of Problem 1. The main result of the paper, established in Section 3, is that under an extra assumption
on the temporization function, at least one solution of Problem 1 is directly deduced from any (Lyapunov)
stable point of (4). This result provides an alternative to the use of a bias vector as in (3). Its practical
implications are illustrated with some simulations in Section 4.

2 Gradient-like systems in the hypercube

In this section, we introduce some definitions, state basic convergence properties of the system (4), and study
the relationship between the solutions of the discrete minimization problem (minima of Ê) and those of the
relaxed continuous problem (minima of E).

The set [0, 1]n will be termed the (closed) hypercube, and the elements of {0, 1}n its corners. We will use
the notation ∂E

∂x
(x) = ( ∂E

∂x1
(x), . . . , ∂E

∂xn
(x))T .
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Definition 2 Let I be a proper subset of {1, . . . , n} and let v0 ∈ {0, 1}n. The open face attached to the
corner v0 with constraint set I is the set {x ∈ [0, 1]n : xi = (v0)i if i ∈ I, xi ∈ (0, 1) if i /∈ I}.

The hypercube [0, 1]n is the disjoint union of the corner set {0, 1}n and all the open faces. For example, the
three-dimensional cube [0, 1]3 is the disjoint union of the corners {0, 1}3, the edges (|I| = 2), the “classical”
faces (|I| = 1) and the interior of the cube (I = ∅).

Definition 3 A point x∗ ∈ [0, 1]n is a local minimum of E if

∃ǫ > 0 : ∀x ∈ Bǫ,x∗ ∩ [0, 1]n : E(x∗) ≤ E(x)

where Bǫ,x∗ = {x ∈ R
n : ‖x − x∗‖ < ǫ}.

Consider the differential equation

ẋi = −h(xi)
∂E

∂xi
(x) (5)

in [0, 1]n, where the cost function E is the multilinear function (1), and h verifies Assumption 1. The solution
x(t) of (5) for any initial condition in [0, 1]n exists and is unique for all t, and each open face is invariant.

The solution of (5) generates a descent flow for the function E because

Ė(x) :=

n
∑

i=1

ẋi
∂E

∂xi
(x) = −

n
∑

i=1

h(xi)

(

∂E

∂xi
(x)

)2

≤ 0.

Moreover, Ė(x) = 0 if and only if x is an equilibrium point (ẋ = 0) of (5). Let F be an open face with
constraint set I (Definition 2). A point x∗ ∈ F is an equilibrium if and only if ∂E

∂xi
(x∗) = 0 for all i /∈ I,

i.e. ∂E
∂x

is orthogonal to the face F . By an application of LaSalle’s invariance principle (see e.g. [Kha96]),

since the solutions of (5) are confined to the closed hypercube and since Ė ≤ 0, each solution converges to
a connected component of the set of equilibrium points.

The next proposition shows that the stable points of (5) are local minima of the function E (in the sense
of Definition 3). We first need the following lemma.

Lemma 4 Let y verify Ė(y) = 0 and let S = {x ∈ [0, 1]n : Ė(x) = 0, E(x) 6= E(y)}. Then dist(S,y) > 0.

Proof. Let F be an open face (Definition 2) such that y belongs to the closure of F , and let I be the
constraint set of F . Let J = {1, . . . , n} \ I. Define

SF = S ∩ F

= {x ∈ F :
∂E

∂xJ
(x) = 0 and E(x) 6= E(y)},

where ∂E
∂xJ

=
(

∂E
∂xi

)

i∈J
. If ∂E

∂xJ
(y) 6= 0, then dist(SF ,y) > 0 by continuity of ∂E

∂xJ
. If ∂E

∂xJ
(y) = 0, then by

 Lojaciewicz’s inequality [Loj65, KMP00] applied to E|F , there exists a neighbourhood U of y such that, for

all x ∈ U ∩ F , one has
∣

∣

∣

∂E
∂xJ

(x)
∣

∣

∣
≥ c|E(x) − E(y)|ρ for some ρ < 1 and c > 0. Therefore U ∩ SF is empty

whence dist(SF ,y) > 0. Since the open faces partition [0, 1]n it comes dist(S,y) > 0. �

Proposition 5 Let x∗ ∈ [0, 1]n be a stable equilibrium of (5). Then x∗ is a local minimum of E.

