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Gunnar Rätsch, FML, Max Planck Society, Tübingen
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Jacques Van Helden, Université Libre de Bruxelles, Belgium
Kristel Van Steen, University of Liège, Belgium
Jean-Philippe Vert, Ecole des Mines, France
Louis Wehenkel, University of Liège, Belgium
David Wild, University of Warwick, UK
Jean-Daniel Zucker, University of Paris XIII, France

4



Sponsors

The organizers gratefully acknowledge the following sponsors who have provided financial support or/and precious
help for the organization of the workshop.

Association des Ingénieurs de Montefiore, ULg Royal Academy of Belgium
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Saturday, September 13th

9h30-9h45 Welcome

9h45-10h45 Invited Talk

Pamela Silver (Harvard Medical School), Designing Biological Systems (p10)

10h45-11h15 Coffee break

11h15-12h30 Session 1

11h15-11h40 Saso Dzeroski and Ljupco Todorovski. Equation Discovery for Systems Biol-
ogy (p17)

11h40-12h05 Karoline Faust, Jérôme Callut, Pierre Dupont, and Jacques van Helden. Metabolic
Pathway Inference using Random Walks and Shortest-Paths Algorithms (p27)

12h05-12h30 Alexandre Irrthum and Louis Wehenkel. Predicting gene essentiality from expres-
sion patterns in Escherichia coli (p39)

12h30-12h55 Invited Talk

Alain Chariot (ULg). Deciphering the molecular mechanisms underlying human diseases through
interactome studies: a molecular approach (p12)

12h55-15h00 Lunch break and poster session

15h00-16h00 Invited Talk

Lukas Käll (University of Washington). Semi-supervised machine learning for shotgun pro-
teomics (p10)

16h00-16h30 Coffee break and poster session

16h30-17h20 Session 2

16h30-16h55 Artem Sokolov and Asa Ben-Hur. A Structured-Outputs Method for Prediction of
Protein Function (p49)

16h55-17h20 Omer Sinan Sarac, Rengul Cetin-Atalay, and Volkan Atalay. GOPred: Combining
classifiers on the GO (p59)

17h20-17h45 Invited Talk

Heribert Hirt (URGV Plant Genomics Institute & University of Vienna). Phosphoproteomic
approaches to study stress signal transduction networks in plants (p12)

19h00 Conference dinner at the restaurant “L’atelier”
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11h20-11h45 Selpi, Christopher H. Bryant, and Graham Kemp. Using mRNA Secondary Struc-
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Marc Muller (ULg). The zebrafish as a small vertebrate model system for bone development and
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Lodewyk Wessels (Netherlands Cancer Institute). Outcome prediction in breast cancer
(p11)
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15h45-16h10 Fan Shi, Geoff Macintyre, Christopher Andrew Leckie, Izhak Haviv, Alex Bous-
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Designing Biological Systems

Pamela A. Silver
Professor, Department of Systems Biology, Harvard Medical School and Director of the Harvard University
Graduate Program in Systems Biology

Abstract
Biology presents us with an array of design principles that extend beyond what is normally found in silico.
However, we don’t yet know how to make facile use what we know and there is a lot more to learn. As a start,
we are interested in using the foundations of biology to engineer cells in a simple and logical way to perform
certain functions. In doing so, we learn more about the fundamentals of biological design as well as engineer
useful devices with myriad applications. For example, we are interested in building cells that can perform specific
tasks, such as counting, measuring and remembering past events. Moreover, we design and construct proteins
and cells with predictable biological properties that not only teach us about biology but also serve as potential
therapeutics, cell-based sensors and factories for generating bio-energy.

Semi-supervised machine learning for shotgun proteomics

Lukas Käll
Department of Genome Sciences, University of Washington

Abstract
Shotgun proteomics refers to the analysis of protein mixtures by cleaving the proteins with an enzyme, detecting
the resulting peptides with tandem mass spectrometry and subsequently identifying the peptides with database
search algorithms. The approach is currently considered the most accurate way to determine the protein content
of a complex biological mixture. A limitation of existing machine learning efforts to improve peptide identifi-
cation in shotgun proteomics datasets are that they are based on fixed training sets and are hence unable to
compensate easily for variations in mass spectrometry conditions. Instead of curating representative training
sets for individual conditions, which in most cases is not practically feasible, we have devised algorithms that
are capable of learning directly from the individual shotgun proteomics datasets that we want to classify. Us-
ing semi-supervised learning to discriminate between correct and incorrect spectrum identifications we correctly
assign peptides to up to 77% more spectra, relative to a fully supervised approach.
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From microscopy images to models of cellular processes

Yoav Freund
Professor, Computer Science and Engineering, UCSD

Abstract
The advance of fluorescent tagging and of confocal microscopy is allowing biologists to image biochemical pro-
cesses at a level of detail that was unimaginable just a few years ago. However, as the analysis of these images
is done mostly by hand, there is a severe bottleneck in transforming these images into useful quantitative data
that can be used to evaluate mathematical models.
One of the inherent challenges involved in automating this transformation is that image data is highly variable.
This requires a recalibration of the image processing algorithms for each experiment. We use machine learning
methods to enable the experimentalist to calibrate the image processing methods without having any knowledge
of how these methods work. This, we believe, will allow the rapid integration of computer vision methods with
confocal microscopy and open the way to the development of quantitative spatial models of cellular processes.
For more information, see
http://seed.ucsd.edu/~yfreund/NewHomePage/Applications/Biomedical_Imaging.html.

Outcome prediction in breast cancer

Lodewyk Wessels
Professor, Bioinformatics and Statistics group, Netherlands Cancer Institute, Amsterdam, The Netherlands

Abstract
Background: Michiels et al. (Lancet 2005; 365: 488-92) employed a resampling strategy to show that the genes
identified as predictors of prognosis from resamplings of a single gene expression dataset are highly variable. The
genes most frequently identified in the separate resamplings were put forward as gold . On a higher level, breast
cancer datasets collected by different institutions can be considered as resamplings from the underlying breast
cancer population. The limited overlap between published prognostic signatures confirms the trend of signature
instability identified by the resampling strategy. Six breast cancer datasets, totaling 947 samples, all measured
on the Affymetrix platform, are currently available. This provides a unique opportunity to employ a substantial
dataset to investigate the effects of pooling datasets on classifier accuracy, signature stability and enrichment of
functional categories.
Results: We show that the resampling strategy produces a suboptimal ranking of genes, which can not be con-
sidered to be gold . When pooling breast cancer datasets, we observed a synergetic effect on the classification
performance in 73% of the cases. We also observe a significant positive correlation between the number of
datasets that is pooled, the validation performance, the number of genes selected, and the enrichment of specific
functional categories. In addition, we have tested five hypotheses that have been postulated as an explanation
for the limited overlap of signatures.
Conclusions: The limited overlap of current signature genes can be attributed to small sample size. Pooling
datasets results in more accurate classification and a convergence of signature genes. We therefore advocate the
analysis of new data within the context of a compendium, rather than analysis in isolation.

11

http://seed.ucsd.edu/~yfreund/NewHomePage/Applications/Biomedical_Imaging.html


Deciphering the molecular mechanisms underlying human diseases
through interactome studies: a molecular approach

Alain Chariot
Laboratory of Medical Chemistry, Unit of Signal Transduction, GIGA-research, University of Liège, Belgium

Abstract
Establishing the interactome of any given signalling protein is a powerful approach in order to better under-
stand what its biological roles are but also to precise to which extent this interactome is specifically altered in
human diseases. We have been using the yeast-two-hybrid approach in order to decipher the signalling path-
ways regulated by two families of transcription factors, namely NF-κ and IRFs. Both families have deregulated,
constitutive activities in a variety of solid and haematological cancers as well as in chronic inflammatory and
neurodegenerative disorders.
Our recent interactome data not only highlighted where, when and how these signalling proteins are involved
in signal transduction but also helped us to better understand how the post-translational modifications of those
proteins regulate their function. We will present examples of ongoing research projects in our laboratory dedicated
to the establishment of interacting networks and demonstrate how those networks help to better understand why
their deregulations lead to diseases.

Phosphoproteomic approaches to study stress signal transduction
networks in plants

Heribert Hirt
URGV Plant Genomics Institute, Paris, France & Department of Plant Molecular Biology, University of Vienna,
Austria

Abstract
We are interested to study protein kinase networks that function in environmental stress responses. As such
we have identified the MEKK1-MKK2-MPK4 signalling pathway which plays a role in resistance to both biotic
and abiotic stresses (Teige et al., 2004, Nakagami et al., 2006, Brader et al., 2007). To obtain a more global
view on signalling, the state of multiple signal pathways under any one condition and time is monitored by
phosphoproteomics and phosphosite-specific microarrays (de la Fuente van Bentem et al., 2007). On the basis of
these data, system hypotheses are developed to undergo reiterative experimental testing and remodeling. As an
exemple for the usefulness of this approach, I will discuss recent work on the plant-microbe interaction system
of Agrobacterium and Arabidopsis.

1. Teige, M., Scheikl, E., Eulgem, T., Doczi, R., Ichimura, K., Shinozaki, K., Dangl, J.L., and Hirt, H. (2004) The
MKK2 pathway mediates cold and salt stress signaling in Arabdiopsis. Mol. Cell 15, 141-152.

2. Nakagami, H., Soukupova, H., Schikora, A., Zarsky, V. and Hirt, H. (2006) A mitogen-activated protein kinase
kinase kinase mediates reactive oxygen species homeostasis in Arabidopsis. J. Biol. Chem. 28, 3267-78.

3. Brader, G., Djamei, A., Teige, M., Palva, T. Hirt, H. (2007) The MAP kinase kinase MKK2 affects diseasse
resistance in Arabidopsis. Mol. Plant Micr. Int. 20, 589-596.

4. van Bentem, S. and Hirt, H (2007) Using phosphoproteomics to reveal signalling dynamics in plants. Trends Plant
Sci. 12, 404-409

5. Djamei, A., Pitzschke, A., Nakagami, H., Rajh, I., Hirt, H. (2007) Trojan horse strategy in Agrobacterium trans-
formation: Abusing MAPK defense signaling. Science 318, 453 – 456.
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The zebrafish as a small vertebrate model system for bone
development and homeostasis

Marc Muller1, Jessica Aceto1, Julia Dalcq1, Peter Alestrom2, Rasoul Nourizadeh-Lillabadi2, Roland
Goerlich3, Viktoria Schiller3, Christoph Winkler4, Jörg Renn4, Matthias Eberius5, Klaus Slenzka6

1Laboratoire de Biologie Moléculaire et de Génie Génétique, Université de Liège
2Dept of Basic Sciences and Aquatic Medicine, Norwegian School Veterinary Science, Oslo, Norway
3Dept. of Molecular Biotechnology, RWTH Aachen
4Department of Biological Sciences, National University of Singapore
5LemnaTec GmbH, Würselen
6Orbitale Hochtechnologie Bremen (OHB)-System AG, Bremen

Abstract
Small fish models, mainly zebrafish (Danio rerio) and medaka (Oryzias latipes), have been used for many years as
powerful model systems for vertebrate developmental biology. Moreover, these species are increasingly recognized
as valuable systems to study vertebrate physiology, pathology, pharmacology and toxicology. In recent years,
analysis of gene function by mutation or genetic manipulation has shown that the homologs of many genes
previously described to be involved in bone development and homeostasis in mammals also play very similar
roles in small fish species. Bone physiology is affected by homologous genes in mammals and zebrafish. Thus,
small fish models represent a valuable tool to investigate bone development and pathology.
Small fish species present many advantages for studying development, such as transparency of the embryos,
external development, possibility for large scale mutagenesis screening, rapid development. These include large
number of embryos from one single clutch, small size, easy containment in water tanks. Many technologies
for visualizing and characterizing bones, such as specific staining or fluorescent transgenic animals, have been
adapted to small fish species and can be routinely performed on large numbers of larvae. Furthermore, its genome
sequencing and annotation is close to completion making whole genome analysis feasible.
Our principal objective is to study bone pathologies in zebrafish, such as osteoporosis induced by menopause
or prolonged space flight. We investigate the changes induced by mutations, bone-metabolizing drugs or micro-
gravity in small fish species. One type of approach is to combine whole genome approaches, such as microarray
expression analysis, chromatin immunoprecipitation (ChIP) or proteomics with a special emphasis on bone-
related genes. Data are obtained by microgravity simulation on ground and compared to the changes observed
in space. A complementary strategy is to carry out automated in vivo real time observations of transgenic larvae
expressing a fluorescent reporter protein in bone-related structures.
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Endeavour pinpoints genes causing cardiac defects in regions
identified by aCGH

Bernard Thienpont1, R. Barriot3, P. Van Loo3, L. Tranchevent3, M. Gewillig2, Y. Moreau3, K.
Devriendt1

1Center for Human Genetics, University of Leuven, Belgium
2Paediatric Cardiology Unit, University of Leuven, Belgium
3Department of Electrical Engineering, ESAT-SCD, University of Leuven, Belgium

Abstract
Array Comparative Genomic Hybridisation (aCGH) is a novel tool for high-resolution detection of submicroscopic
chromosomal insertions or deletions (indels). It opens opportunities in diagnostics as well as in the identifica-
tion of novel loci involved in the patients phenotype. We analysed 130 patients with an idiopathic syndromic
congenital heart defect (CHD) by array-CGH at 1Mb resolution, resulting in the detection of causal imbalances
in 22 patients (17%).
All indels as well as indels and gene mutations described in the CHD literature were collected in a centralized
repository CHDWiki, that allows a collaborative annotation of the genome. In 50% of the cases (11/22) the
indel affects a gene annotated to cause CHDs.
The other indels pinpoint regions that contain novel candidate genes for CHD. To identify these genes, an /in
silico/ prioritisation algorithm (based on Endeavour) was developed. Extensive /in silico/ testing demonstrated
a high discriminative power. The results of prioritizing genes from the indel regions were further verified by
analysing the expression of 45 high ranking genes by /in situ/ hybridisation on developing zebrafish embryos.
These analyses supported the involvement of two novel genes in human CHD: /BMP4/and /HAND2/.
In conclusion, we show that aCGH can provide an etiological diagnosis in 17% of patients with a syndromic
CHD. It can moreover contribute to the discovery of genes causing CHD in humans, and drive research on how
they contribute to normal and pathogenic cardiovascular development.
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Equation Discovery for Systems Biology

Sašo Džeroski and Ljupčo Todorovski

1 Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
2 Faculty of Administration, University of Ljubljana

Gosarjeva 5, SI-1000 Ljubljana, Slovenia

Abstract. Reconstructing biological networks is at the heart of systems
biology. While many approaches exist for reconstructing network struc-
ture, few approaches reconstruct the full dynamic behavior of a network.
We survey such approaches that originate from computational scientific
discovery, a subfield of machine learning. These take as input time course
data, as well as domain knowledge, such as partial knowledge of the
network structure, and output differential equation models describing
both the structire and dynamics of the networ. We demonstrate the use
of these approaches on illustrative example tasks of reconstructing the
complete dynamics of biochemical reaction networks.

1 Introduction

The (re)construction of biological networks, including metabolic, regulatory and
signalling networks, is of fundamental and immediate importance to the emerg-
ing field of computational systems biology [1]. The task to be addressed first
in this context is the reconstruction of the structure of the network: The sto-
ichiometric matrix identifies the reactions in the network with the participat-
ing molecular compounds (rows represent compounds, columns reactions). For
metabolism, the networks often focus on just the metabolites, while for regula-
tory and signalling networks the inclusion of proteins is essential.

The dynamic behavior of biological networks is typically modelled by ordi-
nary differential equation (ODE) models. Besides the dependences between com-
pounds in the network, as specified by network structure, ODE models specify
the exact nature of these dependencies through the functional form of the ODEs
and their constant parameters (e.g., reaction rates). In a typical approach to
ODE modeling of a biological network, a human domain expert specifies the
structure of the network and the functional form of the ODEs. Time course data
about the behavior of the target reaction network can be used to determine the
values of the constant parameters in the ODEs.

Determining a set of ODEs from given time course data is referred to as sys-
tem identification. The task of determining the functional form of a set of ODEs
is referred to as structure identification. The task of determining appropriate
values for the constant parameters is called parameter estimation. In this arti-
cle, we will discuss approaches to performing both of these tasks simultaneously.
The approaches we survey come from the area of machine learning [2, 3], more
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2 Sašo Džeroski and Ljupčo Todorovski

specifically computational scientific discovery [4, 5], and are directly relevant to
but not widely known in the systems biology community.

2 Computational scientific discovery of ODE models

Computational scientific discovery (CSD) [4, 5] is concerned with developing
computer programs that automate or support some aspects of scientific dis-
covery. The earliest and most prominent CSD systems, such as BACON [4],
dealt with the problem of equation discovery, finding scientific laws in the form
of equations. While early CSD considered algebraic equations, they were later
extended to learn ODE models from time course data [6].

CSD is a subfield of machine learning [2, 3] and artificial intelligence [7]. From
this broader context, it inherits the fundamental approach of problem solving as
heuristic search. In particular, CSD programs for ODE discovery would search
the space of ODE structures (functional forms) guided by heuristics related to
the degree of fit of the ODEs to the data. To evaluate these, parameter estima-
tion needs to be performed for each ODE structure: as we are often interested
in structures nonlinear in the parameters, computationally expensive nonlinear
optimization has to be used.

Another source of computational complexity is the size of the space of possible
ODE model structures: This is typically huge and can easily be infinite. Of crucial
importance is thus to define the space of ODE structures so as to keep it small
and pertinent to capturing the dynamics of the modelled system. To achieve
this, the use of domain knowledge in equation discovery has been proposed [8].

Different types of domain knowledge can be used in ODE discovery. We
can start from existing ODE models for the system at hand (that are par-
tial/incomplete/inaccurate) and revise/improve them in light of observed time
course data. We can also provide a set of basic components as building blocks
from which ODE models can be built (akin to compositional modelling [9]). Fi-
nally, we can provide a set of constraints that the ODE models we are willing to
consider have to satisfy. Common to all of these is the explicit (declarative) state-
ment of the modelling assumptions made concerning the space of ODE models
considered. Below we briefly describe several CSD approaches to ODE discovery
that can use domain knowledge of these types and illustrate them with examples
related to biological networks.

3 Constrained induction of polynomial equations

The CSD system CIPER (Constrained induction of polynomial equations for re-
gression) [10, 11] considers the space of polynomial equations, which are linear in
the parameters, and uses linear regression for parameter estimation. It performs
heuristic search of this space, ordered by the relation of subpolynomial on struc-
tures: a polynomial structure is a subpolynomial of another, if we can obtain the
first from the second by omitting some parts (terms or appearances of variables
in terms). The search proceeds from simple structures (starting with a constant
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Equation Discovery for Systems Biology 3

term only) to more complex ones by adding new linear terms or multiplying
existing terms with a variable.

