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Abstract – This paper deals with computation of 
counter measures in case of insufficient damping of inter-
area oscillations in large power systems. Inter-area oscilla-
tions have been observed many times in recent years. 
However, once a critical situation is identified, the opera-
tor has to take counter measures, which ensure that the 
system moves back to a stable operating point. This study 
proposes a new method composed of Neural Networks and 
nonlinear optimization to estimate the best counter meas-
ures. Thereby an optimization algorithm maximizes the 
predicted system damping by adjusting selected control 
variables in the power system. A Neural Network assesses 
the expected damping within the optimization loop. A 
second Neural Network is used to ensure feasible power 
flow conditions. The optimization results in a new power 
flow feature vector, which corresponds to a situation with 
higher damping than the current one. The result provides 
the Transmission System Operator important information 
about stability-improving actions he can run.  

Keywords: Oscillatory Stability, Large Power Sys-
tems, Optimization, Counter Measures, Damping Im-
provement 

1 INTRODUCTION 
Inter-area oscillations in large-scale power systems 

are becoming more common especially for the Euro-
pean Interconnected Power System UCTE/CENTREL. 
The system has grown very fast in a short period of time 
due to the recent east expansion. This extensive inter-
connection alters the stability region of the network, and 
the system experiences inter-area oscillations associated 
with the swinging of many machines in one part of the 
system against machines in other parts. Moreover, for 
certain power flow conditions, the system damping 
changes widely [1], [2]. The deregulation of electricity 
markets in Europe aggravated the situation once more 
due to the increasing number of long distance power 
transmissions. Moreover, the network is becoming more 
stressed also by the transmission of wind power. 

In fact, the European Power System is designed 
rather as a backup system to maintain power supply in 
case of power plant outages. The system is operated by 
several independent transmission utilities, joint by a 
large meshed high voltage grid. Because of the increas-
ing long distance transmissions, the system steers closer 
to the stability limits. Thus, the operators need computa-
tional real time tools for controlling system stability. Of 
main interest in the European Power System is hereby 

the Oscillatory Stability Assessment (OSA). The use of 
on-line tools is even more complicated because Trans-
mission System Operators (TSO) exchange only re-
stricted information. Each TSO controls a particular part 
of the power system, but the exchange of data between 
different parts is limited to a small number because of 
the high competition between the utilities. 

However, the classical small-signal stability compu-
tation requires the entire system model and is time con-
suming for large power systems [3]. Therefore, Compu-
tational Intelligence (CI) methods for a fast on-line 
OSA based only on a small set of data became of high 
interest. Some CI methods were proposed recently [4] – 
[6]. These studies discuss the issues of oscillatory sta-
bility in large interconnected power systems and solu-
tions for on-line stability assessment using CI tech-
niques. These techniques allow fast and accurate as-
sessment of the current system state and provide there-
fore helpful information for the TSO who runs the 
power system. In case of a critical situation, the TSO 
also would like to know how to prevent the system from 
collapse and which action will lead to a better damped 
power system. This information cannot be provided by 
the presented OSA method since it is designed for sta-
bility assessment only. 

The research area of counter measures deals with the 
problem, which operator action will have a stability 
improving impact on the power system. Of course, the 
system operator is trained to manage critical situations, 
but with the increasing complexity of the power sys-
tems, especially in Europe, operator’s decision requires 
more and more computational tools. For this reason, this 
study suggests a CI based method, which allows the 
operator taking the most effective counter measures for 
steering the system to a more stable state. 

2 16-MACHINE DYNAMIC TEST SYSTEM 
The PST16 System (Figure 1) used in this study is a 

400/220 kV 16-machine dynamic test system. The sys-
tem consists of 3 strongly meshed areas, which are 
connected by long distance transmission lines. There-
fore, it allows studying different kinds of stability prob-
lems, especially inter-area oscillations, and has been 
developed based on characteristic parameters of the 
European Power System [7]. Since the operating point 
in real power systems changes continuously, 5 different 
operating conditions are considered. These operating 
conditions include high and low load situations like in 



 

winter and in summer, and change of the networks’ 
topology when transmission lines are switched. 

