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Abstract. We give simple formulas for the canonical metric, gradient, Lie
derivative, Riemannian connection, parallel translation, geodesics and distance
on the Grassmann manifold of p-planes in Rn. In these formulas, p-planes are
represented as the column space of n × p matrices. The Newton method on
abstract Riemannian manifolds proposed by S. T. Smith is made explicit on
the Grassmann manifold. Two applications –computing an invariant subspace
of a matrix and the mean of subspaces– are worked out.
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1 Introduction

The majority of available numerical techniques for optimization and nonlinear equations as-
sume an underlying Euclidean space. Yet many computational problems are posed on non-
Euclidean spaces. Several authors [Gab82, Smi94, Udr94, Mah96, MM02] have proposed
abstract algorithms that exploit the underlying geometry (e.g. symmetric, homogeneous, Rie-
mannian) of manifolds on which problems are cast, but the conversion of these abstract
geometric algorithms into numerical procedures in practical situations is often a nontrivial
task that critically relies on an adequate representation of the manifold.

The present paper contributes to addressing this issue in the case where the relevant
non-Euclidean space is the set of fixed dimensional subspaces of a given Euclidean space.
This non-Euclidean space is commonly called the Grassmann manifold. Our motivation for
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considering the Grassmann manifold comes from the number of applications that can be
formulated as finding zeros of fields defined on the Grassmann manifold. Examples include
invariant subspace computation and subspace tracking; see e.g. [Dem87, CG90] and references
therein.

A simple and robust manner of representing a subspace in computer memory is in the form
of a matrix array of double precision data whose columns span the subspace. Using this repre-
sentation technique, we produce formulas for fundamental Riemannian-geometric objects on
the Grassmann manifold endowed with its canonical metric: gradient, Riemannian connec-
tion, parallel translation, geodesics and distance. The formulas for the Riemannian connection
and geodesics directly yield a matrix expression for a Newton method on Grassmann, and
we illustrate the applicability of this Newton method on two computational problems cast on
the Grassmann manifold.

The classical Newton method for computing a zero of a function F : Rn → Rn can be
formulated as follows [DS83, Lue69]: Solve the Newton equation

DF (x)[η] = −F (x) (1)

for the unknown η ∈ Rn and compute the update

x+ := x + η. (2)

When F is defined on a non-Euclidean manifold, a possible approach is to choose local co-
ordinates and use the Newton method as in (1)-(2). However, the successive iterates on
the manifold will depend on the chosen coordinate system. Smith [Smi93, Smi94] proposes
a coordinate-independent Newton method for computing a zero of a C∞ one-form µ on an
abstract complete Riemannian manifold M . He suggests to solve the Newton equation

∇ηµ = −µx (3)

for the unknown η ∈ TxM , where ∇ denotes the Riemannian connection (also called Levi-
Civita connection) on M , and update along the geodesic as x+ := Expxη. It can be proven
that if x is chosen suitably close to a point x̂ in M such that µx̂ = 0 and Tx̂M 3 η 7→ ∇ηµ is
nondegenerate, then the algorithm converges quadratically to x̂. We will refer to this iteration
as the Riemann-Newton method.

In practical cases it may not be obvious to particularize the Riemann-Newton method into
a concrete algorithm. Given a Riemannian manifold M and an initial point x on M , one may
pick a coordinate system containing x, compute the metric tensor in these coordinates, deduce
the Christoffel symbols and obtain a tensorial equation for (3), but this procedure is often
exceedingly complicated and computationally inefficient. One can also recognize that the
Riemann-Newton method is equivalent to the classical Newton method in normal coordinates
at x [MM02], but obtaining a tractable expression for these coordinates is often elusive.

On the Grassmann manifold, a formula for the Riemannian connection was given by
Machado and Salavessa in [MS85]. They identify the Grassmann manifold with the set of
projectors into subspaces of Rn, embed the set of projectors in the set of linear maps fromRn to
Rn (which is an Euclidean space), and endow this set with the Hilbert-Schmidt inner product.
The induced metric on the Grassmann manifold is then the essentially unique On-invariant
metric mentioned above. The embedding of the Grassmann manifold in an Euclidean space
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allows the authors to compute the Riemannian connection by taking the derivative in the
Euclidean space and projecting the result into the tangent space of the embedded manifold.
They obtain a formula for the Riemannian connection in terms of projectors.

Edelman, Arias and Smith [EAS98] have proposed an expression of the Riemann-Newton
method on the Grassmann manifold in the particular case where µ is the differential df of a
real function f on M . Their approach avoids the derivation of a formula for the Riemannian
connection on Grassmann. Instead, they obtain a formula for the Hessian (∇∆1df)∆2 by
polarizing the second derivative of f along the geodesics.

In the present paper, we derive an easy-to-use formula for the Riemannian connection ∇ηξ
where η and ξ are arbitrary smooth vector fields on the Grassmann manifold of p-dimensional
subspaces of Rn. This formula, expressed in terms of n× p matrices, intuitively relates to the
geometry of the Grassmann manifold expressed as a set of equivalence classes of n×p matrices.
Once the formula for Riemannian connection is available, expressions for parallel transport
and geodesics directly follow. Expressing the Riemann-Newton method on the Grassmann
manifold for concrete vector fields ξ reduces to a directional derivative in Rn followed by a
projection.

We work out an example where the zeros of ξ are the p-dimensional right invariant sub-
spaces of an arbitrary n×n matrix A. This generalizes an application considered in [EAS98]
where ξ was the gradient of a generalized scalar Rayleigh quotient of a matrix A = AT . The
Newton method for our ξ converges locally quadratically to the nondegenerate zeros of ξ. We
show that the rate of convergence is cubic if and only if the targeted zero of ξ is also a left
invariant subspace of A. In a second example, the zero of ξ is the mean of a collection of
p-dimensional subspaces of Rn. We illustrate on a numerical experiment the fast convergence
of the Newton algorithm to the mean subspace.