Fig. 1. A reaction network (a), consisting of six reactions, that was successfully re-
constructed from simulated data and a partial specification of the network structure
by constrained induction for polynomial regression (CIPER) [11]. The parts given in
bold are assumed not to be known for the reconstruction task. The partial specifica-
tion of the equation structure (b) is derived from the known part of the network: the
polynomials in the partial structure have to be subpolynomials of the corresponding
polynomials found by CIPER and are supplied to CIPER as subsumption constraints.
Simulated data were obtained from the complete equations (c), which were successfuly
reconstructed when CIPER was given both simulated data and a partial structure.
Given only simulated data, CIPER searched a much larger space of structures and
failed to reconstruct correctly the most complex equations, i.e., the ones for ẋ1 and ẋ2.

(a) A partially specified network of reactions

{x5,x7} → {x1}; {x1} → {x2, x3}
{x1, x2,x7} → {x3}; {x3} → {x4}
{x4} → {x2,x6}; {x4,x6} → {x2}

(b)Partial structure/(c)Full equations ẋ1 = 0.8 · x5 · x7 − 0.5 · x1 − 0.7 · x1 · x2 · x7

ẋ2 = 0.7 · x1 + 0.2 · x4 + 0.1 · x4 · x6 − 0.3 · x1 · x2 · x7

ẋ1 = −c · x1 + c · x5 − c · x1 · x2 ẋ3 = 0.4 · x1 + 0.3 · x1 · x2 · x7 − 0.2 · x3

ẋ2 = c · x1 + c · x4 − c · x1 · x2 ẋ4 = 0.5 · x3 − 0.7 · x4 · x6

ẋ3 = c · x1 + c · x1 · x2 − c · x3 ẋ5 = −0.6 · x5 · x7

ẋ4 = c · x3 − c · x4 ẋ6 = 0.2 · x4 − 0.8 · x4 · x6

ẋ5 = −c · x5 ẋ7 = −0.1 · x1 · x2 · x7 − 0.1 · x5 · x7

For its search, the original CIPER uses a heuristic that combines model error
and model complexity in an ad-hoc fashion. The latest version of CIPER [12]
uses the minimum-description length principle (MDL) [13] to combine these in a
principled manner. It can take into account subsumption constraints, specifying
a structure that should subsume the model to be found: These can be used, for
example, to specify partially known equation structures. CIPER [14] can also
find equations for several variables simultaneously: This is beneficial for model-
ing reaction networks, as variables that appear together in a reaction typically
share terms in the corresponding equations. Note that CIPER has been designed
primarily for algebraic equations: It handles ODEs by numerically introducing
time derivatives of the system variables.

Constraints in CIPER are useful in the context of reconstructing reaction
networks [11] from partial structures (see Figure 1). If we consider a simplified
version of the S-system [15], where simple products are used instead of products
of powers, we obtain polynomial ODEs. Given time course data obtained by sim-
ulating the ODEs and the constraints resulting from the partial network (i.e.,
polynomial) structure, CIPER successfully reconstructs the ODE model. With-
out the constraints, however, the reconstruction is not completely successful:
This illustrates the crucial role that domain knowledge can play.
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4 Sašo Džeroski and Ljupčo Todorovski

4 Grammar-based equation discovery

To represent the possible space of ODE structures, we can view it as a language,
with individual equation structures being sentences. A formal grammar can then
be used to describe the language. The equation discovery system LAGRAMGE
[16] uses the formalism of context-free grammars (CFG) for this purpose.

Formally, a CFG is a four-tuple (S,N,T,P), where S is a starting symbol from
N, the set of non-terminals, T is a set of terminals, and P is a set of produc-
tions. Nonterminals (or syntactic categories), represent classes of subexpressions
or phrases in the language represented by the grammar (e.g., a nounphrase in
English; a term in a polynomial). Terminals are the symbols that actually appear
in the sentences of the language (e.g., words and punctuation in English; variable
names or arithmetical operators). Productions (or rewrite rules) specify how a
nonterminal can be replaced by a sequence of (terminals and) nonterminals (e.g.,
a determiner followed by a noun is a nounphrase; a term is a polynomial; adding
a term to a polynomial we obtain a polynomial).

Given a context free grammar, we can check whether a sentence/expression
belongs to the language defined by the grammar (parse task) or generate ex-
pressions that belong to the language (generate task). For both purposes, we use
the notion of a parse tree, which describes the way a certain expression can be
derived using the grammar productions.

LAGRAMGE performs heuristic (or exhaustive) search over the space of
ODE model structures defined by depth-bounded derivation trees for a given
CFG. In particular, beam search is used, which keeps several alternative ODE
structures found to be best so far. The heuristic (quality criterion) used is a com-
bination of the ODE model error and its complexity. To calculate the ODE model
error with respect to given time course data, LAGRAMGE fits the constant pa-
rameters by non-linear optimization using the ALG 717 [19] generalization of
the NL2SOL adaptive nonlinear least-squares algorithm [20].

Grammars are an expressive formalism for representing many different types
of domain knowledge, including existing models to be revised, incomplete/partial
models, and knowledge-based building blocks for modelling in a particular do-
main [8]. Note, however, that a grammar is specific to a given modelling task at
hand. Also, grammar formalisms make little contact with the formalisms used
by mathematical modellers and scientists and are thus difficult to use.

5 Representing process-based models

The representation of process-based models (PBMs) and process-based domain
knowledge (PBDK) is more general and accessible to scientists and engineers,
who often state their explanations in terms of processes that govern the be-
haviour of an observed dynamic system. It also connects the explanatory and
predictive aspects of modelling, by directly linking processes to the mathemat-
ical formulations cast in terms of equations. A basic set of generic processes or
process classes can be identified for a domain of interest: together with some for-
mulations cast in terms of equations, this constitutes domain knowledge than can
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Fig. 2. Process-based models and domain knowledge. (a) An example network of two
reactions and its corresponding ODE model according to the S-system formalism. (b)
Process-based domain knowledge (PBDK) for ODE models based on the S-system
formalism ready to use by LAGRAMGE2.0. There is only one class of processes, corre-
sponding to reactions, where each reaction gives rise to a product of powers of the con-
centrations of participating substrates, products and enzymes: The combining scheme
adds up the influences of all reactions in which a component participates to obtain its
rate of change. (c) A metabolic system (a) taken from Arkin and Ross [18] and used
by Gennemark and Wedelin [17] to evaluate their system on the task of reconstructing
the dynamics of the system from simulated data. The corresponding ODEs are given
in the Appendix of [17], equations (3)-(12). (d) LAGRAMGE 2.0 PBDK for modelling
the metabolic system from (c) and the three reactions in the corresponding PBM.

a).

Reaction({e},{a,b},{c})
Reaction({},{c},{d})

ȧ = −βa · e · aγa · bγb

ḃ = −βb · e · aγa · bγb

ċ = αc · e · aγa · bγb − βc · cγc

ḋ = αd · cγc ,

b).
type Concentration is nonnegative real number

type Substance is Concentration
type Substances is set(Substance)

type Enzyme is Concentration
type Enzymes is set(Enzyme)

process class Reaction(Enzymes es, Substances ins,
Substances prods)

condition ins ∩ prods = ∅
expression

Q
e∈es e *

Q
i∈ins pow(i, const( , 0, 1, Inf))

combining scheme Biochemical kinetics(Substance s)
ṡ =

P
s∈prods const( , 0, 1, Inf) ∗ Reaction(es, ins, prods))

-
P

s∈ins const( , 0, 1, Inf) ∗ Reaction(es, ins, prods))

d).
process class Reaction(Concentration E, Concentration I, Concentration O)
expression const(vr, 0, 1, 50) * saturation(O)
- const(vf, 0, 1, 50) * saturation(I)*inhibition(E)

function class Saturation(Concentration c)

function class NoSaturation is Saturation
expression c

function class MichaelisMenten is Saturation
expression c / (c + const(kd, 0.1, 1, 50))

function class Inhibition(Concentration e)
expression 1/(1+e/const(ki, 0.1, 1, 50))

combining scheme Biochemical Kinetics(Concentration c)
ċ =

P
Reaction(e, s, o) − P

Reaction(e, i, o)

Reaction(I2,S3,S5), Reaction(I1,S3,S4), Reaction(S3,S6,S7)

c.)

be re-used across different modelling tasks in the same domain. In the domain of
population dynamics, processes include the growth and decay of a population or
interactions between species [21], while in system biology processes correspond
to biochemical reactions.

Several formalisms for representing PBMs and PBDK have been proposed
recently. Todorovski and Džeroski [22–24, 8] propose a formalism for PBDK that
comprises three components: a hierarchy of variable types, a hierarchy of process
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6 Sašo Džeroski and Ljupčo Todorovski

and function classes, and a combining scheme. The processes and functions relate
variable types and specify model structures for individual processes, while the
combining scheme specifies how the models of individual processes are combined
into a model of the entire observed system. Figure 2b depicts PBDK for modeling
biochemical reactions (in the S-system style [15]) expressed in this formalism
and an example reaction network, its processes (2a) and corresponding equation
structures. Figure 2d depicts PBDK for the metabolic system from Figure 2c.

Fig. 3. Process-based domain knowledge for modeling metabolic networks (a) and a
process-based model (b) of the network depicted in Figure 2c. The PBM consists of
six processes arising from the three instances of the generic process reaction needed to
model the system, as described in the PBDK given in Figure 3a.

a).

generic process Reaction
variables E{concentration}, I{concentration}, O{concentration}
processes Positive Flux(I, O), Negative Flux(E, I, O)

generic process Positive Flux No Saturation{Positive Flux}
variables I{concentration}, O{concentration}
parameters vr[0:50]
equations D[I,t,1] = vr * O, D[O,t,1] = -D[I,t,1]

generic process Positive Flux Saturated{Positive Flux}
variables I{concentration}, O{concentration}
parameters vr[0:50], kd[0.1:50]
equations D[I,t,1] = vr * O / (O + kd), D[O,t,1] = -D[I,t,1]

generic process Negative Flux No Saturation Inhibited{Negative Flux}
variables E{concentration}, I{concentration}, O{concentration}
parameters vf[0:50], ki[0.1:50]
equations D[O,t,1] = vf * I / (1 + E/ki), d[I,t,1] = -d[O,t,1]

generic process Negative Flux Saturated Inhibited{Negative Flux}
variables E{concentration}, I{concentration}, O{concentration}
parameters vf[0:50], kd[0.1:50], ki[0.1:50]
equations D[O,t,1] = vf * I / ((I + kd) * (1 + E/ki)), d[I,t,1] = -d[O,t,1]

b).

process Reaction(I2, S3, S5)
process Positive Flux Saturated(S3, S5, vr = 1, kd = 5)
process Negative Flux Saturated Inhibited(I2, S3, S5, vf = 5, kd = 5, ki = 1)

process Reaction(I1, S3, S4)
process Positive Flux Saturated(S3, S5, vr = 1, kd = 5)
process Negative Flux Saturated Inhibited(I1, S3, S4, vf = 5, kd = 5, ki = 1)

process Reaction(S3, S7, S6)
process Positive Flux Saturated(S7, S6, vr = 1, kd = 5)
process Negative Flux Saturated Inhibited(S3, S7, S6, vf = 10, kd = 5, ki = 1)

While the above formalism can be used to represent PBDK, Langley et al. [25,
26] propose a formalism for representing both PBDK and PBMs. This formalism
uses generic processes to describe PBDK and specific processes (with specific
variables and constant parameter values) to describe PBMs. Figure 3b depicts
a process-based model of the metabolic system from Figure 2c. The PBDK
in Figure 3a is a special case of domain knowledge/generic processes describing
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irreversible and reversible chemical reactions as well as inhibition and activation.
Such general domain knowledge for modelling metabolic kinetics has been given
by Langley et al. [27].

6 Learning process-based models

LAGRAMGE2.0 [22–24, 8] induces PBMs by transforming PBDK into grammars
and applying LAGRAMGE in turn. LAGRAMGE2.0 expects as input PBDK as
described above (variable types, processes and functions, combining schemes),
as well as a modelling task specification, which lists the measured variables
and their types and the classes of processes that are expected to appear in the
model. Given these, LAGRAMGE2.0 matches the type of variable from the task
specification against the types of variables in the process and function classes and
transforms the latter into grammar productions specifying modelling alternatives
for individual processes. Similarly, the combining scheme is transformed into a
grammar production that puts process models together in a single model of the
entire system. The obtained grammar specifies the space of ODE models that
LAGRAMGE has to search to find a model that optimally fits the observed
system behaviour (time course data).

IPM [26], on the other hand, performs heuristic search directly through
the space of PBMs. Given a modelling task specification, IPM instantiates
generic processes into specific ones that represent model components. Again,
IPM searches through the space of combinations of model components in order
to find the optimal one. For each candidate model, IPM performs full simula-
tion of the model equations and matches the simulated against the observed
behaviour. It is thus capable of inducing models that include unobserved system
variables, i.e., variables whose values have not been directly measured/observed.
IPM has been applied in the domain of biochemical kinetics as reported in [27],
addressing the task of modelling glycolysis from measured data [28].

Note that the IPM search through the space of all combinations of model com-
ponents leads to a search space whose size grows exponentially with the number
of processes included in the model. To make this strategy feasible for complex
domains, one must add structural constraints, specifying, e.g., which processes
should be included in the system or which processes are mutually exclusive. The
HIPM system [29] accepts structural constraints stated as a hierarchy of generic
processes.

7 Other recent work

Recent work in CSD related to the discovery of biochemical reaction networks
includes work on learning qualitative models of metabolic [30] and genetic [31]
networks. Garet et al. [30] learn qualitative differential equations, which have the
same functional form as ODE models for the S-system formalism, with products
of variables (instead of powers thereof), but no specific values for the constant
coefficients. Zupan et al. [31] reconstruct qualitative genetic networks from the
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outcomes of knock-out and overexpression experiments and background knowl-
edge (kown gene-to-gene and gene-to-outcome interactions).

The above methods infer the structure of a network, without describing its
dynamic behavior. Many methods address this task, a survey of which is given
by Price and Schmulevich [1]. Network structure can be reconstructed by using
information from the literature and databases, or by reverse engineering from
genome-wide data on transcriptomics and proteomics [32]. In the latter case,
steady state data [33] or time course data [34] can be used as input. An example
is the method by Arkin and Ross [18], where a factor analysis of the correlations
between time course data on measured variables is conducted and the results
are manually interpreted to arrive at a network structure.

A few approaches have explicitly addressed the task of reconstructing both
network structure and dynamics, two of which come from the area of evolu-
tionary computation. Koza et al. [35] use genetic programming to reconstruct
a metabolic network, where simulated data and information on the types of re-
actions are taken into account. Kikuchi et al. [36] use a genetic algorithm to
reconstruct a genetic network defined in the S-system formalism [15]. Finally, a
recent approach by Gennemark and Wedelin [17] performs heuristic search over
an ad-hoc defined space of ODE structures to rediscover a metabolic [18] and a
genetic network [36].

8 Outlook

The task of reconstructing both the structure and dynamics of biochemical re-
action networks is of central interest to computational systems biology. In this
article, we have given a survey of methods that perform this task, taking as input
time course data, as well as different types of domain kowledge (such as partial
network structure). Given that the task is data intensive, the ability of these
systems to leverage the data with domain knowledge (and potentially reduce
the amount of data needed) is a key feature of interest.

Many challenges remain to be addressed for the successful use of such meth-
ods. One of these is the task of parameter identification for ODE structures from
short time courses, which are the norm in systems biology. Another task is the
casting of domain knowledge for different formalisms that are frequently used to
model reaction networks (such as the S-system) into a form usable by computa-
tional discovery approaches. Finally, while the approaches outlined above could
in principle use the output of network structure reconstruction approaches, it
still remains an open issue how to formulate discrete network structures as do-
main knowledge for discovering models of the dynamic behavior of networks.

Acknowledgements. An extended and revised version of this overview ar-
ticle has been accepted for publication and will appear in Current Opinion in
Biotechnology, 19:360–368 under the title Equation discovery for systems biology:
finding the structure and dynamics of biological networks from time course data.
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Abstract. In this work, we present different algorithmic approaches to
the inference of metabolic pathways from metabolic networks. Metabolic
pathway inference can be applied to uncover the biological function of
sets of co-expressed, enzyme-coding genes.
We compare the kWalks algorithm based on random walks and an alter-
native approach relying on k-shortest paths. We study the influence of
various parameters on the pathway inference accuracy, which we measure
on a set of 71 reference metabolic pathways. The results illustrate that
kWalks is significantly faster and has a higher sensitivity but the posi-
tive predictive value is better for the pair-wise k-shortest path algorithm.
This finding motivated the design of a hybrid approach, which reaches
an average accuracy of 72% for the given set of reference pathways.

Key words: metabolic pathway inference, kWalks, k-shortest paths

1 Introduction

The products of co-expressed genes are often involved in a common biological
function. In particular, the metabolic response to nutrients is generally regu-
lated at multiple levels, including transcriptional. One approach to understand
the function of co-expressed enzymes is to uncover the biological pathways in
which they participate. This is usually achieved by mapping reactions associated
to enzyme-coding genes on pre-defined metabolic pathways, i.e. [5, 11]. However,
this approach does not deal well with transverse pathways (a set of reactions
mapping to several pathways) and it fails if reactions belong to a pathway not
yet included in the pre-defined set of reference pathways. Another strategy has
been to infer metabolic pathways by finding the shortest paths between two reac-
tions (e.g. those catalyzed by two co-expressed enzymes). One problem with this
approach is the presence of compounds involved in a large number of reactions
(co-factors and side-compounds like H2O, ATP, NADPH), which tend to be used
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2 Inference of pathways from metabolic networks

as shortcuts to connect any pair of nodes. Thus, a naive path finding approach
results in biochemically invalid pathways, which contain co-factors or side com-
pounds as intermediates. In our previous work, we tested different strategies to
overcome this problem. First, we excluded a selected subset of highly connected
compounds from the network [12, 13]. However, the choice of the compounds
to be excluded is an issue, since some among the highly connected compounds
participate in pathways as valid intermediate (e.g. purine nucleotide biosyn-
thesis). We therefore introduced weighted networks [3, 4], in order to penalize
highly connected compounds without excluding them from the graph. This ap-
proach yielded satisfactory results for the two-end linear path finding. In the
present work, we extend the approach to multiple-end pathway inference: taking
as input a set of seed reactions, we extract a subgraph that connects ”at best”
those seed nodes, according to some relevance criteria. The resulting pathway
can correspond to an already known pathway, but it can also be a variant or a
combination of known pathways, or even a novel pathway.
Pathway inference is as a more flexible alternative to pathway mapping. For
instance, it can be used to infer pathways from operons, co-expressed genes or
gene fusion events. It may also be applied in metabolic reconstruction in order
to suggest possible pathways from genomic data for organisms with unknown
metabolism.
We thoroughly evaluated the pathway inference performance of three algorithms:
the pair-wise k-shortest paths algorithm, the kWalks algorithm [1, 6] and a hybrid
algorithm that combines the former two.