 

 
Figure 1:  One-Line Diagram of the PST 16-Machine Dy-
namic Test System 

To generate learning samples for CI methods, vari-
ous power flow scenarios under the 5 operating condi-
tions are considered. These scenarios are generated by 
real power exchange between 2 areas. The different 
power flow scenarios result in generating 5,360 patterns 
for learning. 

 

 
Figure 2:  Computed Eigenvalues for the PST-Machine 16 
Test System under different Power Flow Situations 

The computed eigenvalues for all cases are shown in 
Figure 2. The slant lines in the figure are for constant 
damping at -2% to 4%. Different colors determine dif-
ferent operating conditions like in summer and winter. 
As seen in the figure, most of the cases are for well-
damped conditions, but in some cases the eigenvalues 
shift to the low damping region and can cause system 
instability. 

3 CI BASED OSCILLATORY STABILITY 
ASSESSMENT 

3.1 Selection of Information used for OSA 
Stability assessment methods require input informa-

tion to make reliable predictions. These inputs are state 

information from the power system and they will be 
measured when implemented in a real power system. 
Large power systems include much information such as 
transmission line flows, generated powers and demands, 
voltages, and voltage angles. However, any effective CI 
method requires a small number of inputs, which are 
selected from the set of state information and can be 
processed easily. When used with too many inputs, CI 
methods will lead to long processing times and cannot 
be managed well [8]. According to the corresponding 
literature, we call these inputs “features”. However, the 
selected features must represent the entire system, since 
a loss of information in the reduced set results in loss of 
both performance and accuracy in the CI methods. Be-
cause large interconnected power systems are highly 
nonlinear and complex, the exact relationships between 
all features and their impact on stability cannot be for-
mulated by simple rules. For this reason, feature selec-
tion based on engineering judgment or physical knowl-
edge only is not recommended in large power systems. 
Rather, it should be implemented according to a mathe-
matical procedure or algorithm. The selection technique 
applied in this study is based on physical pre-selection, 
followed by the Principal Component Analysis (PCA) 
and the k-Means cluster algorithm [9]. The final group 
of features is selected from the clusters constructed by 
k-means and used as input for the following CI 
methods. In this study, 50 features are selected for 
OSA. These features are listed in Table 1. 

 
 

Feature Symbol Number
Sum Generation per Area P 2 
Sum Generation per Area Q 3 
Generator Power Output P 1 
Generator Power Output Q 4 
Transmitted Power on Line P 15 
Transmitted Power on Line Q 8 
Bus Voltage V 8 
Voltage Angle ϕ 9 
 

Table 1:  50 Selected Features for OSA 

 

3.2 Neural Networks based OSA 
The NN based OSA performs classification first to 

decide if the presented pattern belongs to a sufficient 
damped power flow scenario or not. When a pattern 
includes no eigenvalues with corresponding damping 
coefficients below 4%, the power flow of this pattern is 
considered as sufficient damped. When at least one of 
the modes is damped below 4%, the power flow is con-
sidered as insufficient damped. The eigenvalue mapping 
is proposed in [4] – [6]. It requires that the observation 
area in the complex eigenvalue space is defined first. It 
is located in the region of insufficient damping in the 
range between 4% and –2%. Then, this area is sampled 
along the real axis between 4% and –2%. This is done 
for different frequencies. The sampling results in a set 
of 47 sampling points. After the observation area is 
sampled, the sampling points are activated according to 



 

the positions of the eigenvalues. Thus, the distance 
between the eigenvalues and the samples is used to 
compute activation for the sampling points. The closer 
the distance between an eigenvalue and a sampling 
point, the higher the activation for this sampling point. 
The NN is trained with these activations. The advantage 
of this technique is the constant number of sampling 
points in the complex eigenvalue space, and therefore 
the NN structure is fixed once in the beginning and 
becomes independent of the number of dominant eigen-
values. After NN training, the results are transformed 
from sampling point activations back into eigenvalue 
locations. The activations are used to setup a 3-
dimensional activation surface by linear interpolation 
between all rows and columns of sampling points. The 
activation surface shows peaks at any position where 
dominant eigenvalues can be found. Then, a boundary 
surface of constant level is constructed, resulting from 
the minimum activation, which is necessary to detect an 
eigenvalue in the complex space. However, the intersec-
tion of the activation surface and the boundary level 
leads to a 2-dimensional region in the complex space, 
which is called predicted region. These regions give 
information about locations of critical eigenvalues in 
the complex plain and therefore about the system damp-
ing. An example for region prediction is shown in Fig-
ure 3. The figure shows one dominant eigenvalue at 
about –0.5% damping computed for a given power flow 
scenario. The scenario is characterized by a high load 
winter condition with an additional real power transfer 
of 524 MW from area B in to power system to area C. 