The present paper only requires from the reader an elementary background in Riemannian
geometry (tangent vectors, gradient, parallel transport, geodesics, distance), which can be
read e.g. from Boothby [Boo75], do Carmo [dC92] or the introductory chapter of [Cha93]. The
relevant definitions are summarily recalled in the text. Concepts of reductive homogeneous
space and symmetric spaces (see [Boo75, Nom54, KN63, Hel78] and particularly sections II.4,
IV.3, IV.A and X.2 in the latter) are not needed, but they can help to get insight into the
problem. Although some elementary concepts of principal fiber bundle theory [KN63] are
used, no specific background is needed.

The paper is organized as follows. In Section 2, the linear subspaces of Rn are identified
with equivalent classes of matrices and the manifold structure of Grassmann is defined. Sec-
tion 3 defines a Riemannian structure on Grassmann. Formulas are given for Lie brackets,
Riemannian connection, parallel transport, geodesics and distance between subspaces. The
Grassmann-Newton algorithm is made explicit in Section 4 and practical applications are
worked out in details in Section 5.

2 The Grassmann manifold

The goal of this section is to recall relevant facts about the Grassmann manifolds. More
details can be read from [Won67, Boo75, DM90, HM94, FGP94].

Let n be a positive integer and let p be a positive integer not greater than n. The set of
p-dimensional linear subspaces of Rn (“linear” will be omitted in the sequel) is termed the
Grassmann manifold, denoted here by Grass(p, n).
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An element Y of Grass(p, n), i.e. a p-dimensional subspace of Rn, can be specified by a
basis, i.e. a set of p vectors y1, . . . , yp such that Y is the set of all their linear combinations.
When the y’s are ordered as the columns of an n-by-p matrix Y , then Y is said to span
Y and Y is said to be the column space (or range, or image, or span) of Y , and we write
Y = span(Y ). The span of an n-by-p matrix Y is an element of Grass(p, n) if and only if Y
has full rank. The set of such matrices is termed the noncompact Stiefel manifold1

ST(p, n) := {Y ∈ Rn×p : rank(Y ) = p}.

Given Y ∈ Grass(p, n), the choice of a Y in ST(p, n) such that Y spans Y is not unique.
There are infinitely many possibilities. Given a matrix Y in ST(p, n), the set of the matrices
in ST(p, n) that have the same span as Y is

Y GLp := {Y M : M ∈ GLp} (4)

where GLp denotes the set of the p-by-p invertible matrices. This identifies Grass(p, n) with
the quotient space ST(p, n)/GLp := {Y GLp : Y ∈ ST(p, n)}. In fiber bundle theory, the
quadruple (GLp, ST(p, n), π,Grass(p, n)) is called a principal GLp fiber bundle, with total
space ST(p, n), base space Grass(p, n) = ST(p, n)/GLp, group action

ST(p, n)×GLp 3 (Y,M) 7→ Y M ∈ ST(p, n)

and projection map
π : ST(p, n) 3 Y 7→ span(Y ) ∈ Grass(p, n).

See e.g. [KN63] for the general theory of principal fiber bundles and [FGP94] for a detailed
treatment of the Grassmann case. In this paper, we use the notation span(Y ) and π(Y ) to
denote the column space of Y .

To each subspace Y corresponds an equivalence class (4) of n-by-p matrices that span Y,
and each equivalence class contains infinitely many elements. It is however possible to locally
single out a unique matrix in (almost) each equivalence class, by means of cross sections.
Here we will consider affine cross sections, which are defined as follows (see illustration on
Figure 1). Let W ∈ ST(p, n). The matrix W defines an affine cross section

SW := {Y ∈ ST(p, n) : W T (Y −W ) = 0} (5)

orthogonal to the fiber W GLp. Let Y ∈ ST(p, n). If W T Y is invertible, then the equivalence
class Y GLp (i.e. the set of matrices with the same span as Y ) intersects the cross section SW

at the single point Y (W T Y )−1W T W . If W T Y is not invertible, which means that the span
of W contains an orthogonal direction to the span of Y , then the intersection between the
fiber W GLp and the section SW is empty. Let

UW := {span(Y ) : W T Y is invertible} (6)

be the set of subspaces whose representing fiber Y GLp intersects the section SW . The map-
ping

σW : UW 3 span(Y ) 7→ Y (W T Y )−1W T W ∈ SW , (7)
1The (compact) Stiefel manifold is the set of orthonormal n× p matrices.
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Figure 1: This is an illustration of Grass(p, n) as the quotient ST(p, n)/GLp for the case p = 1,
n = 2. Each point, the origin excepted, is an element of ST(p, n) = R2−{0}. Each line is an
equivalence class of elements of ST(p, n) that have the same span. So each line corresponds to
an element of Grass(p, n). The affine subspace SW is an affine cross section as defined in (5).
The relation (10) satisfied by the horizontal lift ξ¦ of a tangent vector ξ ∈ TWGrass(p, n) is
also illustrated. This picture can help to get insight into the general case. One has nonetheless
to be careful when drawing conclusions from this picture. For example, in general there does
not exist a submanifold of Rn×p that is orthogonal to the fibers Y GLp at each point, although
it is obviously the case when p = 1 (any centered sphere in Rn will do).

which we will call cross section mapping, realizes a bijection between the subset UW of
Grass(p, n) and the affine subspace SW of ST(p, n). The classical manifold structure of
Grass(p, n) is the one that, for all W ∈ ST(p, n), makes σW a diffeomorphism between UW

and SW (embedded in the Euclidean space Rn×p) [FGP94]. Parameterizations of Grass(p, n)
are then given by

R(n−p)×p 3 K 7→ π(W + W⊥K) = span(W + W⊥K) ∈ UW ,

where W⊥ is any element of ST(n− p, n) such that W T W⊥ = 0.

3 Riemannian structure on Grass(p, n) = ST(p, n)/GLp

The goal of this section is to define a Riemannian metric on Grass(p, n) and then derive formu-
las for the associated gradient, connection and geodesics. For an introduction to Riemannian
geometry, see e.g. [Boo75], [dC92] or the introductory chapter of [Cha93].

Tangent vectors

A tangent vector ξ of Grass(p, n) at W can be thought of as an elementary variation of the p-
dimensional subspace W (see [Boo75, dC92] for a more formal definition of a tangent vector).
Here we give a way to represent ξ by a matrix. The principle is to decompose variations of a
basis W of W into a component that does not modify the span and a component that does
modify the span. The latter represents a tangent vector of Grass(p, n) at W.