2 Materials and Methods

2.1 Metabolic graph

In order to infer metabolic pathways, we need to represent metabolic data as a
graph. We selected MetaCyc [10], the well-curated tier of BioCyc [2], as our data
source, and constructed a bipartite, directed graph from all small molecule entries
and their associated reactions contained in the OWL file of MetaCyc (Release
11.0). The resulting graph consists of 4,891 compound nodes and 5,358 reaction
nodes. As discussed in [3], the direction of a reaction depends on physiological
conditions in an organism (substrate and product concentrations, temperature).
Since our graph is composed of data obtained from several hundred organisms,
we considered that each reaction can be traversed either in forward or in reverse
direction. Consequently, each reaction was represented as a pair of nodes, for
the forward and the reverse directions, respectively. To prevent the k-shortest
paths algorithm to cross the same reaction twice, forward and reverse direction
are mutually exclusive. After this duplication of reaction nodes, we obtain a
directed graph with 15,607 nodes and 43,938 edges. From now on, we will refer
to this graph as the MetaCyc graph.
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2.2 Reference pathways

We obtained a selected set of 71 known S. cerevisiae pathways from BioCyc
(Release 11.0). All pathways in this reference set consist of at least 5 nodes
and are included in the largest connected component of the MetaCyc graph. On
average, the pathways are composed of 13 nodes and in addition, more than half
of them are branched and/or cyclic.

2.3 Algorithms

All algorithms tested here take as input the nodes of interest (termed seed nodes
or seeds) as well as a weighted input graph, and return a subgraph that connects
the seeds.

Pair-wise k-shortest paths This approach relies on repetitively calling a
k-shortest paths algorithm. K-shortest paths algorithms enumerate all simple
paths (paths containing each node only once) between a start and an end node
in the order of their length. In a weighted graph, paths are listed in the order of
their weight.
In the first step of pair-wise k-shortest paths, a k-shortest paths algorithm [7] is
called successively on each pair of seed nodes. A k-shortest instead of a shortest
paths algorithm is employed to ensure that all lightest paths between a seed
node pair are collected. The resulting path sets are stored in a path matrix.
The minimal weight between each node pair is stored in a distance matrix. For
the undirected MetaCyc graph, these matrices are symmetric. For the directed
MetaCyc graph, the reverse paths between two seeds can be obtained by revers-
ing the order of path nodes and their reaction directions.
In the second step of the algorithm, the subgraph is constructed from the path
sets, starting with the lightest path set. Step-wise, more path sets are merged
with the subgraph in increasing order of their weight. The process stops if either
all seeds belong to one connected component of the subgraph or all path sets
have been merged with the subgraph. The resulting subgraph represents the in-
ferred pathway.
This algorithm is time-consuming, since the number of calls to the k-shortest
paths algorithm increases quadratically with the seed node number.

kWalks The key idea of kWalks is that some edges in the input graph are
more relevant than others to connect the seed nodes. The relevance of an edge
is measured as the expected number of times it is visited along random walks
connecting seed nodes. These expected passage times can be obtained using
basic Markov chain theory [8]. A transition probability matrix P is derived from
the adjacency matrix of the graph using simple edge weight normalization. For
each seed node x, the submatrix xP is defined by considering only the lines
and columns of P corresponding to x and all non-seed nodes. The fundamental
matrix xN = (I−xP )−1 contains useful information for computing the desired
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expectation. The entry xNxi gives the number of times node i has been visited
during walks starting in node x and ending when any seed node (except x) is
reached. The expected number of passage time xE(i, j) on an edge i → j is
obtained by multiplying xNxi by the probability Pij of transiting from node i
to node j. Finally, the relevance of an edge i→ j is given by averaging xE(i, j)
over all seed nodes x. This technique is time-consuming since it relies on matrix
inversions, which are generally performed with a cubic time complexity in the
number of nodes in the graph.
An alternative approach considers random walks of a bounded length, i.e. only
walks up to a prescribed length are allowed. The passage time expectations
during such walks can be computed in linear time with respect to the number of
graph edges and the maximum walk length using forward-backward recurrences
[1, 6]. Moreover, bounding the walk length controls the level of locality while
connecting seed nodes, which can be useful for pathway recovery.
Once the edge relevance has been obtained, a subgraph can be extracted by
adding edges in the order of their relevance with respect to seed nodes, until
either all seed nodes are connected or all edges have been added.
The output of kWalks is a list of edge relevance values. We can replace the
original edge weights by these relevances and iterate kWalks by re-launching it
on the input graph with updated weights.
In contrast to pair-wise k-shortest paths, the pathways inferred by kWalks may
contain branches ending in non-seed nodes. We remove these branches in a post-
processing step.

Hybrid approach The hybrid approach combines kWalks with the pair-wise
k-shortest paths algorithm. First, kWalks is launched to extract a fixed percent-
age of the input graph. The final pathway is then extracted from the kWalks
subgraph using the pair-wise k-shortest paths algorithm.

2.4 Parameter combinations

The performance of kWalks, pair-wise k-shortest paths and the hybrid approach
was evaluated with a number of different parameter values.

Iteration number For the kWalks and hybrid algorithm, we ran 1, 3 or 6
iterations of the kWalk algorithm.

Graph weight We weight the metabolic graph to avoid highly connected com-
pounds. As in our previous work [3, 4], we assign to each compound node its
degree as weight (compound degree weight) or use an un-weighted graph for
comparison (unit weight). In addition, we test a weighting scheme where com-
pound node weights are taken to the power of two (inflated compound degree
weight). Since the pair-wise k-shortest paths and kWalks assume weights on
edges rather than nodes, the initial degree-based node weights are transformed

30



Inference of pathways from metabolic networks 5

into edge weights by taking the mean of the weights of the nodes adjacent to an
edge.

Re-use of kWalks edge relevances In the hybrid approach, we may either
use the weights from the input graph or the edge relevances computed by kWalks
to weight the extracted subgraph. In addition, when iterating kWalks, we may
modify the edge relevances by inflating them (taking them to the power of a
positive integer) to increase the difference between relevances. We tested all
combinations resulting from these options.

Directionality In order to support reaction reversibility, we represent each
reaction by two nodes, one for the direct and one for the reverse direction. In
addition, we also constructed an undirected version of the MetaCyc graph, where
each reaction is represented by only one node, which is connected to compound
nodes by undirected edges.

Fixed subgraph extraction In the hybrid approach, after the last kWalks
iteration we extract a subgraph of fixed size from the input graph. The size of
this subgraph has been varied from 0.1% to 10% of the edges ranked by relevance.
The subgraph obtained by fixed size extraction may consist of more than one
component.
The subgraph size optimization has been performed in the directed, compound-
weighted MetaCyc graph without iterating kWalks or inflating edge relevances.
The input graph weights rather than the edge relevances were fed into the second
step of the hybrid algorithm.

2.5 Evaluation procedure

For each pathway, several inferences are tested, with increasing seed node num-
ber, in order to test the impact of the seed number on the accuracy of the result.
For each of the 71 reference pathways, we first select the terminal reactions as
seeds, we infer a pathway that interconnects them, and we compare the nodes
of the inferred pathways with those of the annotated pathway. Then, we pro-
gressively increase the number of seed reactions by adding randomly selected
nodes of the reference pathway, and re-do the inference and evaluation, until all
reactions of the pathway are selected as seeds.
We define as one experiment the set of all the pathway inferences performed for
a given parameter value combination (e.g. pair-wise k-shortest paths on directed
graph with compound node weights). We did 82 such experiments to find the
optimal parameter value combination for each algorithm.

Scores The accuracy of an inferred pathway is calculated based on the corre-
spondence between its non-seed nodes and those of the reference pathway. We
define as true positive (TP) a non-seed node that is present in the reference as
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6 Inference of pathways from metabolic networks

well as the inferred pathway. A false negative (FN) is a non-seed node present
in the reference but missing in the inferred pathway and a false positive (FP) is
a non-seed node absent in the reference but found in the inferred pathway. The
sensitivity (Sn) is defined as the ratio of inferred true instances versus all true
instances, whereas the positive predictive value (PPV) gives the ratio of inferred
true instances versus all inferred instances.

Sn =
TP

(TP + FN)
(1)

PPV =
TP

(TP + FP )
(2)

We can combine sensitivity and positive predictive value to calculate the
accuracy as their geometric mean.

Accg =
√

Sn ∗ PPV (3)

3 Results

3.1 Study case aromatic amino acid biosynthesis

To illustrate the idea of pathway inference, we will discuss the aromatic amino
acid biosynthesis pathway. Figure 1A shows the pathway as annotated in BioCyc.
This pathway is active in E. coli and produces aromatic amino acids (tyrosine,
tryptophan and phenylalanine) from erythrose-4-phosphate. The first part of this
pathway is linear and ends in chorismate. From chorismate onwards, the pathway
splits into three branches, one leading to tryptophan and the other bifurcating
to phenylalanine and tyrosine respectively. The entire pathway, excluding the
terminal compounds, is made up of 34 compound and reaction nodes.
The aromatic amino acid pathway is tightly regulated on the transcriptional
level. In presence of one of the end products (that is an aromatic amino acid), the
corresponding synthesis branch is down-regulated. The linear part of the path-
way is also subject to regulation (on the enzymes catalyzing the first, fifth and
sixth reaction) integrating feed-back loops from the three end-products. From
the set of transcriptionally regulated reactions, we selected DAHPSYN-RXN,
SHIKIMATE-KINASE-RXN, PRAISOM-RXN, PHEAMINOTRANS-RXN,
TYRAMINOTRANS-RXN and RXN0-2382 (BioCyc identifiers) as seed nodes.
In our previous 2-end path finding approach [3, 4] we were restricted to only
two seed nodes. To simulate this situation, we applied the pair-wise k-shortest
paths algorithm on the start (DAHPSYN-RXN) and one of the end reactions
(RXN0-2382). The resulting pathway, shown in Figure 1B, connects the two
seed reactions via a shortcut, bypassing a major part of the reference pathway.
The resulting linear path fits the branched reference pathway with a low ac-
curacy (14%). However, if we repeat the inference with the full seed node set,
we recover the reference pathway with an accuracy of 97% (Figure 1C). Thus,
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Inference of pathways from metabolic networks 7

without surprise, we observe that multi-seed subgraph extraction is more appro-
priate to infer branched pathways than 2-end path finding. In the next section,
we evaluate various algorithms and parametric choices for the multi-seed sub-
graph extraction.

DAHPSYN-RXN

D-erythrose-4-phosphate

3-DEHYDROQUINATE-SYNTHASE-RXN

3-DEHYDROQUINATE-DEHYDRATASE-RXN

3-dehydroquinate

3-deoxy-D-arabino-heptulosonate-7-phosphate

3-dehydro-shikimate

RXN-7968 SHIKIMATE-5-DEHYDROGENASE-RXN

SHIKIMATE-KINASE-RXN

shikimate

shikimate-3-phosphateshikimate-3-phosphate

2.5.1.19-RXN
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Fig. 1. Aromatic amino acid biosynthesis pathway as annotated in BioCyc (A), inferred
with two seed reactions (B) and inferred with 6 seed reactions (C). For both inferences,
the pair-wise k-shortest paths algorithm has been run on the compound-weighted,
directed MetaCyc graph. Seed reactions have a blue border, false positive nodes an
orange border and true positive nodes a green border. Compound nodes are represented
as ellipses and labeled with their names, whereas reaction nodes are drawn as rectangles
and labeled with their BioCyc identifiers.

3.2 Parameter combinations

The performance of the pair-wise k-shortest paths algorithm, kWalks and the
hybrid approach has been evaluated for 82 parameter value combinations ac-
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8 Inference of pathways from metabolic networks

Table 1. The ten pathway inference experiments (parametric combinations) resulting
in the highest geometric accuracy in our evaluation. For each experiment, its param-
eter values, its runtime and its geometric accuracy (averaged over all inferences) are
displayed.

Algorithm Iteration Weighting Inflation Directed Edge Geometric Runtime
number scheme after graph relevances accuracy in seconds

iteration used as
weight

Hybrid 6 Compound False True False 0.6822 636
degree weight

Pair-wise 0 Compound False True False 0.6803 445
k-shortest degree weight
paths
kWalks 3 Compound True True False 0.6796 130

degree weight
kWalks 6 Inflated compound False True False 0.679 309

degree weight
Hybrid 3 Compound False True False 0.6786 393

degree weight
kWalks 6 Compound True True False 0.6778 323

degree weight
kWalks 6 Compound False True False 0.6773 312

degree weight
Hybrid 0 Compound False True False 0.6757 183

degree weight
Hybrid 6 Compound True True False 0.6738 744

degree weight
Hybrid 3 Compound True True False 0.6724 431

degree weight

cording to the Sn, PPV and Accg criteria described above.
Table 1 lists the top ten experiments, with geometric accuracies averaged over
all inferences done for each experiment. Interestingly, all three algorithms are
present in Table 1. In agreement with our previous analysis [3, 4], directed,
compound-weighted graphs yield highest pathway inference accuracies. The per-
formance of the hybrid approach increases if the original graph weights rather
than the edge relevances obtained by kWalks are fed into the pair-wise k-shortest
paths algorithm. Inflating edge relevances after kWalks iterations does not have
a significant impact on pathway inference accuracy.
It is worth noting that kWalks without iteration is not among the top ten exper-
iments. Figure 2A shows a summary of all inferences done for kWalks without
iteration in the directed, un-weighted MetaCyc graph. For comparison, Figure 2B
displays the geometric accuracies obtained for kWalks with three iterations un-
der the same conditions. Closer inspection of the geometric accuracy heat maps
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Inference of pathways from metabolic networks 9

reveals that iterating kWalks improves geometric accuracies for the tryptophan
biosynthesis, isoleucine biosynthesis I and UDP-N-acetylgalactosamine biosyn-
thesis pathways. The average geometric accuracy of kWalks increases from 62%
for one iteration to 64% for three iterations. This illustrates that calling kWalks
iteratively improves pathway inference accuracy. Not surprisingly, Table 1 lists
only kWalks experiments in which this algorithm has been iterated three or six
times.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
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asparagine degradation I

aspartate superpathway 1

aspartate superpathway 2

aspartate superpathway 3

bifidum pathway

butanediol fermentation

chorismate biosynthesis

cysteine biosynthesis II

de novo biosynthesis of pyrimidine ribonucleotides

fatty acid oxidation pathway

gluconeogenesis

glutamate degradation I

glutamate fermentation I!the hydroxyglutarate pathway

glycerol degradation II

glycolysis I

heme biosynthesis II

histidine biosynthesis I

homocysteine and cysteine interconversion

homoserine and methionine biosynthesis

homoserine biosynthesis

isoleucine biosynthesis I

isoleucine degradation III

leucine biosynthesis

lipoxygenase pathway

mannosyl!chito!dolichol biosynthesis

methionine biosynthesis I

methionine biosynthesis III

non!oxidative branch of the pentose phosphate pathway

polyamine biosynthesis I

polyamine biosynthesis III

pyridine nucleotide biosynthesis

pyridine nucleotide cycling

pyruvate oxidation pathway

riboflavin and FMN and FAD biosynthesis

salvage pathways of purine and pyrimidine nucleotides

salvage pathways of purine nucleosides

salvage pathways of pyrimidine ribonucleotides 1

salvage pathways of pyrimidine ribonucleotides 2

serine biosynthesis

serine!isocitrate lyase pathway

spermine biosynthesis

sucrose biosynthesis

sucrose degradation I

sucrose degradation III

superpathway of fatty acid oxidation and glyoxylate cycle 1

superpathway of fatty acid oxidation and glyoxylate cycle 2

superpathway of glycolysis and TCA variant VIII

superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass

superpathway of isoleucine and valine biosynthesis 1

superpathway of isoleucine and valine biosynthesis 2

superpathway of leucine, valine, and isoleucine biosynthesis 1

superpathway of lysine, threonine and methionine biosynthesis

superpathway of phenylalanine, tyrosine and tryptophan biosynthesis

superpathway of ribose and deoxyribose phosphate degradation 1

superpathway of ribose and deoxyribose phosphate degradation 2

superpathway of serine and glycine biosynthesis

superpathway of sulfur amino acid biosynthesis

threonine biosynthesis

trehalose biosynthesis III

tryptophan biosynthesis

urate degradation

ureide degradation

valine biosynthesis

xylulose!monophosphate cycle

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2. The geometric accuracies obtained for each pathway as a heat map. The x-
axis indicates the number of non-seed reaction nodes (those that the algorithm needs
to infer). Each row corresponds to one reference pathway. The geometric accuracy is
reflected by a gray scale from white (Accg = 0) to black (Accg = 1). A. Heat map
obtained for kWalks in the un-weighted, directed MetaCyc graph without inflation or
iteration. B. Heat map obtained under the same conditions, but with kWalks iterated
three times. C. Summary of the inferences done for the hybrid approach in the directed,
compound-weighted MetaCyc graph. The size of the subgraph extracted by kWalks was
set to 0.5%, which was the optimal value found by our evaluation.

3.3 Hybrid algorithm optimization

In the evaluation shown in Table 1, we set the fixed subgraph size for the hy-
brid approach to 5%. However, subsequent variation of the subgraph size in a
percentage range from 0.1% to 10% showed that 0.5% is the optimal percentage
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10 Inference of pathways from metabolic networks

for subgraph extraction in the hybrid approach. When the subgraph extraction
percentage is set to 0.5%, the average geometric accuracy of the hybrid approach
reaches 72%, which is the highest percentage obtained for any experiment. Figure
2C shows the geometric accuracy of each inference in a heat map.

4 Discussion

4.1 Parameters

Graph directionality The directed MetaCyc graph yields higher geometric ac-
curacies than the undirected one. In the undirected MetaCyc graph, it is possible
to traverse the graph from substrate to substrate or from product to product,
which is prevented in the directed graph.

Compound weighting In our previous studies [3, 4], we showed that the weight
is the most determinant parameter for inferring relevant pathways by 2-end
path finding. As expected, node weighting also exerts a strong impact on the
performances of multi-seed pathway inference, but this impact depends on the
algorithm used. The pair-wise k-shortest paths performed best in the compound-
weighted MetaCyc graph. But surprisingly, kWalks without iteration resulted in
higher accuracies when applied to the un-weighted rather than to the weighted
MetaCyc graph. Interestingly, kWalks automatically induces weights that favor
relevant compounds. Actually, the kWalks relevance score can be interpreted as a
context-specific betweenness index, and we can thus understand that it penalizes
highly connected compounds, thereby explaining the good results obtained by
relevance weighting. In the hybrid approach, the resulting average geometric
accuracy for the un-weighted graph is higher when we pass the kWalks induced
weights (edge relevances) rather than the original weights to the second step of
the algorithm. However, if we run the hybrid approach on the weighted graph, the
kWalks induced weights decrease the accuracy compared to the original weights.
Inflation of kWalks induced weights does not improve results significantly.
For most parameters, we determined optimal values and their combination (with
respect to the reference pathways) by an exhaustive search. However, compound
weights were chosen heuristically and may be optimized in future by a machine
learning approach.