 

 
Figure 3:  Computed Dominant Eigenvalue for a given Power 
Flow Scenario (Example 1) and Predicted Region Constructed 
by Eigenvalue Mapping 

The lines in the figure are lines of constant damping 
and the sampling points resulting from the applied CI 
method are marked with circles. Then, the eigenvalue 
mapping is performed for this scenario and the resulting 
predicted region is plot into the figure, too. The pre-
dicted region matches exactly the position of the domi-
nant eigenvalue and demonstrates the accuracy of the CI 
method. 

In the following, the NN is applied for eigenvalue 
region prediction. The NN is trained off-line with sam-

ple patterns. Then, it is used on-line to predict the 
power system minimum damping within milli-seconds. 
Because the NN is extremely fast in the prediction, it 
can be implemented in an algorithm to find counter 
measures as discussed in the next section. 

4 COUNTER MEASURE ESTIMATION 

4.1 Pre-Consideration 
When the TSO runs the power system, there are a 

few items to be considered, which limit the possibilities 
of action. The TSO controls the power system, but his 
actions are limited to a few control variables only. Be-
cause of contracts between utilities and customer, the 
TSO cannot change the generated real power at particu-
lar power plants. He is also not able to change loads. 
However, by setting the transformer taps and/or reactive 
power infeed he can adjust the voltage level and control 
the power flow through transmission lines. Moreover, 
the generated reactive power can be influenced easily. 

For this reason, at first, the set of features is de-
scribed by 3 main characteristics, which are constant 
features, dependent features, and independent features. 
Constant features cannot be changed by the TSO like 
generated power and loads, respectively, and will be 
constant during the TSO’s actions. Dependent features 
also cannot be changed directly by the TSO, but they 
will change depending on the TSO’s action in the power 
system. Those features are most likely real and reactive 
power flows on transmission lines, voltage angles, and 
bus voltages. Finally, the independent features like 
transformer tap positions and generated reactive power 
can be changed by the TSO directly. The feature classi-
fication is shown in Table 2. 4%       3%        2%       1%       0%        -1% 

 
Exact Eigenvalue Position 
 
Predicted Region by NN 

Constant Independent Dependent 
Real Power 
Generation 

Reactive Power 
Generation 

Transmitted 
Power 

Gen. Units in 
Operation 

Transformer 
Tap Positions  

Bus Voltages 

Demand  Voltage Angles
 

Table 2:  Feature Classification according to their characteris-
tics 

Sampling Points 

Control variables are those features in the power sys-
tem, which are controlled by the TSO as described 
above. However, when the counter measure method is 
implemented, it is based on the feature vector selected 
for CI. But the feature vector contains only a few of 
those features, which are considered independent in the 
power system. Moreover, the feature vector does not 
include the transformer tap positions. For this reason, 
the control variables used in the counter measure com-
putation are not only the independent features, but also 
the bus voltages. Bus voltages are controlled by trans-
former tap positions and therefore they are indirectly 
independent. 

4.2 Optimization Algorithm 
The calculation of counter measures is implemented 

as nonlinear sequential quadratic optimization algorithm 



 

using Neural Networks as cost and constraint function. 
The algorithm for cost function calculation performs 
classification and eigenvalue region prediction to de-
termine the minimum-damping for the current system 
state. The minimum-damping coefficient is then maxi-
mized by the optimization algorithm under the con-
straint of a feasible power flow condition for the result-
ing power flow. 

In this paper we suggest to use NNs for both power 
flow adjustment and eigenvalue assessment as well. The 
application of NNs for OSA is discussed in [4] – [6] in 
detail. For the estimation of counter measures, we im-
plement exactly the same NNs, which are used for 
OSA, too. The cost function of the optimization algo-
rithm is calculated based on the eigenvalue regions 
predicted by these NNs. 