Let W ∈ ST(p, n). The tangent space to ST(p, n) at W , denoted TW ST(p, n), is trivial:
ST(p, n) is an open subset of Rn×p, so ST(p, n) and Rn×p are identical in a neighbourhood
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Figure 2: This picture illustrates for the case p = 2, n = 3 how ξ¦Y represents an “elementary
variation” ξ of the subspace Y spanned by the columns of Y . Consider Y (0) = [y1(0)|y2(0)]
and ξ¦Y (0) = [x1|x2]. By the horizontality condition Y (0)T ξ¦Y (0) = 0, both x1 and x2 are
normal to the space Y(0) spanned by Y (0). Let y1(t) = y1(0) + tx1, y2(t) = y2(0) + tx1 and
let Y(t) be the subspace spanned by y1(t) and y2(t). Then we have ξ = Ẏ(0).

of W , and therefore TW ST(p, n) = TWRn×p which is just a copy of Rn×p. The vertical space
VW is by definition the tangent space to the fiber W GLp, namely

VW = WRp×p = {Wm : m ∈ Rp×p}.
Its elements are the elementary variations of W that do not modify its span. We define the
horizontal space HW as

HW := TW SW = {W⊥K : K ∈ R(n−p)×p}. (8)

One readily verifies that HW verifies the characteristic properties of horizontal spaces in
principal fiber bundles [KN63, FGP94]. In particular, TW ST(p, n) = VW ⊕ HW . Note that
with our choice of HW , ∆T

V ∆H = 0 for all ∆V ∈ VW and ∆H ∈ HW .
Let ξ be a tangent vector to Grass(p, n) at W and let W span W. According to the theory

of principal fiber bundles [KN63], there exists one and only one horizontal vector ξ¦W that
represents ξ in the sense that ξ¦W projects to ξ via the span operation, i.e. dπ(W ) ξ¦W = ξ.
See Figure 1 for a graphical interpretation. It is easy to check that

ξ¦W = dσW (W) ξ (9)

where σW is the cross section mapping defined in (7). Indeed, it is horizontal and projects to
ξ via π since π ◦σW is locally the identity. The representation ξ¦W is called the horizontal lift
of ξ ∈ TWGrass(p, n) at W . The next proposition characterizes how the horizontal lift varies
along the equivalence class WGLp.

Proposition 3.1 Let W ∈ Grass(p, n), let W span W and let ξ ∈ TWGrass(p, n). Let ξ¦W
denote the horizontal lift of ξ at W . Then for all M ∈ GLp,

ξ¦WM = ξ¦W M. (10)

Proof. This comes from (9) and the property σWM (Y) = σW (Y)M . ¤
The homogeneity property (10) and the horizontality of ξ¦W are characteristic of horizontal

lifts.
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We now introduce notation for derivatives. Let f be a smooth function between two linear
spaces. We denote by

Df(x)[y] :=
d

dt
f(x + ty)|t=0

the directional derivative of f at x in the direction of y. Let f be a smooth real-valued
function defined on Grass(p, n) in a neighbourhood of W. We will use the notation f¦(W )
to denote f(span(W )). The derivative of f in the direction of the tangent vector ξ at W,
denoted by ξf , can be computed as

ξf = Df¦(W )[ξ¦W ]

where W spans W.

Lie derivative

A tangent vector field ξ on Grass(p, n) assigns to each Y ∈ Grass(p, n) an element ξY ∈
TYGrass(p, n).

Proposition 3.2 (Lie bracket) Let η and ξ be smooth tangent vector fields on Grass(p, n).
Let ξ¦W denote the horizontal lift of ξ at W as defined in (9). Then

[η, ξ]¦W = ΠW⊥ [η¦W , ξ¦W ] (11)

where
ΠW⊥ := I −W (W T W )−1W T (12)

denotes the projection into the orthogonal complement of the span of W and

[η¦W , ξ¦W ] = Dξ¦·(W )[η¦W ]−Dη¦·(W )[ξ¦W ]

denotes the Lie bracket in Rn×p.

That is, the horizontal lift of the Lie bracket of two tangents vector fields on the Grassmann
manifold is equal to the horizontal projection of the Lie bracket of the horizontal lifts of the
two tangent vector fields.
Proof. Let W ∈ ST(p, n) be fixed. We prove formula (11) by making computations in the
coordinate chart (UW , σW ). In order to simplify notations, let Ŷ := σWY and ξ̂Ŷ := σW ∗YξY .
Note that Ŵ = W and ξ̂W = ξ¦W . One has

[η, ξ]¦W = Dξ̂·(W )[η̂W ]−Dη̂·(W )[ξ̂W ].

After some manipulations using (5) and (7), it comes

ξ̂Ŷ = d
dtσW bŶ + ξ¦Ŷ tc|t=0 = ξ¦Ŷ − Ŷ (W T W )−1W T ξ¦Ŷ .

Then, using W T ξ¦W = 0,

Dξ̂·(W )[η̂W ] = Dξ¦·(W )[η̂W ]−W (W T W )−1W T Dξ¦·(W )[η̂W ].

The term Dη̂·(W )[ξ̂W ] is directly deduced by interchanging ξ and η, and the result is proved.
¤
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Metric

We consider the following metric on Grass(p, n):

〈ξ, η〉Y := trace
(
(Y T Y )−1ξT

¦Y η¦Y
)

(13)

where Y spans Y. It is easily checked that the expression (13) does not depend on the choice
of the basis Y that spans Y. This metric is the only one (up to multiplications by a constant)
to be invariant under the action of On on Rn. Indeed

trace
(
((QY )T QY )−1 (Qξ¦Y )T Qη¦Y

)
= trace

(
(Y T Y )−1ξT

¦Y η¦Y
)

for all Q ∈ On, and uniqueness is proved in [Lei61]. We will see later that the definition (13)
induces a natural notion of distance between subspaces.