4.2 Algorithms

Although the pair-wise k-shortest paths algorithm is slow (7 minutes per path-
way inference in average), its average geometric accuracy figures among the top
ten. In contrast, kWalks without iteration runs in seconds, but yields unsatisfac-
tory accuracies. Upon closer inspection, it became apparent that kWalks results
in high sensitivities and low positive predictive values. The positive predictive
value of the kWalks algorithm can be increased by invoking it iteratively or
by combining it with pair-wise k-shortest paths in the hybrid algorithm. Both
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Inference of pathways from metabolic networks 11

strategies are paid with a longer runtime.
The highest average geometric accuracy was obtained with the optimized hybrid
approach. This shows that pair-wise k-shortest paths and kWalks are comple-
mentary. The focus of kWalks is to capture the part of the input graph most
relevant for connecting the seeds, reducing the number of false negatives at the
cost of increasing the number of false positives. Pair-wise k-shortest paths can
then discard false positives introduced by kWalks.

4.3 Similar approach to subgraph extraction

Recently, Koren and co-workers [9] designed a proximity measure that avoids
dead-end nodes and takes node degree and multiple paths between seeds into
account. Based on this measure, they describe a subgraph extraction approach
that relies on finding the k shortest paths between seed nodes. The resulting
paths are combined in such a way that proximity between seeds is maximized
while minimizing the subgraph size.
This extraction procedure aims at capturing the paths that contribute to the
proximity of nodes. It is worth noting that two nodes with many paths between
them are considered closer than two nodes connected by a few paths. Therefore,
this algorithm will likely return more alternative paths between seeds than our
algorithms do. This is very interesting when one wants to explore the metabolic
neighborhood of a set of seed nodes, but less desirable when a metabolic pathway
should be predicted.

5 Conclusion

We have presented three different algorithmic approaches to infer metabolic
pathways from metabolic graphs: kWalks, pair-wise k-shortest paths, and a hy-
brid that combines both.
The former two algorithms have complementary strengths and weaknesses. Our
evaluation on 71 yeast pathways has shown that their combination in the hybrid
approach yields the highest geometric accuracies.

In future, we will apply these algorithms to microarray data to infer metabolic
pathways from co-expressed enzyme-coding genes.
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Abstract. Essential genes are genes whose loss of function causes lethal-
ity. In the case of pathogen organisms, the identification of these genes
is of considerable interest, as they provide targets for the development
of novel antibiotics. Computational analyses have revealed that the posi-
tions of the encoded proteins in the protein-protein interaction network
can help predict essentiality, but this type of data is not always avail-
able. In this work, we investigate prediction of gene essentiality from
expression data only, using a genome-wide compendium of expression
patterns in the bacterium Escherichia coli, by using single decision trees
and random forests. We first show that, based on the original expression
measurements, it is possible to identify essential genes with good accu-
racy. Next, we derive, for each gene, higher level features such as average,
standard deviation and entropy of its expression pattern, as well as fea-
tures related to the correlation of expression patterns between genes. We
find that essentiality may actually be predicted based only on the two
most relevant ones among these latter. We discuss the biological meaning
of these observations.

1 Introduction

Robustness or fault-tolerance is one of the defining qualities of biological
organisms. For example, genome-scale gene deletion studies in yeasts and
bacteria have demonstrated that most of the genes are not essential for
their growth and reproduction. The identification of the essential genes is
of great theoretical and practical interest. From a theoretical standpoint,
these studies are necessary for the identification of the “minimal genome”,
the smallest set of genes that allows an organism to survive and reproduce.
From a more practical point of view, the identification of essential genes
in pathogen micro-organisms is a useful first step in the development of
novel antibiotics [10].

Because the experimental identification of these genes is a costly and
time-consuming process, methods for their computational identification
have been proposed. Most notably, it has been shown that the positions of
the encoded proteins in the protein-protein interaction network are good
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predictors of essentiality, with “hub” and “bottleneck” proteins being
more often essential [9][14]. In another study, reduced stochastic fluctua-
tion of expression has been associated with essential genes [6]. Finally, the
importance of gene sequence features has also been demonstrated [13].

In this work, we investigate if essentiality can be predicted from gene
expression patterns only, in the bacterium Escherichia coli. This is a first
step in the assessment of classifiers based on expression patterns to infer
gene essentiality across species.

2 Data and Methods

2.1 Data

A gene expression dataset for the bacterium Escherichia coli was ob-
tained from the Many Microbes Database (http://m3d.bu.edu, [4]). This
dataset contains expression data for 4217 genes across 305 experiments
corresponding to various growth conditions and mutations. Some of the
experiments were replicated, giving a total of 612 expression values for
each gene. These expression data have been uniformly normalized with
the RMA algorithm [8], making them comparable across conditions.

We also obtained gene essentiality data from the Keio Collection of
E. coli gene knockouts [1]. In this experiment, 4288 genes were system-
atically inactivated by targeted deletion. The 303 genes for which it was
impossible to obtain deletion mutants were identified as essential genes.

We work with the 4217 genes that are represented in both datasets,
out of which 289 are identified as essential.

2.2 Feature generation

In addition to directly using the expression vectors for classification, we
extracted 38 higher level features for each gene in the dataset. Features
F1 to F4 are based on the expression patterns of genes considered indi-
vidually, while features F5-F38 are based on the similarities between the
expression patterns of a gene and other genes in the dataset.

Individual features
F1: Mean gene expression level across n = 305 experimental condi-

tions

mean = x̄ =
1
n

n∑
i=1

xi,
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where xi is the average expression level of the gene over the repeated
experiments of condition i.

F2: Standard deviation of gene expression level across n = 305 exper-
imental conditions

std =

√√√√ 1
n− 1

n∑
i=1

(xi − x̄)2.

F3: Shannon entropy of gene expression level across n = 305 experi-
mental conditions [12]

entropy = −
n∑

i=1

pi log pi, where pi =
xi∑n

i=1 xi
.

F4: Mean within-repeats standard deviation

repeat std =
1
m

m∑
i=1

√√√√ 1
ri − 1

ri∑
j=1

(xij − xi)
2,

where m = 177 is the number of experimental conditions with repeats,
ri is the number of repeats (2 or 3) for condition i, xij is the expression
level of the gene for repeat j of condition i and xi is the mean expression
level of the gene in condition i.

Global features
We use Pearson’s correlation coefficient to compute similarities be-

tween two gene expression vectors x and y:

corr(x,y) =
∑n

i=1 (xi − x̄)(yi − ȳ)√∑n
i=1 (xi − x̄)2

√∑n
i=1 (yi − ȳ)2

.

The matrix of pairwise correlations between the 4217 genes was com-
puted. Correlation coefficients were transformed into dissimilarities with
diss(x,y) = (1− corr(x,y))/2 to give values in the range [0, 1].

F5-F17: Dissimilarity of the gene expression pattern with the expres-
sion pattern of its k-th nearest neighbor for k ∈(1, 2, 5, 10, 20, 50, 100,
200, 500, 1000, 2000, 4000, 4216).

Next, we computed a new measure of pairwise similarity between
genes, based on the notion of shared nearest neighbor (SNN, [3]). The
algorithm for the computation of shared nearest neighbor similarities is:
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Find the k-nearest neighbors of each gene
For every pair of genes (x, y):

if x and y are not amongst each other’s k-nearest neighbors:
similarity(x, y) <- 0

else:
similarity(x, y) <- number of shared neighbors

endif

We generated SNN similarity matrices for k ∈(10, 20, 50, 100, 200,
500, 1000). The parameter k controls the sparsity of the resulting SNN
similarity matrices, with smaller k producing sparser matrices where only
highly correlated genes have non-null similarities. These similarity matri-
ces can be represented as graphs, where two similar genes are connected
by an edge whose weight is the similarity. From these similarity graphs,
three additional features were extracted for each gene; degree, sum of
edge weights and betweenness centrality.

F18-F24: Degree of the gene for k ∈(10, 20, 50, 100, 200, 500, 1000)

degree k(gene) = number of connections incident to the gene.

F25-F31: Sum of edge weights for k ∈(10, 20, 50, 100, 200, 500, 1000)

weight k(gene) = sumof theweightsof connections incident to thegene.

F32-F38: Betweenness centrality for k ∈(10, 20, 50, 100, 200, 500,
1000)

betweenness k(gene) =
∑

s 6=gene6=t∈V

σst(gene)
σst

,

where σst is the total number of shortest paths between genes s and
t, and σst(gene) is the number of those shortest paths that also pass
through the gene under consideration [7]. Betweenness centrality values
were computed with the Boost graph library (http://www.boost.org).

2.3 Machine Learning

The gene essentiality data set is highly unbalanced, with 3928 non-essential
genes for only 289 essential genes. We therefore learned the classifiers on
a balanced dataset obtained by completing the 289 essential genes with
a random sample of 289 non-essential ones.

For the classification of genes with respect to essentiality, we used
random forests [2] with 10-fold cross-validation, implemented in the Weka
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Fig. 1. ROC curves for the class of essential genes, with 10-fold cross validation on the
balanced dataset. AUC: Area under the ROC curve.

.

machine learning workbench [5]. Hundred trees were constructed for each
fold, each based on a random selection of 9 attributes at each node (from
the 305 expressions), or 6 attributes (from the 38 derived features). The
number of randomly selected attributes at each node is the largest integer
less than log2(m) + 1, where m is the number of input attributes [2].

We also used J4.8, a variant of the C4.5 decision tree classifier [11]
implemented in Weka, to determine classification performance based on
the two most important features, mean and weight 1000 (the importances
were derived from the random forest classifier).

3 Results and discussion

Figure 1 shows the ROC curves for the class of essential genes, based on
10-fold cross-validation on the balanced dataset. The upper ROC curve
is for random forests predictions based on the gene expressions over 305
conditions. The middle curve is for random forests predictions based on
the 38 derived features. Finally, the bottom ROC curve corresponds to
classification performance with a single J4.8 decision tree using the two
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most important features derived by the random forests classifier, mean
and weight 1000. These ROC curves indicate that it is possible to achieve
a high precision for the detection of a subset of essential genes, with
all three approaches. The AUC values show that most of the relevant
information contained in the gene expressions is kept in the set of high
level feature, and that the two most significant ones among them already
allow to predict gene essentiality quite well.

Table 1. Classifier performances on balanced dataset (10-fold cross-validation) and,
rightmost column, on the non-essential genes not present in balanced dataset (classifier
trained on balanced dataset). ER: Error rate.

Classifier ER Precision Recall AUC ER-test

305 exp 20.24% 77.56% 83.74% 0.865 21.19%
38 feat 23.52% 77.22% 75.09% 0.832 21.05%
2 best 24.22% 76.51% 74.39% 0.779 14.20%

Table 1 gives a summary of the performances of the three classifiers,
first on the balanced training dataset itself (using a stratified 10-fold
cross-validation), and second on a testing dataset comprising the 3639
non-essential genes not present in the training dataset. We observe that
the classifiers derived from the balanced dataset, which use only a small
fraction of the non-essential genes, maintain their accuracy on the testing
dataset.

The J4.8 decision tree obtained by using the two features is as follows:

mean <= 8.625629: non_essential (219/35) (leaf 1)
mean > 8.625629
| weight_1000 <= 716748
| | weight_1000 <= 447278: non_essential (77/32) (leaf 2)
| | weight_1000 > 447278
| | | mean <= 9.199547: non_essential (44/21) (leaf 3)
| | | mean > 9.199547: essential (107/25) (leaf 4)
| weight_1000 > 716748: essential (131/12) (leaf 5)

where the numerical values, e.g. (219/35) for the first terminal node, give
the number of genes reaching the node, and the number of them that are
misclassified, e.g. 35 essential genes classified as non-essential at the first
node. Figure 2 illustrates its classification over the genes in the training
set, with the delimited areas corresponding to the five terminal nodes
of the tree. A preliminary analysis shows that among 36 essential genes
encoding proteins of the 30S and 50S ribosomal subunits (families rps
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Fig. 2. Plot of the 578 genes in balanced dataset. Numbers 1 to 5 correspond to the
numbering of the leaves in the tree. Code: circle and red: essential gene; square and blue:
non-essential gene; filled symbol: correct classification; open symbol: misclassification

and rpl), 32 are in the upper right area of the graph (area 5). It will
be interesting to determine if, more generally, essential genes present in
different regions of the plot correspond to particular classes of biological
functions.

This decision tree has a meaningful biological interpretation. First, we
observe that genes with high mean expression levels are more often essen-
tial. In this experiment, expression is measured at the level of the mRNA
and thus is related to the rate of production of the corresponding pro-
tein. It is not surprising that proteins that are more actively synthesized
should be more vital to the bacterium. Second, we observe that genes
densely connected to other genes based on the correlation of their ex-
pression patterns (the weight 1000 feature) are also more often essential.
This observation parallels the known correlation between connectivity in
protein-protein interaction networks and essentiality [9]. Sets of genes
with highly correlated expression patterns often belong to a same basic
molecular complex, such as the RNA or the protein synthesis machineries,
and such complexes are central to the functioning of the cell.

45



4 Conclusion

In this paper we have explored the prediction of gene essentiality from
mRNA expression patterns, by applying tree-based machine learning meth-
ods on an experimental dataset of genes from Escherichia coli.

Our work shows that it is indeed possible to predict essential genes
based solely on expression patterns and, importantly, that this may be
achieved by using only a couple of high-level global features and a very
simple decision tree.

Future analyses will have to compare the prediction based on gene ex-
pressions with the prediction based on protein-protein interaction data. In
a second stage, we aim at building classification models for other species.
The end-goal of this research is to develop classifiers that allow to infer
gene essentiality across species, so as to exploit experimental data from
some species to predict essentiality of genes of other species.
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Abstract. Despite several decades of research, the predominant ap-
proach to prediction of protein function follows the “transfer-of-annotation”
paradigm, where a query protein is compared against a database and an-
notated with the function of similar proteins. The Gene Ontology terms
used to annotate protein function form a hierarchy of thousands of terms
making standard multi-class or multi-label approaches impractical. We
propose a method for modeling the structure of the Gene Ontology hi-
erarchy in the framework of structured-output methods and present a
structured-perceptron algorithm for predicting protein function. Our em-
pirical results demonstrate that learning the structure of the output space
yields better performance when compared to the traditional transfer-of-
annotation methodology.

1 Introduction

We address the problem of automatic annotation of protein function using struc-
tured output methods. The function of a protein is defined by a set of keywords
that specify its molecular function, its role in the biological process and its local-
ization to a cellular component. The Gene Ontology (GO), which is the current
standard for annotating gene products and proteins, provides a large set of terms
arranged in a hierarchical fashion [7].

Computational methods for annotating protein function have been predomi-
nantly following the “transfer-of-annotation” paradigm where GO keywords are
transferred from one protein to another based on the sequence similarity between
the two. This is generally done by employing a sequence alignment tool such as
BLAST [1] to find annotated proteins that have a high level of sequence similar-
ity to an un-annotated query protein. Such variations on the nearest-neighbor
methodology suffer from serious limitations in that they fail to exploit the in-
herent structure of the annotation space. Furthermore, annotation transfer of
multiple GO keywords between proteins is not always appropriate, e.g. in the
case of multi-domain proteins [6].

Prediction of protein function has also been approached as a binary classi-
fication problem using a wide array of methods that predict whether a query
protein has a certain function [5, 10, 19, 11]. Alternatively one can learn to rec-
ognize “good” BLAST hits, from which annotations can then be transferred, an
approach taken by Vinayagam, et al. [21]. These methods leave it to the user
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to combine the output of classifiers trained to recognize the different possible
functions and decide which of the annotations to accept.

Since proteins can have multiple functions, and those functions are described
by a hierarchy of keywords, prediction of protein function can be formulated as
a hierarchical multi-label classification problem. Barutcuoglu, et al. [3] adopted
an approach, where a classifier is trained for each node in the ontology and the
classifier outputs are combined through the use of a Bayesian network to in-
fer the most likely set of consistent labels. This is a step towards learning the
structure of the output space. Structured-output methods are a generalization
of this approach where a single classifier is trained to predict the entire struc-
tured label [2, 17, 18]. A structured-output classifier is presented with examples
from a joint input-output feature space and it learns to associate inputs with
proper outputs by learning a compatibility function. Structured-output methods
have been applied to a variety of hierarchical classification problems, including
applications in natural language processing [18, 14] and prediction of disulfide
connectivity [16]. The empirical results in the literature demonstrate that incor-
porating the structure of the output space into learning often leads to better
performance over local learning via binary classifiers.

In this paper we follow the structured-output classification paradigm. Rather
than learning a separate classifier for every node in the ontology, we solve the
problem by learning a linear predictor in the joint input-output feature space.
More specifically, we focus on the structured-perceptron [4] and use it as an
alternative to the BLAST nearest-neighbor methodology. Our empirical results
demonstrate that learning the structure of the output space yields improved
performance over transfer of annotation when both are given the same input-
space information (BLAST hits).

A well-known issue in the structured-output approach is the need to consider
a potentially exponential number of outputs during inference, and hierarchical
classification is no exception. We propose several ways for limiting the size of the
search space, and find that this not only leads to efficient inference and training,
but also improves classifier accuracy. We also propose a generalization of the F1

loss function [18] to arbitrary output spaces through the use of kernels, and a
variant of the perceptron update rule that leverages the loss function to assess
the necessary amount of update. We demonstrate empirically that the modified
rule leads to improved accuracy.

2 Methods

Prediction of protein function can be formulated as a hierarchical multi-label
classification problem as follows. Each protein is annotated with a macro-label
y = (y1, y2, ..., yk) ∈ {0, 1}k, where each micro-label yi corresponds to one of the
k nodes that belong to the hierarchy defined by the Gene Ontology. The micro-
labels take on the value of 1 when the protein performs the function defined by
the corresponding node. We refer to such nodes as positive. Whenever a protein is
associated with a particular micro-label, we also associate it with all its ancestors
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in the hierarchy, i.e. given a specific term, we associate with it all terms that
generalize it. This enforces the constraint that parents of positive nodes are also
positive. Throughout this paper we will refer to macro-labels as output labels
or simply labels. We will use the term entries when referring to micro-labels.
Note that the Gene Ontology consists of three distinct hierarchies: molecular
function, biological process and cellular component. In this work we focus on
the molecular function hierarchy.

2.1 Measuring performance

Traditionally, classifier performance is measured using the 0-1 loss, which is 0 if
the predicted label matches the true labels and 1 otherwise. The average of the
loss is used to measure classifier error. In the context of hierarchical classification,
the 0-1 loss is not appropriate as it makes no distinction between slight and
gross misclassifications. For instance, a label where the protein function is mis-
annotated with its parent or sibling is a better prediction than an annotation in
an entirely different subtree. Yet, both will be assigned the same loss since they
don’t match the true label.