 
Figure 4:  NN Auto Encoder for Input Feature Reproduction 

A feasible power flow condition for the result is en-
sured by the use of a NN auto encoder. The NN auto 
encoder is a well-known type of NN and discussed in 
detail in literature [10]. The application of NN auto 
encoder in power systems for power flow computation 
is introduced in [11]. This NN, shown in Figure 4, rep-
licates the input vector at the output. 

In other words, the NN is trained with various power 
flow conditions to obtain identical input and output. 
Therefore, the error between input and output vector 
will be low for any trained power flow condition. If the 
NN is trained properly, it is also able to identify new 
power flow conditions, which are not trained, by show-
ing low errors between inputs and outputs. The squared 
sum of the differences between inputs and outputs is 
therefore a reliable measure for feasibility of the power 
flow corresponding to the presented feature vector. This 
error is used as constraint for the optimization to keep 
the possible power flow error within limits. If the error 
is low, the optimization assumes the power flow as 
feasible. If the error is high, the presented input vector 
does not belong to a feasible power flow condition, and 
therefore the optimization will continue. 

During the entire optimization process, the features 
considered constant in Table 2 are kept constant. The 
control variables are the independent features and some 
bus voltages. They will be adjusted by the optimization 
algorithm in order to improve the predicted system 
damping. The dependent features are adapted to a feasi-
ble power flow condition depending on the independent 
features by the NN auto encoder. The optimization 
block diagram is shown in Figure 5. 

 
Figure 5:  Nonlinear Sequential Quadratic Optimization 
Procedure for Damping Maximization 

It is worth mentioning that the optimization results 
depend highly on the chosen optimization parameters. 
There exists not only one unique solution, but also 
many possible power flow conditions, which are stable 
and possible to reach from the initial starting condition. 
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 The result of the optimization is a vector containing 

the new feature values for all dependent and independ-
ent features. Once the power system power flow is 
adjusted to the new operating point, the system damping 
will increase to the optimized damping result. 
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5 REALIZATION IN THE POWER SYSTEM 
While the counter measure optimization is based on 

the feature vector including only a small set of control 
variables, the TSO has much more control variables in 
the real power system that can be changed. Since there 
is no need to use only those control variables, which are 
included in the counter measure computation, the TSO 
may control all control variables in the power system. 
This includes all transformer tap positions and the gen-
erated reactive power at all generators, too. 

For realization, this study uses a generalized OPF to 
reach the desired operating point in the power system. 
Commonly, OPFs for power flow computations are 
based on a target function to minimize the power system 
losses. However, in this case, a generalized OPF is 
developed for minimizing a target function defined as 
the difference between the desired features resulting 
from the counter measure computation and the actual 
power flow. When the new feature values are ap-
proached in the system, it will result in damping im-
provement. It is assumed that the generated real power 
is subjected to be constant because of the unbundling 
between power transmission utilities and power genera-
tion utilities. Moreover, the power generation depends 
on demand and power generation contracts and the TSO 
is not allowed to interact without emergency. When the 
new feature values are reached by the generalized OPF 
with good accuracy, it is expected that the system 
damping will be improved considerably. However, due 
to the restrictions changing the power flow, the effect 
regarding stability improvements will be usually less 
than expected. 

The first example for counter measure estimation 
bases on the scenario, which is given above in Figure 3. 
As can be seen in the figure, the situation is insuffi-
ciently damped. Therefore, the counter measures are 



 

computed for this situation as described in the previous 
section. The CI input vector consists of 3 constant fea-
tures, 39 dependent features, and 8 control variables. 
The control variables are changed during the optimiza-
tion whereas the 39 dependent features are adjusted by 
the NN auto encoder in order to keep the power flow 
feasible. The new eigenvalues for the scenario after the 
estimated counter measures are taken are shown in 
Figure 6. The initial location, before counter measures 
are taken, is plot to the figure as well. Compared to the 
original scenario, the eigenvalue has shifted slightly and 
thus the system damping has improved only marginally. 

 

 
Figure 6:  Computed Eigenvalues According to the Proposed 
Counter Measures (OPF Control Variables: Transformers and 
Generator Voltages) and Original Dominant Eigenvalue from 
Base Scenario (Example 1) 

Because the improvement is not sufficient enough for 
any on-line tool, we decided to give the TSO more 
possibilities to act in the power system. Since the inter-
area oscillations are mainly caused by the large power 
transit between area B and area C, we define the real 
power of two generators as independent features. 