Gradient

On an abstract Riemannian manifold M , the gradient of a smooth real function f at a point
x of M , denoted by gradf(x), is roughly speaking the steepest ascent vector of f in the
sense of the Riemannian metric. More rigorously, gradf(x) is the element of TxM satisfying
〈gradf(x), ξ〉 = ξf for all ξ ∈ TxM . On the Grassmann manifold Grass(p, n) endowed with
the metric (13), one checks that

(gradf)¦Y = ΠY⊥ gradf¦(Y )Y T Y (14)

where ΠY⊥ is the orthogonal projection (12) into the orthogonal complement of Y , f¦(Y ) =
f(span(Y )) and gradf¦(Y ) is the Euclidean gradient of f¦ at Y , given by (gradf¦(Y ))ij =
∂f¦(Y )
∂Yij

(Y ). The Euclidean gradient is characterized by

Df¦(Y )[Z] = trace(ZT gradf¦(Y )), ∀Z ∈ Rn×p, (15)

which can ease its computation in some cases.

Riemannian connection

Let ξ, η be two tangent vector fields on Grass(p, n). There is no predefined way of computing
the derivative of ξ in the direction of η because there is no predefined way of comparing the
different tangent spaces TYGrass(p, n) as Y varies. However, there is a prefered definition
for the directional derivative, called the Riemannian connection (or Levi-Civita connection),
defined as follows [Boo75, dC92].

Definition 3.3 (Riemannian connection) Let M be a Riemannian manifold and let its
metric be denoted by 〈·, ·〉. Let x ∈ M . The Riemannian connection ∇ on M has the following
properties: For all smooth real functions f , g on M , all η, η′ in TxM and all smooth vectors
fields ξ, ξ′:
1. ∇fη+gη′ξ = f∇ηξ + g∇η′ξ
2. ∇η(fξ + gξ′) = f∇ηξ + g∇ηξ

′ + (ηf)ξ + (ηg)ξ′

3. [ξ, ξ′] = ∇ξξ
′ −∇ξ′ξ.

4. η 〈ξ, ξ′〉 = 〈∇ηξ, ξ
′〉+ 〈ξ,∇ηξ

′〉.
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Properties 1 and 2 define connections in general. Property 3 states that the connection is
torsion-free, and property 4 specifies that the metric tensor is invariant by the connection.
A famous theorem of Riemannian geometry states that there is one and only one connection
verifying these four properties. If M is a submanifold of an Euclidean space, then the Rie-
mannian connection ∇ηξ consists in taking the derivative of ξ in the ambient Euclidean space
in the direction of η and projecting the result into the tangent space of the manifold. As we
show in the next theorem, the Riemannian connection on the Grassmann manifold, expressed
in terms of horizontal lifts, works in a similar way.

Theorem 3.4 (Riemannian connection) Let Y ∈ Grass(p, n), let Y ∈ ST(p, n) span Y.
Let η ∈ TYGrass(p, n), and let ξ be a smooth tangent vector field defined in a neighbourhood of
Y. Let ξ¦· : W 7→ ξ¦W be the horizontal lift of ξ as defined in (9). Let Grass(p, n) be endowed
with the On-invariant Riemannian metric (13) and let ∇ denote the associated Riemannian
connection. Then

(∇ηξ)¦Y = ΠY⊥ ∇η¦Y ξ¦ (16)

where ΠY⊥ is the projection (12) into the orthogonal complement of Y and

∇η¦Y ξ¦ := Dξ¦.(Y )[η¦Y ] :=
d

dt
ξ¦(Y +η¦Y t)|t=0

is the directional derivative of ξ¦ in the direction of η¦Y in the Euclidean space Rn×p.

This theorem says that the horizontal lift of the covariant derivative of a vector field ξ on
the Grassmannian in the direction of η is equal to the horizontal projection of the derivative
of the horizontal lift of ξ in the direction of the horizontal lift of η.
Proof. One has to prove that (16) satisfies the four characteristic properties of the Riemannian
connection. The two first properties concern linearity in η and ξ and are easily checked. The
torsion-free property is direct from (16) and (11). The fourth property, invariance of the
metric, holds for (16) since

η 〈µ, ν〉 = DY trace((Y T Y )−1µT
¦Y ν¦Y )(W )[η¦W ]

= trace((W T W )−1DµT
¦·(W )[η¦W ]ν¦W + µT

¦W Dν¦·(W )[η¦W ])
= 〈∇ηµ, ν〉+ 〈µ,∇ην〉

¤

Parallel transport

Let t 7→ Y(t) be a smooth curve on Grass(p, n). Let ξ be a tangent vector defined along the
curve Y(·). Then ξ is said to be parallel transported along Y(·) if

∇Ẏ(t)ξ = 0 (17)

for all t, where Ẏ(t) denotes the tangent vector to Y(·) at t.
We will need the following classical result of fiber bundle theory [KN63]. A curve t 7→ Y (t)

on ST(p, n) is termed horizontal if Ẏ (t) is horizontal for all t, i.e. Ẏ (t) ∈ HY (t). Let t 7→ Y(t)
be a smooth curve on Grass(p, n) and let Y0 ∈ ST(p, n) span Y(0). Then there exists a unique
horizontal curve t 7→ Y (t) on ST(p, n) such that Y (0) = Y0 and Y(t) = span(Y (t)). The curve
Y (0) is called the horizontal lift of Y(0) through Y0.
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Proposition 3.5 (parallel transport) Let t 7→ Y(t) be a smooth curve on Grass(p, n). Let
ξ be a tangent vector field on Grass(p, n) defined along Y(·). Let t 7→ Y (t) be a horizontal lift
of t 7→ Y(t). Let ξ¦Y (t) denote the horizontal lift of ξ at Y (t) as defined in (9). Then ξ is
parallel transported along the curve Y(·) if and only if

ξ̇¦Y (t) + Y (t)(Y (t)T Y (t))−1Ẏ (t)T ξ¦Y (t) = 0 (18)

where ξ̇¦Y (t) := d
dτ ξ¦Y (τ)|τ=t.

In other words, the parallel transport of ξ along Y(·) is obtained by infinitesimally removing
the vertical component (the second term in the left-hand side of (18) is vertical) of the
horizontal lift of ξ along a horizontal lift of Y(·).