A number of loss functions that incorporate taxonomical information have
been proposed in the context of hierarchical classification [8, 14, 9]. These either
measure the distance between output labels by finding their least common an-
cestor in the taxonomy tree [8] or penalize the first inconsistency between the
labels in a top-down traversal of the taxonomy [14]. Kiritchenko et al. proposed
a loss function that is related to the F1 measure which is used in information
retrieval [20] and was used by Tsochantaridis et al. in the context of parse tree
inference [18]. In what follows we present the F1 loss function and show how it
can be expressed in terms of kernel functions, thereby generalizing it to arbitrary
output spaces. The F1 measure is a combination of precision and recall, which
for two-class classification problems are defined as

F1 =
2 · P ·R
P + R

,

P =
tp

tp + fn
, R =

tp

tp + fp
,

where tp is the number of true positives, fn is the number of false negatives and
fp is the number of false positives. Rather than expressing precision and recall
over the whole set of examples, we express it relative to a single example (known
as micro-averaging in information retrieval), computing the precision and recall
with respect to the set of micro-labels. Given a vector of true labels (y) and
predicted labels (ŷ) the number of true positives is the number of micro-labels
common to both labels which is given by yT ŷ. It is easy to verify that

P (y, ŷ) =
yT ŷ
ŷT ŷ

, R(y, ŷ) =
yT ŷ
yT y

. (1)
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We can now express F1(y, ŷ) as

F1(y, ŷ) =
yT ŷ

yT y + ŷT ŷ
,

and define the F1-loss as ∆F1(y, ŷ) = (1− F1(y, ŷ)) [18].
We propose to generalize this loss to arbitrary output spaces by making use

of kernels. Replacing dot products with kernels we obtain

P (y, ŷ) =
K(y, ŷ)
K(ŷ, ŷ)

R(y, ŷ) =
K(y, ŷ)
K(y,y)

.

In hierarchical classification, where we use a linear kernel, these definitions yield
values identical to those in Equation (1). Expressing precision and recall using
kernels leads to the following generalization of the F1-loss, which we call the
kernel loss:

∆ker(y, ŷ) = 1− F1(y, ŷ) = 1− 2K(y, ŷ)
K(y,y) + K(ŷ, ŷ)

. (2)

We used the kernel loss to measure accuracy in our experiments.

2.2 The Structured-Output Perceptron

A standard approach in learning classifiers for two-class classification problems
is to learn a discriminant function f(x) and classify the input x according to the
sign of f(x). In structured output learning the discriminant function becomes a
function f(x,y) of both inputs and labels, and can be thought of as measuring
the compatibility of the input x with the output y. We denote by X the space
used to represent our inputs (proteins) and by Y the set of labels we are willing
to consider, which is a subset of {0, 1}k for hierarchical multi-label classification.
Given an input x in the input feature space X , structured-output methods infer
a label according to:

ŷ = arg max
y∈Y

f(x,y|w), (3)

where the function : X × Y → R is parameterized by a vector of parameters w.
This classification rule chooses the label y that is most compatible with an input
x. We assume the function is linear in w, i.e. f(x,y|w) = wT φ(x,y) in some
space defined by the mapping φ. Whereas in two class-classification problems
the mapping φ depends only on the input, in the structured-output setting it is
a joint function of inputs and outputs.

We train the classifier using a variant of the perceptron algorithm generalized
for structured outputs [4]. Given a set of n training examples {(xi,yi)}ni=1, the
algorithm attempts to find the vector w such that the compatibility function
values for the correct output and the best runner-up are separated by a user-
defined margin γ:

wT φ(xi,yi)− max
y∈Y\yi

wT φ(xi,y) > γ ∀i.
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Fig. 1. The geometric view of structured-output classification. Given an input xi,
each point represents input-output label pairs (xi,y). This figure represents the ideal
case: The corect label has the highest compatibility function value and the second best
candidate is separated by a margin. The perceptron defines a linear function over the
joint input-output space defined by φ(x,y). Unlike the case of two-class classification
the hyperplane f(x,y) = 0 has no special meaning. Correct and incorrect labels may
have both positive and negative values.

The geometric intuition behind structured perceptron is presented in Figure 1.
Ideally, we would like to learn w such that the true label has the largest compat-
ibility function value and the second best candidate is separated by the margin
γ.

To make use of kernels, we assume that the weight vector w can be expressed
as a linear combination of the training examples:

w =
n∑

j=1

∑
y′∈Y

αj,y′φ(xj ,y′).

This leads to reparameterization of the compatibility function in terms of the
coefficients α:

f(x,y|α) =
n∑

j=1

∑
y′∈Y

αj,y′K((xj ,y′), (x,y)),

where K : (X × Y) × (X × Y) → R is the joint kernel defined over the input-
output space. In this work, we take the joint kernel to be the product of the input
space and the output space kernels: K((x,y), (x′,y′)) = KX (x,x′)KY(y,y′).
Our intuition for using a product kernel is that two examples are similar in the
input-output feature space if they are similar in both the input and the output
spaces. For the output-space kernel, KY , we use a linear kernel; the input-space
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Algorithm 1 Structured Outputs Perceptron
Input: training data {(xi,yi)}ni=1

Output: parameters αi,y for i = 1, ..., n and y ∈ Y.
Initialize: αi,y = 0 ∀i,y. //only non-zero values of α are stored explicitly
and the rest are assumed to be 0
repeat

for i = 1 to n do
Compute the top scoring label that differs from yi:
ŷ← arg maxy∈Y\yi

f(xi,y|α)
Compute the difference in the compatibility function values:
δ = f(xi,yi)− f(xi, ŷ)
if δ < γ then

αi,yi
← αi,yi

+ 1
αi,ŷ ← αi,ŷ − 1

end if
end for

until a termination criterion is met

kernel is described below. In our experiments we normalize the kernel into a
cosine-like kernel

Kcosine((x,y), (x′,y′)) =
K((x,y), (x′,y′))√

K((x,y), (x,y))K((x′,y′), (x′,y′))

as it increased classifier performance.
The perceptron method for learning the coefficients α is presented in Algo-

rithm 1. We start off by finding the label ŷ that yields the highest compatibility
function value and that differs from the true label yi. We then compute δ, the
difference in the compatibility function values between the two. A negative value
for δ indicates misclassification while a positive value for δ that is smaller than
γ indicates a margin violation. In our application, the termination criterion is
taken to be a limit on the number of iterations. The α update rules are accord-
ing to the literature standard [4, 12]. We refer to this version of perceptron as
prcp1/−1.

The prcp1/−1 update adds a constant −1 in the case of a misclassification
or margin violation, regardless of whether the classifier made a big mistake or
a slight one. Intuitively, we would like to penalize gross misclassifications with
larger values. We propose to update the coefficient associated with ŷ by the
amount of dissimilarity it has with the true label. This can be done by utilizing
the loss function:

αi,ŷ ← αi,ŷ −∆ker(yi, ŷ)

Note that the loss is between 0 and 1. Thus, when there is no similarity between
the predicted and the true label, the corresponding α coefficient will be updated
by -1, as before. Less penalty will be assigned for predicting labels that are more
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similar to the true label. We refer to the modified version of the perceptron as
prcp1/−∆.

2.3 Inference

The arg max in Equation (3) must be computed over the space of all possible
output labels Y. In the context of protein function prediction, this is all possi-
ble combinations of functions defined by a few thousand GO terms. Explicitly
enumerating all of them is not practical due to the exponential complexity. For-
tunately, a protein has only a limited number of functions. Incorporating such
a limit reduces the number to be polynomial in the number of GO terms. We
further reduce this number in several ways.

During training we limited this space to only those labels that appear in the
training dataset. We call this space Y1 and argue that it makes sense to focus
on learning only those labels for which we have training data available.

For inference of test example labels we considered three different output
spaces, Y1,Y2,Y3, in order to examine the effect of the size of the search space
on prediction accuracy. We define Y3(x) to be the set of macro-labels that appear
in the significant BLAST hits of protein x (e-values below 10−6). Additionally,
Y2(x) is obtained by taking all the leaf nodes represented in Y3(x) and consid-
ering all macro-labels consisting of three leaf nodes at the most. Note that the
label spaces satisfy: Y3(x) ⊆ Y2(x) ⊆ Y1.

3 Data Preparation and Experimental Setup

We used the data from the following four species: C. elegans, D. melanogaster, S.
cerevisiae and S. pombe. Sequence data was obtained from the genome database
of each organism (http://www.wormbase.org/, http://flybase.bio.indiana.edu/,
http://www.yeastgenome.org/) and annotations were obtained from the Gene
Ontology website at http://www.geneontology.org. Our experiments followed the
leave-one-species-out paradigm [21], where we withheld one species for testing
and trained the perceptron on the remaining data, rotating the species that got
withheld. This variant of cross-validation simulates the situation of annotating
a newly-sequenced genome. In developing our methods we used the GO-slims
ontology; to avoid overfitting we then report results on the full GO ontology.
In our analysis we considered all GO molecular function terms that appear as
annotations in at least 10 proteins, resulting in a total of 361 nodes.

To prepare the data we removed all annotations that were discovered through
computational means as these are generally inferred from sequence or structure
similarity and would introduce bias into any classifier that used sequence sim-
ilarity to make a prediction [13]. This was done by removing all annotations
with the evidence codes: IEA, ISS, ND, RCA, and NR. Note that limiting the
experiments to annotations that were possibly derived by computational means
limits the number of species that can be considered to a very small set of model
organisms, and for simplicity we focused on the eukaryotes listed above.
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We then ran BLAST for each of the proteins in our dataset against all four
species, removing the hits where the protein was aligned to itself. We employed
the nearest neighbor BLAST methodology as our baseline. For every test protein,
we transferred the annotations from the most significant BLAST hit against a
protein from another species. Proteins which didn’t have a hit with an e-value
below 10−6 were not considered in our experiments.

The structured-output perceptron is provided exactly the same data as the
BLAST method. The input-space kernel is an empirical kernel map [15] that uses
the negative-log of the BLAST e-values that are below 50, where the features
were normalized to have values less than 1.0. An empirical kernel map arises from
the intuition that two similar proteins will have similar patterns of similarity to
proteins in the database, i.e. their vectors of e-values will be similar.

We ran five fold cross-validation on the training data to select a suitable
value of the margin parameter γ for each left-out species. In our experiments,
we noticed that finding the right value of γ is not as essential as using the loss
update proposed in the previous section.

4 Results

Test on C. elegans D. melanogaster S. cerevisiae S. pombe Output
# proteins 844 1804 1853 898 Space

BLAST NN 0.523 0.379 0.354 0.329

prcp1/−1 0.542 0.399 0.384 0.363 Y1

prcp1/−1 0.540 0.383 0.319 0.341 Y2

prcp1/−1 0.527 0.347 0.314 0.312 Y3

prcp1/−∆ 0.500 0.346 0.366 0.330 Y1

prcp1/−∆ 0.521 0.352 0.322 0.312 Y2

prcp1/−∆ 0.508 0.331 0.322 0.295 Y3

Random 0.660 0.730 0.730 0.704

Table 1. Classification results on predicting GO molecular function terms (361 terms
that have more than 10 annotations). We compare traditional transfer-of-annotation
(BLAST NN) with two variants of the perceptron across three methods for limiting the
output space. Reported is mean kernel loss per protein for each algorithm. The number
of proteins used in each organism is displayed in the second row. For comparison, we
also include the performance of a random classifier that transfers annotation from a
training example chosen uniformly at random. The standard deviation estimated for
the presented performance was between 0.003 and 0.01.

The results for the leave-one-species-out experiments are presented in Ta-
ble 1. The results show that the structured perceptron outperforms the BLAST
nearest-neighbor classifier. Before looking at the differences between the two
variants of the perceptron and the different sets of output labels considered, we
note that all the classifiers performed poorly on C. elegans. This is due to the fact
that a vast majority of proteins in this species are annotated as protein binders
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(GOID:0005515). Such annotations contain little information from a biological
standpoint and result in a skewed set of output labels.

Our results show that except for one case (C. cerevisiae), the prcp1/−∆

method which uses the loss function in the update rule of the perceptron out-
performed the standard prcp1/−1. Furthermore, excluding C. elegans, using the
restricted output spaces Y2 or Y3 resulted in better performance than using the
full output space Y1, with best performance being obtained using Y3 which is
the most restricted output space. The larger label-space Y1, results in the infer-
ence procedure considering many annotations that are irrelevant to the actual
function of the protein, which can reduce prediction accuracy. When used in
conjunction with Y2 or Y3 our structured-outputs method can be thought of as
prioritizing the annotations suggested by BLAST in a way that uses the struc-
ture of the Gene Ontology hierarchy. The results support our hypothesis that
learning the structure of the output space is superior to performing transfer of
annotations.

To assess the robustness of our classifier we ran an additional experiment
where 20% of the training data was chosen at random and withheld from the
training. The classifier was then trained on the remaining 80% of the training
data and tested as before. This provided us with a standard deviation measure
that indicated how consistent the classifiers were at obtaining the performance
presented in Table 1. We computed the standard deviations across 30 trials
for every classifier. The values for BLAST nearest-neighbors and the random
classifier were in the range (0.004, 0.009). The structured-output perceptron with
a 1/− 1 update had standard deviation values in the range (0.006, 0.010), while
the structured output-perceptron with a 1/−∆ update yielded more consistent
performance with the standard deviation values in the range (0.003, 0.007).

5 Conclusions

We have shown that a structured output method performs better than a nearest
neighbor method when provided with the same information. Our structured
output method can be enhanced in several ways to further boost its performance:
Additional information can easily be provided in the form of additional kernels
on the input space that use other forms of genomic information (e.g. protein-
protein interactions); the structured-perceptron can be replaced with maximum
margin classifiers [18, 14]; and furthermore, semi-supervised learning can be used
to leverage the abundance of available sequence information. In future work we
will also consider larger datasets that include a larger number of species.
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Abstract. Functional annotation of proteins is an important problem in computational biology. There
is a wide range of methods developed in the literature using features such as motifs, domains, homol-
ogy, structure and physicochemical properties. Since information obtained using any of these features
depends on the function to be assigned to the protein, there is no single method that performs best
in all functional classification problems. In this study, we investigated the effect of combining different
methods to form a more accurate classifier. First, we formulated the function annotation problem as
a classification problem defined on 300 different Gene Ontology (GO) terms from Molecular Function
aspect. We present a method to form positive and negative training examples while taking into ac-
count the Directed Acyclic Graph structure and evidence codes of GO. We applied 3 different methods
and their combination to this classification problem. Results show that combining different methods
improves prediction accuracy in most of the cases. The proposed method, GOPred, is available as an
online annotation tool.
Availability: http://kinaz.fen.bilkent.edu.tr/gopred

1 Introduction

Attempts to automated function annotation follow two main tracks in the literature. In the first track, the
target protein to be annotated is searched against public databases of already annotated proteins. Annota-
tions of the highest scoring hits, according to some similarity calculation, are considered to be transfered
onto the target protein. We call this track the transfer approach. Despite some known drawbacks such as,
excessive transfer of annotations, low sensitivity/specificity, propagation of database errors, this track is the
most widely used among the biologists ([24, 13]).

In the second track, annotation of proteins is formulated as a classification problem where the annotations
are classes and proteins are samples to be classified. This classification approach allows scientists to use
sophisticated and powerful classification algorithms such as support vector machines (SVM) and artificial
neural networks (ANN). These methods explicitly form a boundary between the negative and positive training
samples and are shown to be more accurate in many cases ([20]). Yet, they are not as popular among biologist
as one would expect. One reason is that, classification approach requires well defined classes and positive and
negative training data for each class. But protein function is a vague term where the exact meaning depends
on the context in which it is used ([13]). Data preparation is not straightforward since functional terms are
related to each other and proteins may have more than one annotation. We believe that if one can establish
a classification framework with rich number of important functional terms and high quality training data,
methods in classification approach will receive more attention.

There is a wide range of classification approaches to automated functional annotation in the literature.
They can be grouped into three categories depending on the employed features:

1. homology-based approaches,
2. subsequence-based approaches,
3. feature-based approaches.

Homology-based approaches utilize overall sequence similarity of the target protein to the positive and
negative training data to decide which functional class it belongs. Most well-known and widely used methods
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for finding sequence similarity is local alignment search tools such as BLAST and PSI-BLAST ([1, 2]).
Subsequence-based approaches focus on highly conserved subregions such as motifs or domains that are
critical for a protein to perform a specific function. These methods are especially effective when function to be
assigned requires a specific motif or domain. Existence of these highly conserved regions in a protein enables
us to infer a specific annotation even in remote homology situations ([6, 19, 23]. In the feature-based approach,
biologically meaningful properties of a protein such as frequency of residues, molecular weight, secondary
structure, extinction coefficients are extracted from the primary sequence. These properties are then arranged
as feature vectors and used as input to classification techniques such as artificial neural networks (ANN) or
support vector machines (SVM) ([16, 8, 17, 9]). Each of these approaches may have different strengths and
weaknesses on the classification of different functional terms. As a result, combining methods from different
approaches may be more successful on classification of a wide range of protein functions.

In this study, we developed a method to prepare training data for the terms defined in Gene Ontology
(GO) framework ([4]). We focused on annotation of proteins with 300 GO molecular function terms where
we formulated this problem as a classification task with 300 classes. We applied 3 different classification
methods. In a one-versus-all setting, usually the size of negative training dataset is much larger than that of
the positive training dataset. In order to avoid a bias towards larger negative class, we present a threshold
relaxation method that not only shifts the threshold towards the more appropriate classification boundary
but also maps the output of the classifier to a probability that states how probable it is that the given sample
is a member of the target classes. Finally, we investigated different classifier combination methods and results
showed that combination improved the performance for about 93% of the classifiers while yielding similar
results to the best performing method for the rest of the classifiers.

2 Dataset

One of the well-known and most widely used attempt to standardize protein function terms and to define
their relations is Gene Ontology (GO). GO provides ontology in 3 aspects: molecular function, biological
process, and cellular location. In this study, we focus on molecular function aspect. GO organizes molecular
functions as nodes on a directed acyclic graph (DAG). Each node is a more specific case of its parent node
or nodes. Here, we present a way of establishing positive and negative training data for each class by using
evidence codes provided by the GO Annotation (GOA) project and by considering the structure of the GO
DAG. While preparing training data, we used Uniprot release 13.0 as the source for protein sequences([5]).
Annotations are obtained from October, 2007 version of GOA mapping file and again October 2007 version
of GO ontology is used as the basis of our functional terms and their relations in our system.

Preparing positive training dataset is relatively easy compared to negatives. First we extracted all proteins
that are annotated with the target term or one of its descendants connected with a is a relation by the Gene
Ontology Annotation (GOA) project. In order to populate a training dataset without any bias towards
computational prediction methods and to reduce the noise in the training data as much as possible, we
filtered out those proteins that are annotated with one of IC, IEA, ISS, NAS, ND evidence codes. These
codes refer to annotations either obtained by electronic means or have ambiguity in their origin ([11]). The
rest of the evidence codes IDA, IEP, IGI, IMP, IPI, RCA, and TAS refer to experimental evidences which
we think are more reliable.

Theoretically, an annotation for a protein only specifies what function it performs. This is not (generally)
an indication of what it doesn’t perform. For a protein not having a specific functional label might be merely
due to lack of knowledge or experiment. Although this may not be a severe problem in practice, it helps us
to understand the difficulties of constructing a negative training dataset for a target term. As a result, each
protein that does not have the annotation of the target class or one of its descendants is a possible negative
training sample. Including all such proteins in the negative training dataset is neither useful nor necessary.
First of all, sizes of the positive and negative training sets may become very unbalanced in such a case. For
some functional classes, the size of positive training dataset is on the order of tens of proteins, whereas it is
about tens of thousands for the negative dataset. Second, computational cost increases with the size of the
negative training dataset.