 

 
Figure 7:  Computed Eigenvalues According to the Proposed 
Counter Measures (OPF Control Variables: Transformers, 
Generator Voltages, and Generated Real Power at two Gen-
erators) and Original Dominant Eigenvalue from Base Sce-
nario (Example 1) 

One generator is located in area B and the other one 
is located in area C, and both are closed to the area-
connecting tie line. In this case the real power genera-
tion of those two generators can also be changed by the 
generalized OPF in order to reach the proposed targets. 
The results are shown in Figure 7. 

 
The figure shows much more improvement in terms 

of system damping than Figure 6. This result leads to 
the conclusion, that the change of transformer tap posi-
tions and reactive power is not sufficient in this particu-
lar case to reach a well-damped system state. But when 
some selected real power sources are taken into account 
too, the transmitted power between distant areas is de-
creased (real power transfer from area B to area C) and 
therefore the improvement can be enormous. A second 
example will demonstrate the impact of real power 
transits on the system stability. The basic scenario is a 
large power transit from area C to area A at the winter 
load condition. Both the computed eigenvalues for this 
scenario and the predicted region is shown in Figure 8. 

4%       3%        2%       1%       0%        -1% 
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Figure 8:  Computed Dominant Eigenvalue for a given Power 
Flow Scenario (Example 2) and Predicted Region Constructed 
by Eigenvalue Mapping 

Counter measures are estimated to improve the sys-
tem stability starting from the base situation described 
above and shown in Figure 8. When only transformer 
tap positions and generator voltages are variable in the 
optimization, the result is a slight decrease in system 
damping. The target features, estimated by the counter 
measure method, cannot be obtained by these variables. 
Therefore, the computed power flow situation is not the 
same as the power flow, which is proposed by the 
counter measure estimation. The system remains unsta-
ble with a damping of –1%. This indicates the necessity 
of real power variation for damping improvement. 

4%       3%        2%       1%       0%        -1% 
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Figure 9:  Computed Eigenvalues According to the Proposed 
Counter Measures (OPF Control Variables: Transformers, 
Generator Voltages, and Generated Real Power at two Gen-
erators) and Original Dominant Eigenvalue from Base Sce-
nario (Example 2) 

The counter measures are estimated once again for 
variable transformer tap positions, generator voltages, 
and generated real power at one selected generator, each 
in area A and area C. The OPF will run with the ex-
tended degree of freedom changing control variables in 
the system. The result is a noticeable increase in system 
damping. The eigenvalues are shown in Figure 9 to-
gether with the initial position of the dominant eigen-
value, which has shifted towards the stable region with 
a damping of more than 4%. It is obvious, the critical 
situations in the investigated power system were caused 
by long distance real power transmissions. Therefore, 
counter measures are most effective when the generated 
real power at selected generators is taken into account, 
too. 

6 CONCLUSION 
This study shows a method how counter measures for an 
insufficient damped system can be estimated using only 
some selected power system information. The oscillatory 
stability is assessed first using CI techniques. Then, 
counter measures are estimated based on a nonlinear opti-
mization algorithm where two NNs are engaged for eigen-
value calculation and power flow feasibility. This method 
is fast and can be implemented as additional on-line tool 
for TSOs. The optimization result is a vector with new 
feature values providing the TSO information about a 
better-damped system state. For reaching the desired 
power flow, the TSO can take different control actions not 
necessarily considered in the previous feature calculation. 
This is e.g. changes in transformer tap positions. As a 
powerful tool, it is suggested to use a generalized OPF 
where the target function is defined as the difference be-
tween the desired features resulting from the counter 

measure computation and the actual power flow. This OPF 
can consider all control actions available to the TSO. 4%       3%        2%       1%       0%        -1% 

To achieve considerable damping improvement it 
may be necessary to change the real power flow be-
tween areas swinging against each other. In the test 
system used in this study, control variables concerning 
mainly voltages and reactive power resulted in marginal 
improvements only. With allowing changing the real 
power generation in different areas, the generalized 
OPF was able to estimate a new power flow with no-
ticeably better system damping. 
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After Counter Measure 
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