Proof. Let t 7→ Y(t), ξ and t 7→ Y (t) be as in the statement of the proposition. Then Ẏ (t)
is the horizontal lift of Ẏ(t) at Y (t) and

∇Ẏ(t)ξ = ΠY⊥ ξ̇¦Y (t)

by (16), where ξ̇¦Y (t) := d
dτ ξ¦Y (τ)|τ=t. So ∇Ẏ(t)ξ = 0 if and only if ΠY⊥ ξ̇¦Y (t) = 0, i.e. ξ̇¦Y (t) ∈

VY (t), i.e. ξ̇¦Y (t) = Y (t)M(t) for some M(t). Since ξ¦· is horizontal, one has Y T ξ¦Y = 0, thus
Ẏ T ξ¦Y + Y T ξ̇¦Y = 0 and therefore M = −(Y T Y )−1Ẏ T ξ¦Y . ¤

It is interesting to notice that (18) is not symmetric in Ẏ and ξ¦. This is apparently in
contradiction with the symmetry of the Riemannian connection, but one should bear in mind
that Y and ξ¦ are not expressions of Y and ξ in a fixed coordinate chart, so (18) need not be
symmetric.

Geodesics

We now give a formula for the geodesic t 7→ Y(t) with initial point Y(0) = Y0 and initial
“velocity” Ẏ0 ∈ TY0Grass(p, n). The geodesic is characterized by ∇Ẏ Ẏ = 0, which says that
the tangent vector to Y(·) is parallel transported along Y(·). This expresses the idea that
Y(t) goes “straight on at constant pace”.

Theorem 3.6 (geodesics) Let t 7→ Y(t) be a geodesic on Grass(p, n) with Riemannian met-
ric (13) from Y0 with initial velocity Ẏ0 ∈ TY0Grass(p, n). Let Y0 span Y0, let (Ẏ0)¦Y0 be the
horizontal lift of Ẏ0, and let (Ẏ0)¦Y0(Y

T
0 Y0)−1/2 = UΣV T be a thin singular value decompo-

sition, i.e. U is n × p orthonormal, V is p × p orthonormal and Σ is p × p diagonal with
nonnegative elements.
Then

Y(t) = span(Y0(Y T
0 Y0)−1/2V cosΣt + U sin Σt ). (19)

This expression obviously simplifies when Y0 is chosen orthonormal.
The exponential of Ẏ0, denoted by Exp(Ẏ0), is by definition Y(t = 1).

Note that this formula is not new except for the fact that a nonorthonormal Y0 is allowed.
In practice, however, one will prefer to orthonormalize Y0 and use the simplified expression.
Edelman, Arias and Smith [EAS98] obtained the orthonormal version of the geodesic formula
using the symmetric space structure of Grass(p, n) = On/(Op ×On−p).
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Proof. Let Y(t), Y0, UΣV T be as in the statement of the theorem. Let t 7→ Y (t) be the
unique horizontal lift of Y(·) through Y0, so that Ẏ¦Y (t) = Ẏ (t). Then the formula for parallel
transport (18), applied to ξ := Ẏ, yields

Ÿ + Y (Y T Y )−1Ẏ T Ẏ = 0. (20)

Since Y (·) is horizontal, one has
Y T (t)Ẏ (t) = 0 (21)

which is compatible with (20). This implies that Y (t)T Y (t) is constant. Moreover, equa-
tions (20) and (21) imply that d

dt Ẏ (t)T Ẏ (t) = 0, so Ẏ (t)T Ẏ (t) is constant. Consider the thin
SVD Ẏ (0)(Y T Y )−1/2 = UΣV T . From (20), one obtains

Ÿ (t)(Y T Y )−1/2 + Y (t)(Y T Y )−1/2 (Y T Y )−1/2(Ẏ T Ẏ )(Y T Y )−1/2 = 0

Ÿ (t)(Y T Y )−1/2 + Y (t)(Y T Y )−1/2V Σ2V T = 0

Ÿ (t)(Y T Y )−1/2V + Y (t)(Y T Y )−1/2V Σ2 = 0

which yields

Y (t)(Y T Y )−1/2V = Y0(Y T
0 Y0)−1/2V cosΣt + Ẏ0(Y T

0 Y0)−1/2V Σ−1 sinΣt

and the result follows. ¤
As an aside, Theorem 3.6 shows that the Grassmann manifold is complete, i.e. the geodesics

can be extended indefinitely [Boo75].

Distance between subspaces

The geodesics can be locally interpreted as curves of shortest length [Boo75]. This motivates
the following notion of distance between two subspaces.

Let X and Y belong to Grass(p, n) and let X, Y be orthonormal bases for X , Y, respec-
tively. Let Y ∈ UX (6), i.e. XT Y is invertible. Let ΠX⊥Y (XT Y )−1 = UΣV T be an SVD. Let
Θ = atanΣ. Then the geodesic

t 7→ Exptξ = span(XV cosΘt + U sinΘt),

where ξ¦X = UΘV T , is the shortest curve on Grass(p, n) from X to Y. The elements θi

of Θ are called the principal angles between X and Y. The columns of XV and those
of (XV cosΘ + U sin Θ) are the corresponding principal vectors. The geodesic distance on
Grass(p, n) induced by the metric (13) is

dist(X ,Y) =
√
〈ξ, ξ〉 =

√
θ2
1 + . . . + θ2

p.

Other definitions of distance on Grassmann are given in [EAS98, 4.3]. A classical one is the
projection 2-norm ‖ΠX − ΠY ‖2 = sin θmax where θmax is the largest principal angle [Ste73,
GV96]. An algorithm for computing the principal angles and vectors is given in [BG73, GV96].