Proof. Let y ∈ [0, 1]n be an equilibrium point of (5) and suppose that y is not a local minimum of E. We
prove that y is not a stable equilibrium point of (5). Suppose w.l.o.g. that E(y) = 0. Let S = {x ∈ [0, 1]n :
Ė(x) = 0, E(x) 6= 0} and let r = 1

2dist(y,S). By Lemma 4, r > 0. Let U = {x ∈ B̄r,y ∩ [0, 1]n : E(x) < 0}
where B̄r,y = {x ∈ R

n : ‖x−y‖ ≤ r}. Since y is not a local minimum of E, there exists some x0 arbitrarily

close to y such that x0 ∈ U . Moreover, r has been chosen such that Ė < 0 on U . The rest of the proof
follows Chetaev’s argument [Kha96, p. 112]. Let x(t) be the trajectory of (5) starting at x(0) = x0. One
has E(x0) < 0, µ := max{Ė(x) : x ∈ U and E(x) ≤ E(x0)} < 0 as the maximum of a strictly negative
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function on a compact set, and E(x(t)) ≤ E(x0) + µt as long as x(t) remains in U . Therefore x(t) must
eventually leave U through the boundary of the ball B̄r,y. This means that y is not a stable equilibrium
point of (5). �

By Proposition 5, stable equilibria of (5) identify local minima of E. However, they do not necessarily
correspond to local minima of Ê, i.e. solutions of the discrete optimization problem. The next proposition
nevertheless identifies important properties of the local minima of E. These properties follow from the
multilinearity of E.

Proposition 6 Let w be a local minimum of E.
a) If w ∈ {0, 1}n, then w is a local minimum of Ê.
b) If w belongs to an open face F , then E is constant on F . This also holds true under the weaker condition
that w is a local minimum of E|F .
c) w is a strict local minimum of E if and only if w is a strict local minimum of Ê.

Proof. a) It is a direct consequence of the multilinear nature of E.
b) Let w ∈ (0, 1)n. We use the shorthand notations x≤p = x1, . . . , xp and x≥p = xp, . . . , xn. For

p = 1, . . . , n, let Ep : [0, 1]p → R : x≤p 7→ E(x≤p, w≥p+1). Since Ep is multilinear, it admits the following
development

Ep(x≤p) = E(w) +
∂E

∂x1
(w≥1)(x1 − w1) + . . . +

∂E

∂xp
(x≤p−1, w≥p)(xp − wp). (6)

Suppose ∂E
∂xi

(x≤i−1, w≥i) ≡ 0, i = 1, . . . , p, which trivially holds true for p = 1. We will show that
∂E

∂xp+1
(x≤p, w≥p+1) ≡ 0, and the fact that En (i.e. E) is identically equal to the constant E(w) will fol-

low by induction. One has Ep+1(x≤p+1) = E(w) + ∂E
∂xp+1

(x≤p, w≥p+1)(xp+1 − wp+1). Since (w≤p+1) is a

local minimum of Ep+1, ∂E
∂xp+1

(x≤p, w≥p+1) must vanish on a neighbourhood of (x≤p) = (w≤p), whence

it vanishes for every (x≤p). The general case where w is a local minimum of E|F follows from the same
argument applied to the multilinear function E|F .

c) (⇒) If w is a strict local minimum of E, then it is a corner, because if it were on a face then E would
be constant on that face and w would not be a strict local minimum of E. Moreover, w must be a strict
local minimum of Ê because of the affine properties of E.
(⇐) Let w be a strict local minimum of Ê. Without loss of generality, let w = (0, . . . , 0). Then for all
i, ∂E