2
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Since we trained our classifiers in one-versus-all setting for 300 GO molecular function terms, our strategy
was to select random representative sequences (at most 10) from each term other than the target term. We
imposed two constraints on the selected random representative sequences:

1. A sequence shouldn’t be annotated with the target term or one of it is descendant terms.
2. If a sequence is annotated with one of the ancestors of the target term, it should also have been annotated

with a sibling of the target term.

The first constraint is trivial since we don’t want to include protein sequences that are already in the
positive training data. Second constraint is imposed in order to avoid including prospective positive training
data in to the negative dataset. Ideally, each protein should be annotated with a GO term on a leaf node, in
other words, with most specific annotation. If a protein is annotated only up to an internal node, this means
either there is lack of evidence for a more specific annotation or an appropriate GO term for that protein
has not been added to the ontology yet. Thus, we excluded proteins that are annotated by an ancestor GO
term but not with a sibling.

3 Methods

After preparing positive and negative training data for each of 300 GO molecular function terms, we applied
three classification methods representing three approaches:

– BLAST k -nearest neighbor (BLAST-kNN) for homology-based approach,
– Subsequence Profile Map (SPMap) for subsequence-based approach,
– Peptide statistics combined with SVMs (PEPSTATS-SVM) for feature-based approach.

3.1 BLAST-kNN

In order to classify the target protein, we used k-nearest neighbor algorithm ([Cover and Hart, 1967]). Sim-
ilarities between the target protein and proteins in the training data were calculated using NCBI-BLAST
tool. We extracted k-nearest neighbors having the highest k BLAST score. The output of BLAST-kNN, OB
for a target protein is calculated as:

OB =
Sp − Sn
Sp + Sn

(1)

where Sp is the sum of BLAST scores of proteins in k-nearest neighbors that are in the positive training
data. Similarly, Sn is the sum of scores of k-nearest neighbor proteins that are in the negative training data.
Note that the value of OB is between -1 and +1. The output is 1 if all k nearest proteins are the elements of
positive training dataset and -1 if all k proteins are from negative training dataset. Instead of directly using
OB with a fixed threshold we used the threshold relaxation algorithm given in Section 3.4.

3.2 SPMap

SPMap maps protein sequences to a fixed-dimensional feature vector where each dimension represents a group
of similar fixed-length subsequences. In order to obtain groups of similar subsequences, SPMap first extracts
all possible subsequences from the positive training data and clusters similar subsequences. A probabilistic
profile or a position specific scoring matrix is then generated for each cluster. The number of clusters
determine the dimension of the feature space. Generation of these profiles is called the construction of the
feature space map. Once this map is constructed, it is used to represent protein sequences as fixed dimensional
vectors. Each dimension of the feature vector is the probability calculated by the best matching subsequence
of the protein sequence to the corresponding probabilistic profile. If the sequence to be mapped contains a
subsequence similar to a specific group, the value of the corresponding dimension will be high. Note that
this representation reflects the information of subsequences that are highly conserved among the positive
training data. After the construction of the feature vectors, SVMs are used as to train classifiers. Further
information on SPMap is found in [23].

3
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3.3 PEPSTATS-SVM

Pepstats tool which is a part of the European Molecular Biology Open Software Suite (EMBOSS) is used to
extract peptide statistics of the proteins ([22]). Each protein is represented by a 37 dimensional vector. Peptide
features include molecular weight, charge, isoelectric point, Dayhoff statistics for each aminocid, extinction
coefficients, percentage of residue groups, etc. These features are scaled using the ranges of positive training
data and finally fed to an SVM classifier.

3.4 Threshold Relaxation

Optimization algorithm of SVM that finds the hyperplane maximizing the margin between the hyperplane
and the training data is data-driven and may have bias towards the classes with more training samples. As a
result, using the natural threshold 0 usually results in poor sensitivity if the sizes of the positive and negative
training datasets are unbalanced. This is exactly the case in our problem. There are studies in the literature
about threshold relaxation towards smaller class ([3, 26]). In our study, instead of adjusting the threshold
value, we present a method that defines probability P (x) of a sample x to be in the positive class.

First, we split the test data into two sets, a helper set, to calculate the probability P (x) and a held-out
validation set, to evaluate the performance of the method. Since, the number of positive test samples is
outnumbered by the negative test samples, our method should handle this unbalanced situation. Thus, we
calculated a confidence value for the new sample for being positive and negative separately and then we
combined these confidences into a single probability. The confidence for a new sample being positive Cp(x)
is calculated as the ratio of positive samples in helper set having a classifier output lower than that of the
new sample. The confidence for being negative Cn(x) is calculated similarly (Equation 2 and Equation 3).
These ratios are combined to calculate the probability of the new sample to be in positive class (Equation
4). A new sample is predicted as positive if C > 0.5 and as negative, otherwise.

Cp(x) =

∑
yεYp

I(φ(x) >= φ(y))

|Yp| (2)

Cn(x) =

∑
yεYn

I(φ(x) <= φ(y))
|Yn| (3)

P (x) =
Cp

Cp + Cn
(4)

Yp and Yn are the positive and negative test samples in the helper set, respectively. φ(x) denotes the
output of the classifier for sample x. I operator returns 1 if the condition holds, 0 otherwise. Note that this
method implicitly adjusts the threshold. Furthermore, it provides the user a measure to assess how probable
it is that the sample is a member of the given class.

3.5 Classifier Combination

Observations on many classification problems with different classification methods have shown that although
there is usually a best performing method on a specific problem, the samples that are correctly classified
or misclassified by different methods may not necessarily overlap ([18]). This observation led to the idea
of classifier combination in order to achieve a higher accuracy ([18, 27]). In this study we investigated four
classifier combination techniques for three different classification methods each one representing one of the
three approaches stated in Section 1; Voting, Mean, Weighted Mean and Addition.

Voting, also known as majority voting, simply decides the class of the new sample by counting positive
and negative votes from each classifier. Note that votes of the methods have equal weight and the output
value of the classifiers are not taken into account.

For the Mean combination method, the mean of the probability values calculated by Equation 4 is used
to decide the class of the new sample. If this mean value is greater than 0.5 sample is labeled as positive.

4
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The combination method Mean treats each method equally. But the performance of the methods vary
for different functional classes. Thus in the weighted mean method, we assigned weights to each method
depending on their classification performance on the functional class for which the classifier combination is
performed. To assess the performance of the methods we made use of the area under the Receiver Operating
Characteristic (ROC) curve, which is called the ROC score. ROC score is a widely used as measure to
evaluate the performance of classification methods. ROC score gives an estimation of the discriminative
power of the method independent of the threshold value. To calculate the ROC score of each method we
used the helper test set. Then, we assigned a weight to each method calculated by Equation 5.

W (m) =
R4
m∑

nεMethodsR
4
n

(5)

W (m) denotes weight of method m. Rm is the ROC score for method m. Note that we used the 4th

power of ROC scores to assign higher weight to the method with a better ROC score.
In the Addition method, output value of the classification methods are summed directly. The probability

defined in Equation 4 is then calculated using these added values.

4 Results and Discussion

Tests were performed for 300 GO terms in one-versus-all setting. For each GO term, statistics are obtained
by averaging results from 5-fold cross-validation. In order to calculate the probability described in Equation
4, we used leave-one-out cross validation in the test set. In other words, we used all available test dataset
but one as the helper set and one held-out sample as the validation set. This is performed for all of the test
dataset.

In order to compare the methods and combination strategies, we made use of F1 statistics. When the
sizes of the positive and negative test sets are unbalanced several common statistics such as, sensitivity,
specificity, and accuracy may overstate or understate the performance of the classification. F1 measure is the
harmonic mean between precision and sensitivity. It is robust in case of uneven datasets ([15]).

Precision =
TP

TP + FP
(6)

Sensitivity =
TP

TP + FN
(7)

F1 =
2xPrecision× Sensitivity
Sensitivity + Precision

=
2× TP

2× TP + FP + FN
(8)

TP, FP, TN, and FN denotes true positive, false positive, true negative and false negative, respectively.
Weighted mean method performed best in 279 of 300 classifiers, with an average F1 score of 0.77. Thus, it

is chosen to be the basis combination method for our online tool GOPred. Addition was the best for 8 classes.
Voting and mean were the best methods for 1 and 3 of the classes, respectively. On the overall, combination
improved the performance for 291 of 300 classes. One should note that for the rest of the cases, at least
one combination method performed very similar to the best performing single method. Average senstivity,
specificity and F1 scores over 300 classes is given in Table 4. With respect to F1 scores, BLAST-kNN turned
out to be best performing single method for a majority of the functional terms while outperformed by SPMap
only at a small fraction of functional terms. Pepstats-SVM was the weakest method in all functional classes.
Results show that simple peptide statistics are not sufficient for accurate classification of GO functional
terms. Nevertheless, it turned out to be that samples correctly classified by each of the methods do not
overlap. This explains the success of the combination methods. As a future work, Pepstats-SVM will be
replaced by a more powerful feature-based classification method.

In order to investigate the effect of threshold relaxation method presented in Section 3.4 we repeated the
whole experiment by using natural threshold 0 for all methods. Figure 1 shows the comparison of sensitivity

5
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Table 1: F1 scores, sensitivity and specificity values averaged over 300 GO functional term classifiers

Method F1 Sensitivity Specificity

SPMap 0.62 89.12 88.92
BLAST-kNN 0.70 92.07 92.53
Pepstats-SVM 0.39 75.47 75.48
Voting 0.71 90.50 92.85
Mean 0.74 91.11 93.74
Weighted Mean 0.77 91.82 94.79
Addition 0.70 92.72 92.49

and specificity values with and without threshold relaxation averaged over 300 GO terms. Pepstats-SVM
turned out to be the most benefiting method which is actually useless without threshold adjustment. BLAST-
kNN is the less effected method which is not surprising since k-nearest neighbors method do not generate a
single decision boundary. After threshold relaxation there is a small decrease in specificity but a much larger
increase in sensitivity. This conforms with our expectation that there will be a bias towards the class with
more training samples. Automated function prediction tools are generally used to have a rough idea about the
protein’s possible functions before conducting further in vitro experiments. We believe that failing to detect
an important annotation is a more severe problem than assigning a wrong annotation. Thus, increasing
sensitivity without a detrimental effect to specificity is a very important achievement. Detailed statistics
(Dataset sizes, TP, FP, TN, FN, Sensitivity, Specificity, ROC score, F1 score) for all of the methods on each
GO functional term can be found in supplementary material.

Fig. 1: Comparison of average sensitivity and specificity values with and without threshold relaxation

The actual challenge for an automated annotation tool is the annotation of newly identified sequences
or genomes. Thus, we applied our method to the prediction of functions of 8 newly reported Homo Sapiens
proteins to NCBI in the last year. The combined classifiers were able to predict the reported functions of
the proteins in all of the cases. This is a good indication of the effectiveness of the method. Table 4 shows
proteins, their reported functions, and annotations of GOPred along with the probabilities calculated by our
method that the protein can be annotated with the corresponding GO term. Furthermore, GOPred is also
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Table 2: GOPred annotations for 8 newly validated human gene entries from NCBI gene database.

Gene Symbol Reported Function GOPred annotations:Probability
killin Nuclear inhibitor of DNA synthesis with

high affinity DNA binding [10]
Exonuclease activity: 0.95

glrx1 glutaredoxin-like, oxidoreductase[12] oxidoreductase activity: 0.97

fnip2 AMPK and FLCN interaction[14]
enzyme activator activity: 0.61
enzyme binding: 0.71

kif18b
microtubule associated motor protein
which use ATP[29]

microtubule binding: 0.88
motor activity: 0.83
nucleotide binding: 0.91

helt transcription regulator activity[25]
protein homodimerization activity: 0.98
transcription corepressor activity: 0.95

rgl4 guanin nucleotide dissociation[7]
guanyl-nucleotide exchange factor: 0.79
small GTPase binding: 0.73

pgap1 GPI inositol-deacylase[28]
lipase activity: 0.89
hydrolase activity acting on ester bonds: 0.89
acyltransferase activity: 0.79

cobra1
member of negative elongation factor
complex during transcription, inhibitor
of AP1[21]

ribonucleotide binding: 0.91
enzyme regulator activity: 0.81

applied to annotation of 73 newly reported genes from Ovis Aries (Sheep). Results are available on GOPred
web site (http://kinaz.fen.bilkent.edu.tr/gopred/ovisaries.html).

5 Conclusion

Automated functional annotation of proteins is an important and difficult problem in computational biology.
Most of the function prediction tools, aside from those that uses simple transfer approach, defines the
annotation problem as a classification problem. Thus, they require positive and negative training data and
the success of the resulting classifier relies on the representative power of this dataset. In this study, we first
presented a method to construct accurate positive and negative training data using DAG structure of GO
and annotations and evidence codes provided by GOA project.

There is a rich literature on automated function prediction methods each of which have different strengths
and weaknesses. We investigated the effects of combining different classifiers for accurate annotation of
proteins with functional terms defined in molecular function aspect of GO. Resulting combined classifier
clearly outperformed constituent classifiers. Test results also showed that the best combination strategy is
the weighted mean classifier combination method which assigns different weights to classifiers depending on
their discriminative strengths on a specific functional term.

It is also important to note that we do not merely give annotations. We also present a threshold relaxation
method that not only avoids the bias towards the class with more training data but also assigns a probability
to the prediction which provides a way of assessing the strength of the annotation. This means we also provide
less probable functional annotations. This information may help the biologist to build a road map before
conducting expensive in vitro experiments.
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Abstract. Graphs or networks are used as a representation of data in
many different areas, ranging from Biology to the World Wide Web. In
this paper, a novel approach to graph characterization based on a prob-
abilistic (de)composition into a linear sequence of frequent subgraphs is
presented. The resulting probabilistic models are generative for a family
of graphs sharing common structural properties. An evolutionary com-
puting approach is used to learn the model parameters for unknown
graph classes. This paper describes the (de)composition procedure and
illustrates its use in characterizing and discriminating a number of graph
types. To demonstrate its practical usefulness, the method is applied to
the problem of modeling transcriptional regulatory networks (TRN).

1 Introduction

Research has demonstrated the existence of recurring small graph structures in
many types of networks from domains as diverse as computer science and biol-
ogy [8]. These recurring subgraph patterns are variously called network motifs,
graphlets or more simply subgraphs. It has also been shown that complex net-
works can be compared and classified into distinct functional families, based on
their typical motifs [7].

Moreover, biomolecular networks are hierarchical structures that consist of
smaller modules of interacting components [2]. Therefore, global metrics, such
as degree distribution and clustering coefficient, can not be used to completely
analyze their properties [9] and, as a result, local approaches have become more
prominent in the study of networks structure. The hierarchical and modular
nature of biological networks [5, 13] has also been elucidated. Graph motifs ag-
gregate into larger clusters and some of the global topological characteristics of
graphs originate from the local combinations of smaller subunits.

Furthermore, close investigation into the structure of transcriptional and
metabolic networks of E. coli and S. cerevisiae has suggested that this com-
bination of motifs is not random. There appears to be a type of preferential
attachment where homologous motifs cluster together [6]. All this implies that
a network’s large-scale topological organisation and its local subgraph structure
mutually define and predict each other and that networks need also to be eval-
uated beyond the level of single subgraphs, at the level of subgraphs clusters
[13].
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The above observations served as inspiration for the creation of a new net-
work model that integrates global knowledge about the presence of network
motifs and their local combinations. More specifically, global statistical knowl-
edge about the presence of subgraphs is combined with local knowledge about
the specific way in which these motifs are interconnected. Two additional ideas
were incorporated to allow better integration of this knowledge into a practi-
cal analysis method. The first is linearization of the network into an ordered
sequence of motifs. Secondly, a probabilistic approach was chosen that in-
corporates the ideas of growth and preferential attachment together with
knowledge about recurring structural elements to allow both decomposition of
existing graphs and composition of similar graphs.

2 The model

The translation from graph to sequence is accomplished using a probabilistic
model that describes the occurrence of, and connections between motifs. Be-
cause of the probabilistic nature of the model a sequence of symbols describes
instances of a graph family, rather than one single graph. Using the probability
distributions as a central source of information, this method can be used to both
decompose existing graphs in to sequences, and compose new instances starting
from such a sequence.

Motifs are detected in an existing graph by mapping their edges onto edges
in the graph. Additional motifs are connected to already detected motifs by
merging some of their vertices. As a result, each edge in the graph belongs to
exactly one motif in the sequence, while graph vertices can belong to multiple
motifs.

All of the information needed to construct the model is contained in a set
of motifs. It is important to clarify that the term motif takes on additional
meaning relative to its use in existing literature [11, 8]. Intuitively a motif can
be understood to be a small graph with additional information that specifies
which vertices can attach to other vertices and associated rules that govern
the way it can connect to other motifs. These preference rules are expressed as
probability distributions.

2.1 Graph decomposition

To illustrate graph decomposition, the example graph depicted in Fig. 1(d) is
decomposed using the motif set in Fig. 1(a). This set becomes the alphabet of
the decomposition sequence. In this example, the set consists of a 4-node cycle
(4C), a 3-node cycle (3C) and a reflexive edge structure with 2 nodes and 2 edges
(R). In general, the choice of motif set can be driven by domain knowledge or
by graph mining techniques that compose a set based on a collection of example
graphs (see also Section 3.1)

The initial step involves choosing a vertex that will serve as the starting point
for motif detection. The start vertex can be any vertex in the source graph but
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Fig. 1. Example graph decomposition using a sample set of motifs

its choice will influence the decomposition process and the resulting sequence.
In the example, vertex V 0 is chosen as the start vertex. Decomposition is a
gradual process, during which motifs are detected in a selected area around the
already explained graph. This area of the graph is referred to as the motif search
space. The depth of the search space depends on the undirected diameter of the
biggest motif in the motif set. The motif search space grows by adding edges
and vertices, expanding outwards from fringe vertices. Initially, the only fringe
vertex is the start vertex.

At each step edges and vertices within an undirected distance of Ed from
the fringe vertices are added to the search space. In our example the expansion
depth of the motif search space at each iteration is two, the largest diameter of
any motif in the set. This means that, following the initial expansion from the
start vertex V 0, the motif search space contains vertices V 0 through V 3, V 6
and all edges connecting them. Vertices V 2 and V 6 are separated from V 0 by
two edges and are therefore not expanded further until they are explained by a
motif (situation in Fig. 1(b)).

Edges and vertices that are explained by a motif become part of the explained
graph. Every consecutive motif in the sequence is required to share its attaching
vertices with the part of the graph that has already been explained. The exact
number of shared vertices is a function of the motif definition.

At this point, the only matching subgraph is a 4C motif, which becomes the
first motif in the growing sequence. The only requirement for the initial motif is
that it contains the starting vertex. Vertices V 0, V 1, V 2 and V 3 now become
part of the explained graph. It is important to note that only the edges of this
first motif are removed from the search space. The decomposition is edge-based:

69



an edge in the source graph can be explained by only one motif in the sequence,
while vertices connect motifs and are shared between them.

Starting from this situation, a new expansion is done, and vertices V 4, V 5,
V 7 and V 8 are added to the search space, along with their interconnecting edges
(Fig. 1(c)).