11



Discussion

This completes our study of the Riemannian structure of the Grassmann manifold Grass(p, n)
using bases, i.e. elements of ST(p, n), to represent its elements. We are now ready to give in
the next section a formulation of the Riemann-Newton method on the Grassmann manifold.
Following Smith [Smi94], the function F in (1) becomes a tangent vector field ξ (Smith
works with one-forms, but this is equivalent because the Riemannian connection leaves the
metric invariant [MM02]). The directional derivative D in (1) is replaced by the Riemannian
connection, for which we have given a formula in Theorem 3.4. As far as we know, this
formula has never been published, and as we shall see it makes the derivation of the Newton
algorithm very simple for some vector fields ξ. The update (2) is performed along the geodesic
(Theorem 3.6) generated by the Newton vector. Convergence of the algorithms can be assessed
using the notion of distance defined above.

4 Newton iteration on the Grassmann manifold

A number of authors have proposed and developed a general theory of Newton iteration on
Riemannian manifolds [Gab82, Smi93, Smi94, Udr94, MM02]. In particular, Smith [Smi94]
proposes an algorithm for abstract Riemannian manifolds which amounts to the following.

Algorithm 4.1 (Riemann-Newton) Let M be a Riemannian manifold, ∇ be the Levi-
Civita connection on M , and ξ be a smooth vector field on M . The Newton iteration on M
for computing a zero of ξ consists in iterating the mapping x 7→ x+ defined by
1. Solve the Newton equation

∇ηξ = −ξ(x) (22)

for η ∈ TxM .
2. Compute the update x+ := Exp η, where Exp denotes the Riemannian exponential map-
ping.

The Riemann-Newton iteration, expressed in the so-called normal coordinates at x (normal
coordinates use the inverse exponential as a coordinate chart [Boo75]), reduces to the classical
Newton method (1)-(2) [MM02]. It converges locally quadratically to the nondegenerate zeros
of ξ, i.e. the points x such that ξ(x) = 0 and TxGrass(p, n) 3 η 7→ ∇ηξ is invertible (see proof
in Section A).

On the Grassmann manifold, the Riemann-Newton iteration yields the following algo-
rithm.

Theorem 4.2 (Grassmann-Newton) Let the Grassmann manifold Grass(p, n) be endowed
with the On-invariant metric (13). Let ξ be a smooth vector field on Grass(p, n). Let ξ¦ denote
the horizontal lift of ξ as defined in (9). Then the Riemann-Newton method (Algorithm 4.1)
on Grass(p, n) for ξ consists in iterating the mapping Y 7→ Y+ defined by
1. Pick a basis Y that spans Y and solve the equation

ΠY⊥Dξ¦(Y )[η¦Y ] = −ξ¦Y (23)

for the unknown η¦Y in the horizontal space HY = {Y⊥K : K ∈ R(n−p)×p}.
2. Compute an SVD η¦Y = UΣV T and perform the update

Y+ := span(Y V cosΣ + U sinΣ). (24)
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Proof. Equation (23) is the horizontal lift of equation (22) where the formula (16) for the
Riemannian connection has been used. Equation (24) is the exponential update given in
formula (19). ¤

It often happens that ξ is the gradient (14) of a cost function f , ξ = grad f , in which case
the Newton iteration searches a stationary point of f . In this case, the Newton equation (23)
reads

ΠY⊥D(Π·⊥ gradf¦(·))(Y )[η¦Y ] = −ΠY⊥ gradf¦(Y )

where the formula (14) has been used for the Grassmann gradient. This equation can be
interpreted as the Newton equation in Rn×p

D(gradf¦(·))(Y )[∆] = −gradf¦(Y )

projected onto the horizontal space (8). The projection operation cancels out the directions
along the equivalence class Y GLp, which intuitively makes sense since they do not generate
variations of the span of Y .

It is often the case that ξ admits the expression

ξ¦Y = ΠY⊥F (Y ) (25)

where F is a homogeneous function, i.e. F (Y M) = F (Y )M . In this case, the Newton equa-
tion (23) becomes

ΠY⊥DF (Y )[η¦Y ]− η¦Y (Y T Y )−1Y T F (Y ) = −ΠY⊥F (Y ) (26)

where we have taken into account that Y T η¦Y = 0 since η¦Y is horizontal.

5 Practical applications of the Newton method

In this section, we illustrate the applicability of the Grassmann-Newton method (Theorem 4.2)
on two problems that can be cast as the computing a zero of a tangent vector field on the
Grassmann manifold.

Invariant subspace computation

Let A be an n× n matrix and let
ξ¦Y := ΠY⊥AY (27)

where ΠY⊥ denotes the projector (12) into the orthogonal complement of the span of Y . This
expression is homogeneous and horizontal, therefore it is a well-defined horizontal lift and
defines a tangent vector field on Grassmann. Moreover, ξ(Y) = 0 if and only if Y is an
invariant subspace of A. Obtaining the Newton equation (23) for ξ defined in (27) is now
extremely simple: the simplification (25) holds with F (Y ) = AY , and (26) immediately yields

ΠY⊥ (Aη¦Y − η¦Y (Y T Y )−1Y T AY ) = −ΠY⊥ AY (28)

which has to be solved for η¦Y in the horizontal space HY (8). The resulting iteration, (28)-
(24), converges locally to the nondegenerate zeros of ξ, which are the spectral2 right invariant

2A right invariant subspace Y of A is termed spectral if, given [Y |Y⊥] orthogonal such that Y spans Y,
Y T AY and Y T

⊥ AY⊥ have no eigenvalue in common [RR02].
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subspaces of A; see [Abs03] for details. The rate of convergence is quadratic. It is cubic if
and only if the zero of ξ is also a left invariant subspace of A (see Section B). This happens
in particular when A = AT .

Edelman, Arias and Smith [EAS98] consider the Newton method on Grassmann for the
Rayleigh quotient cost function f¦(Y ) := trace((Y T Y )−1Y T AY ), assuming A = AT . They
obtain the same equation (28), which is not surprising since it can be shown, using (14), that
our ξ is the gradient of their f .

Equation (28) also connects with a method proposed by Chatelin [Cha84] for refining
invariant subspace estimates. She considers the equation AY = Y B whose solutions Y ∈
ST(p, n) span invariant subspaces of A and imposes a normalization condition ZT Y = I on
Y , where Z is a given n × p matrix. This normalization condition can be interpreted as
restricting Y to a cross section (5). Then she applies the classical Newton method for finding
solutions of AY = Y B in the cross section and obtains an equation similar to (28). The
equations are in fact identical if the matrix Z is chosen to span the current iterate. Following
Chatelin’s approach, the projective update Y+ = span(Y +η¦Y ) is used instead of the geodesic
update (24).