∂xi
(w) > 0. By continuity of the partial derivatives of E, there exists ǫ > 0 such that ∂E

∂xi
(y) > 0 for

all i and for all y ∈ Bǫ,w. Therefore, for all x in [0, 1]n ∩ Bǫ,w \ {w}, each term ∂E
∂xi

(x≤i−1, w≥i)(xi − wi)
in the development (6) of E (i.e. En) is nonnegative, one of them at least being strictly positive, and thus
E(x) > E(w). This means that w is a strict local minimum of E. �

As a consequence of the Proposition 6, the next result shows that asymptotically stable equilibria of (5)
identify strict local minima of Ê (and of E).

Proposition 7 A point x∗ in [0, 1]n is asymptotically stable for (5) if and only if it is a strict local minimum
of Ê.

Proof. (⇒) Let x∗ ∈ [0, 1]n be asymptotically stable for (5). Then x∗ is a local minimum of E, otherwise it
is unstable (Proposition 5). Suppose x∗ /∈ {0, 1}n. Then x∗ belongs to an open face F , and E is constant
on F (Lemma 6), whence each point of F is an equilibrium point and x∗ is not asymptotically stable. Now
suppose that x∗ belongs to {0, 1}n and is not a strict local minimum of Ê. W.l.o.g, let x∗ = 0. Then
there exists a canonical vector ei such that E(x∗ + ei) ≤ E(x∗). For λ arbitrarily small, the solution x(t)
of (5) with x(0) = x∗ + λei does not converge to x∗, which means that x∗ is not an asymptotically stable
equilibrium point.

(⇐) Let x∗ ∈ {0, 1}n be a strict local minimum of Ê and suppose w.l.o.g. that x∗ = 0. Then x∗ is
also a strict local minimum of E (Proposition 6). Moreover, for i = 1, . . . , n, ∂E

∂xi
(x∗) 6= 0, and therefore by

continuity of the derivatives there is an ǫ > 0 such that Ė < 0 in Bǫ,x∗ \{x∗}. One concludes by Lyapunov’s
stability theorem [Kha96, p. 100]. �
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3 Main result

The analysis of Section 2 has shown that the descent flow (5) may possess stable equilibria on an open face
of the hypercube. As a consequence, solutions of (5) may converge to an open face of stable equilibria rather
than to a corner. This situation is a potential failure of the descent flow to identify local minima of the
discrete optimization problem. We will now show that convergence to a face of stable equilibria rather than
to a corner still allows to identify local minima of the discrete optimization problem, provided some further
restrictions are imposed on the temporizing function.

Assumption 2

h(1 − x) = h(x) = xγ(1 + β(x)) (7)

where lim
x→0

β(x) = 0. Since h is C1 on [0, 1]n, one has γ ≥ 1. The temporization is termed linear when

γ = 1, quadratic when γ = 2.

Assumption 2 controls the slope of h near the boundary of the interval [0, 1]. The functions h(x) = 2x(1−x)
and h(x) = x2(1 − x)2/(x2 + (1 − x)2) cited in the introduction are examples of linear and quadratic
temporizations, respectively. The following proposition shows that, provided the temporizing function h
is at least quadratic, if an open face F contains a stable equilibrium of (5), then all the corners of F are
solutions of Problem 1.

Proposition 8 Under Assumption 2 with γ ≥ 2, if an open face F contains a stable equilibrium point x∗

of the system (5), then the corners of F are all local minima of Ê.

Proof. Consider a face F0 containing a stable equilibrium point x∗ for (5). Suppose w.l.o.g. that F0 = {x ∈
(0, 1)n : xm+1 = . . . = xn = 0}. Since x∗ is stable, it is a local minimum of E (Proposition 5) and E is
constant on F0 (Proposition 6). Suppose w.l.o.g. that E = 0 on F0.