Both a second 4C motif or an R motif can now be mapped onto the currently
unexplained edges. Both would share one vertex (V 2 and V 3 respectively) with
the first 4C motif. In principle, either one could become the next motif in the se-
quence. To make the choice between candidate motifs, it is necessary to introduce
the mechanism that can express relative preference for each of the candidates.
This is accomplished using the concept of preferential attachment.

Preferential attachment rules (Fig. 2) provide a way to evaluate the like-
lihood of candidate motifs and their interconnections, during both graph com-
position and decomposition. Three essential concepts are combined to determine
which candidate should become the next motif in the sequence. Each aspect is
described using a probability distribution. These distributions will become the
central pieces of information for both graph decomposition and composition.

Motif-set prior. The first component is a prior preference for specific types
of motifs in the motif set. In the example that we are discussing this is a uniform
distribution over the motifs in the set because no particular preference has been
assigned to any of them.

Motif-Vertex preference. As described in the example, motifs are regarded
in the context of their connection to adjacent motifs in the graph. Such connec-
tions give rise to a partitioning of a motif’s vertices into a set of attaching ver-
tices A and a set of non-attaching vertices. Attaching vertices serve as connection
points to already explained motifs, while non-attaching vertices are mapped onto
previously unexplained vertices in the current motif search space. Every attach-
ing vertex has an associated probability distribution over all possible vertices in
the motif set, indicating its affinity for specific motifs and vertices belonging to
them. The distribution effectively defines which motifs and vertices are preferred
candidates for attachment.

Sequence Distance Rule. The final concept is the sequence distance rule.
Each attaching vertex of a motif contains an additional probability distribu-
tion governing its affinity for a target based on a concept of distance in the
(de)composition sequence. Differential preference can be given to attachment
between motifs depending on the number of motifs in the sequence that sepa-
rate them.

During decomposition, the likelihood that any newly discovered motif be-
comes the next one in the sequence is evaluated in the context of the already
explained graph and the growing sequence. A newly detected candidate motif m
is connected by its attaching vertices to a set of already detected motifs. Each
attaching vertex v ∈ A is merged with a vertex v′ belonging to a motif m′ earlier
in the sequence. The distance d(m,m′) between motif m and motif m′ is defined
as the number of motifs separating them in the sequence.
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Fig. 2. Example motif set and preferential attachment rules (motif prior Θ, motif-
vertex preference Ψm and sequence distance rule Δm) for one of the motifs.

Definition 1. Probability of attachment. The probability of the attachment
is the product over all attaching vertices of the three preferential attachment
components: the motif prior Θ, the motif-vertex preference Ψm and the sequence
distance rule Δm:

Pr(Att) = Θ(m)×
∏
v∈A

[
Ψm(m′, v′)×Δm(d(m,m′))

]

Back in our example, the choice between a 4C and an R motif is resolved
by calculating the likelihood for each attachment. First, it is necessary to check
whether every attaching vertex is mapped onto an already explained vertex in
the discovered subgraph. If we accept that the example 4C motif has only one
attaching vertex and the R motif has two, the only valid decomposition sequence
is 4C − 4C −R. Should the motif set contain multiple variants of the 4C and R
motifs with a different number of attaching vertices, both candidates could be
valid. Their preferential attachment rules would then determine their order in
the sequence. If candidates are equally likely, the choice is made randomly.

Continuing this procedure, and given that the correct sequence is 4C− 4C−
R− 3C, all vertices in the source graph have now been explained. However, this
still leaves one edge unexplained, the self-loop at V 4. This demonstrates that
even with a well-chosen motif set that quite accurately captures the structural
characteristics of the source graph it may not be possible to completely decom-
pose a graph. To deal with this, glue motifs can be introduced into the motif set
to collect edges or vertices that can not otherwise be mapped with the conven-
tional motifs. An adequate choice of the motif set would limit the necessity for
glue motifs.
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2.2 Graph composition

Graph composition is governed by the same preferential attachment rules as
graph decomposition. Starting from a sequence of motifs a graph instance is
generated by probabilistically adding edges and vertices as determined by the
motifs in the sequence. Attaching motif vertices are merged with graph vertices
created by motifs earlier in the sequence. Non-attaching motif vertices create
new graph vertices. The number of edges in the resulting graph equals the sum
of the number of edges of all motifs in the sequence.

When adding the next motif in the sequence, every attaching vertex has to
be mapped onto a graph vertex. To do so, all of the graph vertices are evaluated
as potential candidates, using the preferential attachment rules. Two additional
constraints guide this process: an attachment may not introduce parallel edges
and two vertices belonging to the same motif may not be merged, since this
would fundamentally alter the structure of the motif.

The likelihood for each valid attachment point is calculated and an ultimately
one is chosen using roulette-wheel selection.

3 Experimental evaluation

3.1 Learning

In order to use the system in a new setting — for example the characterization
of gene regulatory networks — it is necessary to construct a motif set that
adequately characterizes the desired graph family. Because for complex networks
it is not feasible to construct the model manually, a machine learning was chosen
in this work.

Given a training set of positive examples of a certain graph class, an evo-
lutionary algorithm [4] was used to learn a motif set that can generate similar
graphs and classify graphs as belonging to this class. In one experiment the
largest connected component of the E. coli transcriptional regulatory network
as described by [11] was used as a training set (Fig. 3(a)). Fig. 3(b) shows an
example graph composed with the learned model.

3.2 Classification

Starting with the same motif set (Fig. 4(c), a = 0, b = 1) a variety of trees
was composed from a motif sequence by changing the sequence distance rule.
When using a geometric distribution with p = 0.9, the trees that are generated
are very chain-like, with very few and short branches (Fig. 4a). In this case it is
extremely likely that new motifs in the sequence attach to adjoining motifs while
with p = 0.1 attachments further up the chain are much more likely, resulting
in the creation of many branches(Fig. 4b).

One thousand chain-like and one thousand highly-branched trees were gen-
erated from a one hundred motif sequence with appropriate parameters. Every
tree was decomposed, starting from the root vertex, using the motif set that
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(a) (b)

Fig. 3. (a) Largest connected component of the E. coli TRN used as training set for
learning the TRN model. (b) Example of a graph composed with the learned model.
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Fig. 4. A chain-like tree (a), characterized by a low number of very short branches and
a highly-branched tree (b). Motif set used to generate them (c).

generates chain-like trees. As explained in Section 2.1, during the decomposi-
tion, the likelihood that any newly discovered motif becomes the next one in
the sequence is evaluated in the context of the already explained graph and
the growing sequence. The sum of these likelihoods, expressed as negative log-
probabilities (Def. 2), can be interpreted as an overall score for the plausibility
of the decomposition.

Definition 2. Likelihood of decomposition. The likelihood L of decomposi-
tion of a graph G, given a motifset M into a motif sequence S(M) is defined
as

L =
∑

a∈S(M)

−log(Pr(Att)a)

This likelihood can also be seen as a measure for the probability of generating
the decomposed graph from the sequence, given the specific motif set. Fig. 5(a)
shows the histogram of the resulting log-probability scores for all decompositions.
As expected, the likelihood of the decomposition is much higher for the chain-
like trees than for the highly-branched trees. The introduction of new branches
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results in lower scores because new motifs do not attach to the most recently
discovered motifs, but to motifs further away in the sequence, which is unlikely
given the geometric distribution with p = 0.9.
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Fig. 5. (a) Histogram of decomposition likelihood for two families of trees: chain-like
(blue) and highly-branched (red). (b) Receiver operating characteristic (ROC) curve for
two-way classification between AB and DSF graphs.

A similar experiment using a motif set learned from the E. coli TRN [11]
was used to decompose a series of random graphs generated with the Albert-
Barabási (AB)[1] and the directed scale free (DSF) [3] models. The likelihood
of the decomposed sequence was then used as a score for the overall plausibility
of the decomposition. Fig. 5(b) shows that it is possible to distinguish these
different graph classes using the learned model.

4 Conclusions

This paper presented a model that allows characterization of graph families
through a (de)composition method based on probabilistic sequences of motifs.
Given a motif set, a sequence can probabilistically produce many graphs by
sequentially combining the motifs. Both decomposition and composition are
governed by the same probability distributions, that dictate the order of mo-
tif detection or combination.

The feasibility of using a machine learning approach to construct a suitable
motif set for a new family of graphs was demonstrated. These learned motif sets
can then be used to distinguish between different classes of graphs.
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Abstract. Sampling functions in Gaussian process (GP) models is chal-
lenging because of the highly correlated posterior distribution. We de-
scribe an efficient Markov chain Monte Carlo algorithm for sampling
from the posterior process of the GP model. This algorithm uses control
variables which are auxiliary function values that provide a low dimen-
sional representation of the function. At each iteration, the algorithm
proposes new values for the control variables and generates the function
from the conditional GP prior. The control variable input locations are
found by continuously minimizing an objective function. We use this al-
gorithm to estimate the parameters of a differential equation model of
gene regulation.

1 Introduction

Gaussian processes (GPs) are used for Bayesian non-parametric estimation of
unobserved or latent functions. In regression problems with Gaussian likelihoods,
inference in GP models is analytically tractable, while for classification deter-
ministic approximate inference algorithms are widely used [5]. However, in recent
applications of GP models in systems biology [1] that require the estimation of
ordinary differential equation models [2, 7, 3], the development of deterministic
approximations is difficult since the likelihood can be highly complex. In this pa-
per, we consider Markov chain Monte Carlo (MCMC) algorithms for inference in
GP models. An advantage of MCMC over deterministic approximate inference
is that it provides an arbitrarily precise approximation to the posterior distri-
bution in the limit of long runs. Another advantage is that the sampling scheme
will often not depend on details of the likelihood function, and is therefore very
generally applicable.

In order to benefit from the advantages of MCMC it is necessary to develop
an efficient sampling strategy. This has proved to be particularly difficult in many
GP applications, because the posterior distribution describes a highly correlated
high-dimensional variable. Thus simple MCMC sampling schemes such as Gibbs
sampling can be very inefficient. In this contribution we describe an efficient
MCMC algorithm for sampling from the posterior process of a GP model which
constructs the proposal distributions by utilizing the GP prior. This algorithm
uses control variables which are auxiliary function values. At each iteration,
the algorithm proposes new values for the control variables and samples the
function by drawing from the conditional GP prior. The control variables are
highly informative points that provide a low dimensional representation of the

77



2 Michalis K. Titsias, Neil Lawrence and Magnus Rattray

function. The control input locations are found by continuously minimizing an
objective function. The objective function used is the expected least squares
error of reconstructing the function values from the control variables, where
the expectation is over the GP prior. We apply the algorithm to inference in a
systems biology model where a set of genes is regulated by a transcription factor
protein [3].

2 Sampling algorithms for Gaussian Process models

In a GP model we assume a set of inputs (x1, . . . ,xN ) and a set of function
values f = (f1, . . . , fN ) evaluated at those inputs. A Gaussian process places
a prior on f which is a N -dimensional Gaussian distribution so that p(f) =
N(y|µ,K). The mean µ is typically zero and the covariance matrix K is defined
by the kernel function k(xn,xm) that depends on parameters θ. GPs are widely
used for supervised learning [5] in which case we have a set of observed pairs
(yi,xi), where i = 1, . . . , N , and we assume a likelihood model p(y|f) that
depends on parameters α. For regression or classification problems, the latent
function values are evaluated at the observed inputs and the likelihood factorizes
according to p(y|f) =

∏N
i=1 p(yi|fi). However, for other type of applications,

such as modelling latent functions in ordinary differential equations, the above
factorization is not applicable. Assuming that we have obtained suitable values
for the model parameters (θ,α) inference over f is done by applying Bayes rule:

p(f |y) ∝ p(y|f)p(f). (1)

For regression, where the likelihood is Gaussian, the above posterior is a Gaussian
distribution that can be obtained using simple algebra. When the likelihood
p(y|f) is non-Gaussian, computations become intractable and we need to carry
out approximate inference.

The MCMC algorithm we consider is the general Metropolis-Hastings (MH)
algorithm [6]. Suppose we wish to sample from the posterior in eq. (1). The MH
algorithm forms a Markov chain. We initialize f (0) and we consider a proposal
distribution Q(f (t+1)|f (t)) that allows us to draw a new state given the current
state. The new state is accepted with probability min(1, A) where

A =
p(y|f (t+1))p(f (t+1))

p(y|f (t))p(f (t))
Q(f (t)|f (t+1))
Q(f (t+1)|f (t))

. (2)

To apply this generic algorithm, we need to choose the proposal distribution Q.
For GP models, finding a good proposal distribution is challenging since f is
high dimensional and the posterior distribution can be highly correlated.

To motivate the algorithm presented in section 2.1, we discuss two extreme
options for specifying the proposal distribution Q. One simple way to choose
Q is to set it equal to the GP prior p(f). This gives us an independent MH
algorithm [6]. However, sampling from the GP prior is very inefficient as it is
unlikely to obtain a sample that will fit the data. Thus the Markov chain will
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get stuck in the same state for thousands of iterations. On the other hand,
sampling from the prior is appealing because any generated sample satisfies the
smoothness requirement imposed by the covariance function. Functions drawn
from the posterior GP process should satisfy the same smoothness requirement
as well.

The other extreme choice for the proposal, that has been considered in [4], is
to apply Gibbs sampling where we iteratively draw samples from each posterior
conditional density p(fi|f−i,y) with f−i = f \ fi. However, Gibbs sampling can
be extremely slow for densely discretized functions, as in the regression problem
of Figure 1, where the posterior GP process is highly correlated. To clarify this,
note that the variance of the posterior conditional p(fi|f−i,y) is smaller or equal
to the variance of the conditional GP prior p(fi|f−i). However, p(fi|f−i) may
already have a tiny variance caused by the conditioning on all remaining latent
function values. For the one-dimensional example in Figure 1, Gibbs sampling
is practically not applicable. We will further study this issue in section 4.

A similar algorithm to Gibbs sampling can be expressed by using the se-
quence of the conditional densities p(fi|f−i) as a proposal distribution for the
MH algorithm1. We call this algorithm the Gibbs-like algorithm. This algorithm
can exhibit a high acceptance rate, but it is inefficient to sample from highly
correlated functions.

2.1 Sampling using control variables

Let fc be a set of M auxiliary function values that are evaluated at inputs Xc

and drawn from the GP prior. We call fc the control variables and their meaning
is analogous to the active or inducing variables used in sparse GP models; see
e.g. [5]. To compute the posterior p(f |y) based on control variables we use the
expression

p(f |y) =
∫
fc

p(f |fc,y)p(fc|y)dfc. (3)

Assuming that fc is highly informative about f , so that p(f |fc,y) ' p(f |fc), we
can approximately sample from p(f |y) in a two-stage manner: firstly sample the
control variables from p(fc|y) and then generate f from the conditional prior
p(f |fc). This scheme can allow us to introduce a MH algorithm, where we need
to specify only a proposal distribution q(f (t+1)

c |f (t)
c ), that will mimic sampling

from p(fc|y), and always sample f from the conditional prior p(f |fc). The whole
proposal distribution takes the form

Q(f (t+1), f (t+1)
c |f (t), f (t)

c ) = p(f (t+1)|f (t+1)
c )q(f (t+1)

c |f (t)
c ). (4)

Each proposed sample is accepted with probability min(1, A) where A is given
by

A =
p(y|f (t+1))p(f (t+1)

c )

p(y|f (t))p(f (t)
c )

.
q(f (t)

c |f (t+1)
c )

q(f (t+1)
c |f (t)

c )
. (5)

1 Thus we replace the proposal distribution p(fi|f−i,y) with the prior conditional
p(fi|f−i).

79



4 Michalis K. Titsias, Neil Lawrence and Magnus Rattray

The usefulness of the above sampling scheme stems from the fact that the control
variables can form a low-dimensional representation of the function. Assuming
that these variables are much fewer than the points in f , the sampling is mainly
carried out in the low dimensional space. In section 2.2 we describe how to select
the number M of control variables and the inputs Xc so as fc becomes highly
informative about f . In the remainder of this section we discuss how we set the
proposal distribution q(f (t+1)

c |f (t)
c ).

A suitable choice for q is to use a Gaussian distribution with diagonal or full
covariance matrix. The covariance matrix can be adapted during the burn-in
phase of MCMC in order to increase the acceptance rate. Although this scheme
is general, it has practical limitations. Firstly, tuning a full covariance matrix
is time consuming and in our case this adaption process must be carried out
simultaneously with searching for an appropriate set of control variables. Also,
since the terms involving p(fc) do not cancel out in the acceptance probability in
eq. (5), using a diagonal covariance for the q distribution has the risk of proposing
control variables that may not satisfy the GP prior smoothness requirement. To
avoid these problems, we define q by utilizing the GP prior. According to eq.
(3) a suitable choice for q must mimic the sampling from the posterior p(fc|y).
Given that the control points are far apart from each other, Gibbs sampling in
the control variables space can be efficient. However, iteratively sampling fci

from the conditional posterior p(fci |fc−i ,y) ∝ p(y|fc)p(fci |fc−i), where fc−i =
fc \ fci is intractable for non-Gaussian likelihoods2. An attractive alternative is
to use a Gibbs-like algorithm where each fci is drawn from the conditional GP
prior p(f (t+1)

ci |f (t)
c−i) and is accepted using the MH step. More specifically, the

proposal distribution draws a new f
(t+1)
ci for a certain control variable i from

p(f (t+1)
ci |f (t)

c−i) and generates the function f (t+1) from p(f (t+1)|f (t+1)
ci , f (t)

c−i). The
sample (f (t+1)

ci , f (t+1)) is accepted using the MH step. This scheme of sampling
the control variables one-at-a-time and resampling f is iterated between different
control variables. A complete iteration of the algorithm consists of a full scan
over all control variables. The acceptance probability A in eq. (5) becomes the
likelihood ratio and the prior smoothness requirement is always satisfied.

Although the control variables are sampled one-at-at-time, f can still be
drawn with a considerable variance. To clarify this, note that when the control
variable fci changes the effective proposal distribution for f is p(f t+1|f (t)

c−i) =∫
f
(t+1)
ci

p(f t+1|f (t+1)
ci , f (t)

c−i)p(f (t+1)
ci |f (t)

c−i)df
(t+1)
ci , which is the conditional GP prior

given all the control points apart from the current point fci . This conditional
prior can have considerable variance close to fci and in all regions that are
not close to the remaining control variables. The iteration over different control
variables allow f to be drawn with a considerable variance everywhere in the
input space.

2 This is because we need to integrate out f in order to compute p(y|fc).
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2.2 Selection of the control variables

To apply the previous algorithm we need to select the number, M , of the control
points and the associated inputs Xc. Xc must be chosen so that knowledge of
fc can determine f with small error. The prediction of f given fc is equal to
Kf,cK

−1
c,c fc which is the mean of the conditional prior p(f |fc). A suitable way

to search over Xc is to minimize the reconstruction error ||f − Kf,cK
−1
c,c fc||2

averaged over any possible value of (f , fc):

G(Xc) =
∫
f ,fc

||f −Kf,cK
−1
c,c fc||2p(f |fc)p(fc)dfdfc = Tr(Kf,f −Kf,cK

−1
c,c KT

f,c).