The algorithm with projective update is also related to the Grassmannian Rayleigh quo-
tient iteration (GRQI) proposed in [AMSV02]. The two methods are identical when p =
1 [SE02]. They differ when p > 1, but they both compute eigenspaces of A = AT with cubic
rate of convergence. For A arbitrary, a two-sided version of GRQI is proposed in [AV02] that
also computes the eigenspaces with cubic rate of convergence.

Methods for solving (28) are given in [Dem87] and [LE02]. Lundström and Eldén [LE02]
give an algorithm that allows to solve the equation without explicitly computing the inter-
action matrix ΠY⊥AΠY⊥ . The global behaviour of the iteration is studied in [ASVM04] and
heuristics are proposed that enlarge the basins of attraction of the invariant subspaces.

Mean of subspaces

Let Y i, i = 1, . . . ,m, be a collection of p-dimensional subspaces of Rn. We consider the
problem of computing the mean of the subspaces Y i. Since Grass(p, n) is complete, if the
subspaces Y i are clustered sufficiently close together then there is a unique X that minimizes
V (X ) :=

∑m
i=1 dist2(X ,Y i). This X is called the Karcher mean of the m subspaces [Kar77,

Ken90].
A steepest descent algorithm is proposed in [Woo02] for computing the Karcher mean of

a cluster of point on a Riemannian manifold. Since it is a steepest descent algorithm, its
convergence rate is only linear.

The Karcher mean verifies
∑m

i=1 δi = 0 where δi := Exp−1
X Y i. This suggests to take

ξ(X ) :=
∑m

i=1 Exp−1
X Y i and apply the Riemann-Newton algorithm. On the Grassmann man-

ifold, however, this idea does not work well because of the complexity of the relation be-
tween Y i and δi, see Section 3. Therefore, we use another definition of the mean in which
δi
¦X = ΠX⊥ΠY iX, where X spans X , Y i spans Y i, ΠX⊥ = I −X(XT X)−1XT is the orthogo-

nal projector into the orthogonal complement of the span of X and ΠY = Y (Y T Y )−1Y T is the
orthogonal projector into the span of Y. While the Karcher mean minimizes

∑m
i=1

∑p
j=1 θ2

i,j

where θi,j is the jth canonical angle between X and Y i, our modified mean minimizes∑m
i=1

∑p
j=1 sin2 θi,j . Both definitions are asymptotically equivalent for small principal an-
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gles. Our definition yields

ξ¦X =
m∑

i=1

ΠX⊥ΠY iX

and one readily obtains, using (26), the following expression for the Newton equation

m∑

i=1

(ΠX⊥ΠY iη¦X − η¦X(XT X)−1XT ΠY iX) = −
m∑

i=1

ΠX⊥ΠY iX

which has to be solved for η¦X in the horizontal space HX = {X⊥K : K ∈ R(n−p)×p}.
We have tested the resulting Newton iteration in the following situation. We draw m

samples Ki ∈ R(n−p)×p where the elements of each K are i.i.d. normal random variables with
mean zero and standard deviation 1e−2 and define Y i = span(

[
Ip

Ki

]
). The initial iterate is

X := Y1 and we define Y0 = span(
[

Ip

0

]
). Experimental results are shown below.

Newton X+ = X − gradV/m

Iterate number ‖∑m
i=1 δi‖ dist(X ,Y0) ‖∑m

i=1 δi‖ dist(X ,Y0)
0 2.4561e+01 2.9322e-01 2.4561e+01 2.9322e-01
1 1.6710e+00 3.1707e-02 1.9783e+01 2.1867e-01
2 5.7656e-04 2.0594e-02 1.6803e+01 1.6953e-01
3 2.4207e-14 2.0596e-02 1.4544e+01 1.4911e-01
4 8.1182e-16 2.0596e-02 1.2718e+01 1.2154e-01

300 5.6525e-13 2.0596e-02

6 Conclusion

We have considered the Grassmann manifold Grass(p, n) of p-planes in Rn as the base space
of a GLp-principal fiber bundle with the noncompact Stiefel manifold ST(p, n) as total space.
Using the essentially unique On-invariant metric on Grass(p, n), we have derived a formula for
the Levi-Civita connection in terms of horizontal lifts. Moreover, formulas have been given for
the Lie bracket, parallel translation, geodesics and distance between p-planes. Finally, these
results have been applied to a detailed derivation of the Newton method on the Grassmann
manifold. The Grassmann-Newton method has been illustrated on two examples.

A Quadratic convergence of Riemann-Newton

For completeness we include a proof of quadratic convergence of the Riemann-Newton iter-
ation (Algorithm 4.1). Our proof significantly differs from the proof previously reported in
the literature [Smi94]. This proof also prepares the discussion on cubic convergence cases in
Section B.

Let ξ be a smooth vector field on a Riemannian manifold M and let ∇ denote the Rie-
mannian connection. Let z ∈ M be a nondegenerate zero of the smooth vector field ξ (i.e.
ξz = 0 and the linear operator TzM 3 η 7→ ∇ηξ ∈ TzM is invertible). Let Nz be a normal
neighbourhood of z, sufficiently small so that any two points of Nz can be joined by a unique
geodesic [Boo75]. Let τxy denote the parallel transport along the unique geodesic between x
and y. Let the tangent vector ζ ∈ TxM be defined by Expxζ = z. Define the vector field ζ̃
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on Nz adapted to the tangent vector ζ ∈ TxM by ζ̃y = τxyζ. Applying Taylor’s formula to
the function λ 7→ ξExpxλζ yields [Smi94]

0 = ξz = ξx +∇ζξ +
1
2
∇2

ζξ + O(ζ3) (29)

where ∇2
ζξ := ∇ζ(∇ζ̃ξ). Subtracting Newton equation (22) from Taylor’s formula (29) yields

∇(η−ζ)ξ = ∇2
ζξ + O(ζ3). (30)