The rest of the proof goes by contradiction. Suppose one of the corners of F0 is not a local minimum of
Ê. We can consider, w.l.o.g., that E(em+1) = a < 0. Denote by F1 the face parallel to F0 that contains
em+1, that is F1 = {x ∈ (0, 1)n : xm+1 = 1, xm+2 = . . . = xn = 0}.

Either E is constant on F1. Then for all y ∈ [0, 1], E(x∗ + yem+1) = E(x∗) + yE(x∗ + 1em+1) = ya
with a < 0. Hence x∗ is not a local minimum of E, which is a contradiction.

Or, E is not constant on F1. Then the contradiction comes by showing that x∗ is not an stable equilibrium
point, and the proof will be complete.

Let us restrict to the (m + 1)-dimensional face F = {x : xm+2 = . . . = xn = 0} that contains both F0

and F1 in its closure. As a face, F is invariant for the gradient-like system (5). Denote z = (x1, . . . , xm),
y = xm+1 and h(z) = diag(h(x1), . . . , h(xm)). The system (5), restricted to F , reads

ż = −h(z)
∂E

∂z
(z, y) = yF (z) (8a)

ẏ = −h(y)
∂E

∂y
(z, y) = h(y)k(z), (8b)

In (8a), ∂E
∂z

(z, y) = y ∂E
∂z

(z, 1) because ∂E
∂z

is multilinear and vanishes on F0, whence F (z) = −h(z) ∂E
∂z

(z, 1).

In (8b), k(z) = −∂E
∂y (z, y) does not depend on y because E is multilinear.

We now introduce quantities ǫ, δη, ǫ′ and K that will be useful shortly. Restricted to the invariant face
F1, the system (8) reads ż = F (z) and y = 1. Since E is not constant on F1, (x∗ + em+1) is not a local
minimum of E|F1

(Proposition 6). So it is not a stable equilibrium point (Proposition 5). That is, there
exists an ǫ > 0 such that, for all η > 0, there exists δη with ‖δη‖ < η and a corresponding t̂ > 0 such that the
solution z(t) of ż = F (z) with initial condition z∗+δη is outside the ball Bǫ,z∗ = {z ∈ (0, 1)m : ‖z−z∗‖ < ǫ}

at t = t̂. Since h(y) ≃ yγ (Assumption 2) and k(z) is continuous on [0, 1]m thus bounded, there exist positive
constants ǫ′ and K such that, for all 0 < y < ǫ′ and for all z ∈ [0, 1]m, h(y)k(z) > −Kyγ .

Let η > 0 and let (z(t), y(t)) be the solution of (8) with initial conditions 0 < y(0) < ǫ′ and z(0) = z∗+δη.
We now show that either y(t) is greater than ǫ′ at some t or z(t) is outside Bǫ,z∗ at some t. This will complete
the proof of instability of x∗. So we suppose that y(t) verifies 0 < y(t) < ǫ′ for all t and show that z(t) leaves
Bǫ,z∗ . Consider the new time variable τ = τ(t) with dτ = y(t)dt. Then (8a) becomes dz/dτ = F (z). By the
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argument above, z(τ) leaves Bǫ,z∗ in finite τ = τ̂ . It remains to show that t̂ := τ−1(τ̂) < ∞. Let γ > 1. The
comparison principle [Kha96, p. 84] applied to (8b) with respect to the above inequality h(y)k(z) > −Kyγ

yields y(t) >
(

y(0)1−γ + (γ − 1)Kt
)−1/(γ−1)

. Therefore, if γ ≥ 2, then y(t) /∈ L1. Since y(t) /∈ L1, the

relation t 7→ τ(t) =
∫ t

0
y(s)ds has a well-defined inverse τ−1 on [0,∞), whence the time t̂ at which z(t) leaves

the ball Bǫ,z∗ is finite. �

Thanks to the result of Proposition 8, each stable equilibrium of (5) produces solutions of Problem 1.
This result is summarized in the following theorem.