Since ξ is a smooth vector field and z is a nondegenerate zero of ξ, and reducing the size of
Nz if necessary, one has

‖∇αξ‖ ≥ c1‖α‖
‖∇2

αξ‖ ≤ c3‖α‖2

for all y ∈ Nz and α ∈ TyM . Using these results in (30) yields

c1‖η − ζ‖ ≤ c2‖ζ‖2 + O(ζ3). (31)

From now on the proof significantly differs from the one in [Smi94]. We will show next
that, reducing again the size of Nz if necessary, there exists a constant c4 such that

dist(Expyα,Expyβ) ≤ c4‖α− β‖ (32)

for all y ∈ Nz and all α, β ∈ TyM small enough for Expyα and Expyβ to be in Nz. Then it
follows immediately from (31) and (32) that

dist(x+, z) = dist(Expyη, Expyζ) ≤ ‖η − ζ‖ ≤ c2

c1
‖ζ‖2 + O(ζ3) = O(dist(x, z)2)

and this is quadratic convergence.
To show (32), we work in local coordinates covering Nz and use tensorial notations (see

e.g. [Boo75]), so e.g. ui denotes the coordinates of u ∈ M . Consider the geodesic equation
üi + Γi

jk(u)u̇iu̇j = 0 where Γ stands for the (smooth) Christoffel symbol, and denote the
solution by φi[t, u(0), u̇(0)]. Then (Expyα)i = φi[1, y, α], (Expyβ)i = φi[1, y, β], and the curve
γi : τ 7→ φi[1, y, α + τ(β − α)] verifies γi(0) = (Expyα)i and γi(1) = (Expyβ)i. Then

dist(Expyα, Expyβ)

≤
∫ 1

0

√
gij [γ(τ)]γ̇i(τ)γ̇j(τ) dτ (33)

=
∫ 1

0

√
gij [γ(τ)]

∂φi

∂u̇k
[1, y, α + τ(β − α)]

∂φi

∂u̇`
[1, y, α + τ(β − α)](βk − αk)(β` − α`) dτ

≤ c′
√

δk`(βk − αk)(β` − α`) (34)

≤ c4

√
gk`[y](βk − αk)(β` − α`) (35)

= c4‖β − α‖.
Equation (33) gives the length of the curve γ(0, 1), for which dist(Expyα, Expyβ) is a lower
bound. Equation (34) comes from the fact that the metric tensor gij and the derivatives of φ
are smooth functions defined on a compact set, thus bounded. Equation (35) comes because
gij is nondegenerate and smooth on a compact set.
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B Cubic convergence of Riemann-Newton

We use the notations of the previous section.
If ∇2

αξ = 0 for all tangent vector α ∈ TzM , then the rate of convergence of the Riemann-
Newton method (Algorithm 4.1) is cubic. Indeed, by the smoothness of ξ, and defining ζx

such that Expxζ = z, one has ∇2
ζξ = O(ζ3), and replacing this into (30) gives the result.

For the sake of illustration, we consider the particular case where M is the Grassmann
manifold Grass(p, n) of p-planes in Rn, A is an n×n real matrix and the tangent vector field
ξ is defined by the horizontal lift (27)

ξ¦Y = ΠY⊥AY

where ΠY⊥ := (I − Y Y T ). Let Z ∈ Grass(p, n) verify ξZ = 0, which happens if and only if
Z is a right invariant subspace of A. We show that ∇2

αξ = 0 for all α ∈ TZGrass(p, n) if and
only if Z is a left invariant subspace of A (which happens e.g. when A = AT ).

Let Z be an orthonormal basis for Z, i.e. ξ¦Z = 0 and ZT Z = I. Let α¦Z = UΣV T be a
thin singular value decomposition of α ∈ TZGrass(p, n). Then the curve

Y (t) = ZV cosΣt + U sinΣt

is horizontal and projects through the “span” operation to the Grassmann geodesic ExpZtα.
Since by definition the tangent vector of a geodesic is parallel transported along the geodesic,
the adaptation α̃ of α verifies

α̃¦Y (t) = Ẏ (t) = UΣcos Σt− ZV Σcos Σt.

Then one obtains successively

(∇α̃ξ)¦Y (t) = ΠY (t)⊥Dξ¦(Y (t))[α̃¦Y (t)]

= ΠY (t)⊥
d

dt
ΠY (t)⊥AY (t)

= ΠY (t)⊥AẎ (t)−ΠY (t)⊥ Ẏ (t)Y (t)T AY (t)

and

∇2
αξ = (∇α∇α̃ξ)¦Z

= ΠZ⊥
d

dt
(∇α̃ξ)¦Y (t)|t=0

= −ΠZ⊥AŸ (0)−ΠZ⊥ Ẏ (0)Y (0)T AẎ (0)−ΠZ⊥ Ẏ (0)(Ẏ (0)T AY (0) + Y (0)T AẎ (0))
= −2UΣV T ZT AUΣ

where we have used ΠY⊥Y = 0, ZT U = 0, UT AZ = ΠZ⊥AZ = 0. This last expression
vanishes for all α ∈ TZGrass(p, n) if and only if UT AT Z = 0 for all U such that UT Z = 0,
i.e. Z is a left invariant subspace of A.
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Chemin des Chevreuils 1 (Bât. B52), 4000 Liège, Belgium, 2003.
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[Dem87] J. W. Demmel, Three methods for refining estimates of invariant subspaces, Com-
puting 38 (1987), 43–57.

[DM90] B. F. Doolin and C. F. Martin, Introduction to differential geometry for engineers,
Monographs and Textbooks in Pure and Applied Mathematics, vol. 136, Marcel
Deckker, Inc., New York, 1990.

18



[DS83] J. E. Dennis and R. B. Schnabel, Numerical methods for unconstrained optimiza-
tion and nonlinear equations, Prentice Hall Series in Computational Mathematics,
Prentice Hall, Englewood Cliffs, NJ, 1983.

[EAS98] A. Edelman, T. A. Arias, and S. T. Smith, The geometry of algorithms with
orthogonality constraints, SIAM J. Matrix Anal. Appl. 20 (1998), no. 2, 303–353.
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