Theorem 9 Consider system (5) restricted to [0, 1]n where the multilinear function E is given by (1) and the
temporizing function h : [0, 1] → [0,∞) verifies Assumption 1. Let Ê = E|{0,1}n . Then each solution of (5)
converges to a connected set of equilibrium points. If (and only if) an equilibrium point is asymptotically
stable, it is a strict local minimum of Ê. If an equilibrium point is stable, then it is a local minimum of Ê,
or it belongs to an open face (Definition 2) each corner of which is a local minimum of Ê, provided that
Assumption 2 holds with γ ≥ 2.

A stronger conclusion would be that each solution of (5) converges to a single equilibrium point. This
behaviour is indeed observed in practice (see Section 4).  Lojasiewicz’s theorem [Loj84, KMP00] implies
that if x∗ ∈ (0, 1)n belongs to the ω-limit set of a trajectory of (5), then the trajectory converges to x∗.
However,  Lojasiewicz’s argument does not apply when x∗ belongs to the boundary of [0, 1]n because the
metric represented by h is degenerate.

4 Numerical simulations

Figure 1 (left) compares the behaviours of linear and quadratic temporizations in a case where there is no
local minimum of E on open faces. Here n = 2 and the initial point is chosen at the center of the cube. The
simulations suggest that quadratic temporization is more efficient for keeping the solution of (5) away from
the faces.

The simulations on Figure 1 (right) have been carried out using the Large Step-size Method (see [Vid95,
p. 1372]). In this method, starting from the initial condition, one identifies the search direction, takes a large
step leading as far as the boundary of [0, 1]n and then comes 5% back. This gives a new interior point from
which the procedure is repeated. Convergence is seen to be faster with quadratic temporization, because
stronger temporization improves the parallelism between the nearby face and the direction of the large step.

The next simulations deal with cases where E admits a local minimum on an open face. This situation
is frequent when the expression (1) of E contains few terms.

Figure 2 shows a situation where local minima of E lie on an open face. The points on the right half of the
lower edge are local minima of E, and one of the adjacent corners of this edge is not a local minimum of Ê.
With linear temporization, these local minima of E are stable. But with quadratic (or higher) temporization,
they are unstable in accordance with Proposition 8.

Figure 3 illustrates a case where a stable point of (5) belongs to an open face and the temporization is
quadratic. Since the solution did not converge to a corner, in the spirit of the approach in [Vid95] one would
restart the simulation with a “sufficiently small” bias vector. As shown on Figure 4 this destroys the stability
of the former limit point and picks out a local minimum in a corner. However, the choice of an adequate
bias is not an easy matter: if the bias is very small then the sliding motion along the face is very slow (see
Figure 4) but if the bias is not small enough then spurious solutions may appear. In contrast, Proposition 8
certifies that the adjacent corners of the face containing the stable point are local minima of Ê, i.e. solutions
of Problem 1. The bias is thus superfluous.

5 Conclusion

We addressed the issue of finding a local minimum over {0, 1}n of a multilinear function E. The minimization
is achieved by means of gradient-like systems defined on the hypercube [0, 1]n. We showed that for a general
class of gradient-like systems, each stable equilibrium point provides a solution of the minimization problem,
even if this equilibrium point does not belong to {0, 1}n.
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Figure 1: Left: numerical simulation of the trajectory of the gradient-like system (5) with linear (x) and
quadratic (o) temporizations. The values at the corners define the function Ê and hence the multilinear
function E. Right: gradient-like system (5) with linear (x) and quadratic (o) temporizations, solved using
Large Step-size Method.
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Figure 2: Local minima on an open face, a corner of which is not a local minimum. Left: a trajectory of
the gradient-like system (5) with linear temporization (γ = 1). Right: the same trajectory with quadratic
temporization can no longer converge to the face.
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Figure 3: Numerical simulation of the trajectory of the gradient-like system (5) with quadratic temporization
(γ = 2).
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Figure 4: Same as Figure 3 with a small bias vector.
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