The quantity inside the trace is the covariance matrix of p(f |fc) and thus G(Xc)
is the total variance of this distribution. We can minimize G(Xc) w.r.t. Xc using
continuous optimization. Note that G(Xc) is nonnegative and when it becomes
zero, p(f |fc) becomes a delta function.

To find the number M of control points we minimize G(Xc) by incrementally
adding control variables until the total variance of p(f |fc) becomes smaller than
a certain percentage of the total variance of the prior p(f). 5% was the threshold
used in all our experiments. Then we start the simulation and we observe the
acceptance rate of the Markov chain. According to standard heuristics [6] which
suggest that desirable acceptance rates of MH algorithms are around 1/4, we
require a full iteration of the algorithm (a complete scan over the control vari-
ables) to have an acceptance rate larger than 1/4. When for the current set of
control inputs Xc the chain has a low acceptance rate, it means that the variance
of p(f |fc) is still too high and we need to add more control points in order to
further reduce G(Xc). The process of observing the acceptance rate and adding
control variables is continued until we reach the desirable acceptance rate.

3 Transcriptional regulation

We consider a small biological sub-system where a set of target genes are reg-
ulated by one transcription factor (TF) protein. Ordinary differential equations
(ODEs) can provide an useful framework for modelling the dynamics in these
biological networks [1, 2, 7, 3]. The concentration of the TF and the gene specific
kinetic parameters are typically unknown and need to be estimated by making
use of a set of observed gene expression levels. We use a GP prior to model the
unobserved TF activity, as proposed in [3], and apply full Bayesian inference
based on the MCMC algorithm presented previously.

Barenco et al. [2] introduce a linear ODE model for gene activation from
TF. This approach was extended in [7, 3] to account for non-linear models. The
general form of the ODE model for transcription regulation with a single TF has
the form

dyj(t)
dt

= Bj + Sjg(f(t))−Djyj(t), (6)

where the changing level of a gene j’s expression, yj(t), is given by a combination
of basal transcription rate, Bj , sensitivity, Sj , to its governing TF’s activity, f(t),
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and the decay rate of the mRNA, Dj . The differential equation can be solved
for yj(t) giving

yj(t) =
Bj

Dj
+ Aje

−Djt + Sje
−Djt

∫ t

0

g(f(u))eDjudu, (7)

where Aj term arises from the initial condition. Due to the non-linearity of the
g function that transforms the TF, the integral in the above expression is not
analytically obtained. However, numerical integration can be used to accurately
approximate the integral with a dense grid (ui)P

i=1 of points in the time axis and
evaluating the function at the grid points fp = f(up). In this case the integral
in the above equation can be written

∑Pt

p=1 wpg(fp)eDjup where the weights wp

arise from the numerical integration method used and, for example, can be given
by the composite Simpson rule.

The TF concentration f(t) in the above system of ODEs is a latent function
that needs to be estimated. Additionally, the kinetic parameters of each gene
αj = (Bj , Dj , Sj , Aj) are unknown and also need to be estimated. To infer these
quantities we use mRNA measurements (obtained from microarray experiments)
of N target genes at T different time steps. Let yjt denote the observed gene
expression level of gene j at time t and let y = {yjt} collect together all these
observations. Assuming a Gaussian noise for the observed gene expressions the
likelihood of our data has the form

p(y|f , {αj}Nj=1) =
N∏

j=1

T∏
t=1

p(yjt|f1≤p≤Pt ,αj), (8)

where each probability density in the above product is a Gaussian with mean
given by eq. (7) and f1≤p≤Pt

denotes the TF values up to time t. Notice that this
likelihood is non-Gaussian due to the non-linearity of g. Further, this likelihood
does not have a factorized form, as in the regression and classification cases,
since an observed gene expression depends on the protein concentration activity
in all previous times points. Also note that the discretization of the TF in P time
points corresponds to a very dense grid, while the gene expression measurements
are sparse, i.e. P � T .

To apply full Bayesian inference in the above model, we need to define prior
distributions over all unknown quantities. The protein concentration f is a posi-
tive quantity, thus a suitable prior is to consider a GP prior for log f . The kinetic
parameters of each gene are all positive scalars. Those parameters are given vague
gamma priors. Sampling the GP function is done exactly as described in section
2; we have only to plug in the likelihood from eq. (8) in the MH step. Sampling
from the kinetic parameters is carried using Gaussian proposal distributions with
diagonal covariance matrices that sample the positive kinetic parameters in the
log space.
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Fig. 1: First row: The left plot shows the inferred TF concentration for p53; the small
plot on top-right shows the ground-truth protein concentration obtained by a Western
blot experiment [2]. The middle plot shows the predicted expression of a gene obtained
by the estimated ODE model; red crosses correspond to the actual gene expression
measurements. The right-hand plot shows the estimated decay rates for all 5 target
genes used to train the model. Grey bars display the parameters found by MCMC and
black bars the parameters found in [2] using a linear ODE model. Second row: The left
plot shows the inferred TF concentration for LexA. Predicted expression profiles of two
target genes are shown in the remaining two plots. Error bars in all plots correspond
to 95% credibility intervals.

4 Experiments

We consider two experiments where we apply the algorithm using control vari-
ables to infer the protein concentration of TFs that activate or repress a set of
target genes. The latent function in these problems is always one-dimensional
and densely sampled. Gibbs sampling schemes in such cases are extremely in-
efficient while the algorithm using control variables efficiently samples from the
GP posterior process.

We first consider the TF p53 which is a tumour repressor activated during
DNA damage. Seven samples of the expression levels of five target genes in three
replicas are collected as the raw time course data. The non-linear activation of the
protein follows the Michaelis Menten kinetics inspired response [1] that allows
saturation effects to be taken into account so as g(f(t)) = f(t)

γj+f(t) in eq. (6)
where the Michaelis constant for the jth gene is given by γj . Note that since f(t)
is positive the GP prior is placed on the log f(t). To apply MCMC we discretize f
using a grid of P = 121 points. During sampling, 7 control variables were needed
to obtain the desirable acceptance rate. Running time was 4 hours for 5 × 105
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8 Michalis K. Titsias, Neil Lawrence and Magnus Rattray

sampling iterations plus 5 × 104 burn-in iterations. The first row of Figure 1
summarizes the estimated quantities obtained from MCMC simulation.

Next we consider the TF LexA in E.Coli that acts as a repressor. In the
repression case there is an analogous Michaelis Menten model [1] where the non-
linear function g takes the form: g(f(t)) = 1

γj+f(t) . Again the GP prior is placed
on the log of the TF activity. We applied our method to the same microarray data
considered in [7] where mRNA measurements of 14 target genes are collected over
six time points. For this dataset, the expression of the 14 genes were available
for T = 6 times. The GP function f was discretized using 121 points. The result
for the inferred TF profile along with predictions of two target genes are shown
in the second row of Figure 1. Our inferred TF profile and reconstructed target
gene profiles are similar to those obtained in [7]. However, for certain genes, our
model provides a better fit to the gene profile.

5 Discussion

Gaussian processes allow for inference over latent functions using a Bayesian
estimation framework. In this paper, we presented an MCMC algorithm that
uses control variables. We currently extend the MCMC framewowork to deal with
much larger systems of ODEs with multiple interacting transcription factors.
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Abstract. We are interested in using inductive logic programming (ILP)
to generate rules for recognising functional upstream open reading frames
(uORFs) in the yeast Saccharomyces cerevisiae. This paper empirically
investigates whether providing an ILP system with predicted mRNA
secondary structure can increase the performance of the resulting rules.
Two sets of experiments, with and without mRNA secondary structure
predictions as part of the background knowledge, were run. For each set,
stratified 10-fold cross-validation experiments were run 100 times, each
time randomly permuting the order of the positive training examples,
and the performance of the resulting hypotheses were measured. Our
results demonstrate that the performance of an ILP system in recog-
nising known functional uORFs in the yeast S. cerevisiae significantly
increases when mRNA secondary structure predictions are added to the
background knowledge and suggest that mRNA secondary structure can
affect the ability of uORFs to regulate gene expression.

1 Introduction

Uncovering the mechanisms that regulate gene expression at a system-level is an
important task in systems biology. Understanding the roles of post-transcriptional
regulatory elements in gene expression is one aspect of this. Upstream open read-
ing frames (uORFs) are among the regulatory elements that can be present in
the 5′ untranslated region (UTR) of messenger RNA (mRNA). In the yeast
Saccharomyces cerevisiae, some uORFs have been well studied and it has been
verified that some of these regulate gene expression (i.e. they are functional) [1–
5], while a few others do not (i.e. they are non-functional) [6, 7]. The mechanism
by which uORFs regulate genes is still only partially understood. This is mainly
because wet-lab experiments to test whether a gene contains functional uORFs
are costly and time-consuming.
? To whom correspondence should be addressed.
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Fig. 1. Left: A predicted secondary structure of the 5′ UTR sequence and ten nu-
cleotides of gene YAP2 (YDR423C), made by RNAfold. The boxes have been added
to show how we view the structure as three stem-loop structures. Right: Illustration of
a uORF intersects with an mRNA secondary structure on the uORF’s left (upstream)
part.

It has been shown that inductive logic programming (ILP) can automatically
generate a set of hypotheses which makes searching for novel functional uORFs
(i.e. uORFs which can regulate gene expression) in the yeast S. cerevisiae more
efficient than random sampling [8]. Those hypotheses were simple and easy to
understand, but appeared to be too general. This is due not only to the limited
number of positive examples and the high degree of noise in the data, two prob-
lems which cannot be easily rectified, but also due to the limited background
knowledge.

In this paper, we investigate whether incorporating predicted mRNA sec-
ondary structure as background knowledge can increase the performance of the
resulting hypotheses in recognising functional uORFs in the yeast S. cerevisiae.
The type of mRNA secondary structure we consider is the stem-loop. A stem-
loop is a simple RNA secondary structure motif that can occur when the tran-
scribed sequence contains an inverted repeat sequence (see Fig. 1). Based on
their study on a maize gene, Wang and Wessler [9] concluded that uORF and
mRNA secondary structure regulate gene expression independently. However,
the results from [10], based on studies on human genes, are rather different;
the presence of secondary structure seems to affect uORFs’ ability to regulate
gene expression. The difference between the conclusions of [9] and those of [10]
leave open the question whether mRNA secondary structure influences uORFs’
ability to regulate gene expression. This motivates our study; to test whether
mRNA secondary structure predictions could help in recognising known func-
tional uORFs in the yeast S. cerevisiae.

The rest of this paper is organised as follows. Section 2 describes the dataset
and the learning system used in this work. The experimental method, includ-
ing how we incorporate mRNA secondary structure predictions as background
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knowledge, is detailed in Section 3. Our results are presented in Section 4. Fi-
nally, in Section 5, we discuss our main results and suggest directions for future
work.

2 The Dataset and the Learning System

The same dataset that was used for training and testing in [8] was used here
for training and testing. For the task of learning which uORFs regulate gene
expression, positive examples are verified functional uORFs, and negative ex-
amples are verified non-functional uORFs. Since confirmed negative examples
are scarce (there are only two compared to 20 positive examples) and given that
there are 380 random examples (unlabelled uORFs, most of which are prob-
ably negatives), we use the positive-only setting [11] of CProgol [12] version
4.4 [13]; the same was used in [8]. CProgol is an established ILP system which
uses a covering approach for hypotheses construction. CProgol has been suc-
cessfully applied to many different problems, including some in bioinformatics.
The positive-only setting of CProgol4.4 learns from both positive and random
examples; the random examples can either be provided by the user or generated
automatically by CProgol. The random examples used for our experiments here
are the 380 unlabelled uORFs. We did not use the system-generated random
examples because these could be less informative than unlabelled uORFs and
might not represent true examples (i.e., true uORFs).

3 Methods

To enable us to test whether incorporating mRNA secondary structure predic-
tions as background knowledge increases ILP performance when learning which
uORFs in yeast are functional, we run two sets of experiments, with and without
mRNA secondary structure predictions as part of the background knowledge. For
each set, stratified 10-fold cross-validation experiments were run 100 times, each
time with a random permutation of the order in which positive training examples
are presented to the ILP system; this was done because CProgol4.4 may generate
different hypotheses when given different orderings of positive training examples.
The same 100 random orderings were used for both sets of experiments. Strat-
ified 10-fold cross-validation means that the set of positive examples is divided
into ten roughly equal partitions and the same is done to the set of random
examples; each of these positive and random partitions are in turn used as a test
set while the rest of the partitions are used as training set. Table 1 summarises
our experimental procedure.

The ILP learner was instructed to learn a predicate has_functional_role/1
from a set of training examples. Positive examples were represented as instances
of the predicate has_functional_role(X), where X is a uORF ID. A uORF ID
is a composite of the systematic name of the gene to which the uORF belongs
(for example, YDR423C is the systematic name of gene YAP2 ) and a uORF
identifier (e.g., uORF1, uORF2, etc.). The definition of the hypotheses space for
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Table 1. The Experimental Procedure

For i=1 to 100

Randomly permute the order of examples

Divide dataset into stratified 10 folds

Divide set of positives into 10 equal partitions

Divide set of randoms into 10 roughly equal partitions

For j=1 to 10

Concatenate partition j of positives and partition j of randoms

to create fold j

For each set of background knowledge

For j=1 to 10

Use fold j as test set

Construct hypotheses using the other nine folds

Use the resulting hypotheses to classify the test set

Get the performance of stratified 10-fold cross-validation

experiments

Table 2. Representation of a predicted structure shown in Figure 1.
has stemloop(X,Y) represents the relationship between UTR X and stem-loop
Y. stemloop(W,X,Y,Z) states that stem-loop W has its opening and closing positions in
X and Y bases to the coding sequence; and there are, in total, Z base pairs within W.

has_stemloop(YDR423C, YDR423C_sl3). stemloop(YDR423C_sl3, 98, 71, 10).

has_stemloop(YDR423C, YDR423C_sl2). stemloop(YDR423C_sl2, 66, 17, 13).

has_stemloop(YDR423C, YDR423C_sl1). stemloop(YDR423C_sl1, 13, -3, 3).

the experiments without mRNA secondary structure predictions were the same
as in Table 5 of [8].

RNAfold [14]4 was used, with its default settings, to generate mRNA sec-
ondary structure predictions from sequence data. For each of the 17 well-studied
genes, the 5′ UTR sequence and the first ten nucleotides of the coding sequence
was used as an input for RNAfold. The length of 5′ UTRs were taken from the Eu-
ropean Molecular Biology Laboratory (EMBL) Nucleotide Sequence Database5,
where available, or, failing that, [1]. The output from RNAfold was transformed
into Prolog predicates representing predicted mRNA secondary structure as ex-
tensional background knowledge. In this work, we view the predicted mRNA
secondary structure from the highest level. This means that we do not consider
a nested stem-loop as an independent stem-loop. For example, we only consider
YAP2 to have the three stem-loop structures shown in the left part of Fig. 1
and Table 2.

4 ViennaRNA-1.6.1 was downloaded from http://www.tbi.univie.ac.at/~ivo/RNA/
5 ftp://ftp.ebi.ac.uk/pub/databases/UTR/data/5UTR.Fun_nr.dat.gz version 16

June 2006
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Table 3. Additional mode declarations used in experiments with mRNA secondary
structure predictionsa.

:- modeb(1,is_inside_stemloop(+uORF))?

:- modeb(1,intersectleft_with_stemloop(+uORF))?

:- modeb(1,intersectright_with_stemloop(+uORF))?

:- modeb(*,has_stemloop(+uORF,-stemloop))?

:- modeb(1,stemloop(+stemloop,-pospair1,-pospair2,-numberofpairs))?

:- modeb(1,+numberofpairs=< #int)?

:- modeb(1,+numberofpairs>= #int)?

:- modeb(1,+numberofpairs= #int)?

:- modeb(1,+pospair1=< #int)? :- modeb(1,+pospair2=< #int)?

:- modeb(1,+pospair1>= #int)? :- modeb(1,+pospair2>= #int)?

:- modeb(1,+pospair1= #int)? :- modeb(1,+pospair2= #int)?

amodeb describes the predicates to be used in a hypothesis and has the for-
mat: modeb(RecallNumber,Template). RecallNumber specifies how many times the
Template can be called successfully; * means the Template can be called successfully
up to 100 times. Template is n-ary predicates, with n ≥ 1 and each of the arguments
is a variable type preceded by either a ‘+’ (indicates that the argument should be an
input), ‘-’ (indicates that the argument should be an output), or ‘#’ (indicates that
the argument should be a constant). The types uORF and stemloop were declared by
defining a set of instances of the predicates uORF(X) and stemloop(Y) respectively,
where X is a uORF ID and Y is a stem-loop ID. The types of pospair1, pospair2,
and numberofpairs were all defined as integer. pospair1 and pospair2 represent the
opening and closing positions of the stemloop. numberofpairs represents the length of
stem.

[15] and [16] suggested that the stability of a secondary structure and its
distance from the coding sequence influence its ability to inhibit the translation
of the coding sequence. Therefore, the predicate stemloop/4 (see Table 3) was
designed to capture both the distance (the opening and the closing positions
in the right part of Fig. 1) of a predicted stem-loop structure to the coding
sequence and the stability. Here, the stability was represented by the number
of base pairs (the length of the stem); the longer the stem the more stable the
secondary structure and the more energy is needed to unwind it. We do not use
the predicted minimum free energy because of the way we view the predicted
mRNA secondary structure. For example, we consider three stem-loop structures
while there was only one predicted minimum free energy for the overall predicted
structure shown in the left part of Fig. 1.

With the biological knowledge gained from literature, we defined several
declarative rules that identify if a uORF intersects with any predicted secondary
structure on the uORF’s left (upstream) part (see an illustration in Fig. 1), on
the uORF’s right (downstream) part, or is inside any predicted secondary struc-
ture. To instruct CProgol to include mRNA secondary structure predictions in
its hypothesis space, we defined additional mode declarations (Table 3). Some
adjustments were made to the parameter settings used in [8] to allow CProgol to
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consider a larger hypotheses space. The parameter c (the maximum number of
atoms in the body of the rules constructed) was increased from 6 to 10; nodes
(the maximum number of nodes explored during clause searching) was increased
from 7,000 to 50,000; and h (the maximum depth of resolutions allowed when
proving) was increased from 30 (default value) to 100.

4 Results

To statistically evaluate the impact of incorporating mRNA secondary struc-
ture predictions as part of the background knowledge on the task of recognising
yeast functional uORFs, we compared the relative advantage (RA) values [17,
Appendix A] from 100 experiments with and without mRNA secondary structure
predictions. RA was used as a performance measure in [8]. The characteristics of
the data used here matched with the characteristics for which RA is claimed to
be useful. The idea of using RA is to predict the cost reduction in finding func-
tional uORFs using a recognition model compared to using random sampling.
In this application domain, RA is defined as

RA =
A

B

where

– A is the expected cost of finding one functional uORF by repeated indepen-
dent random sampling from the set of possible uORFs and performing a lab
analysis of each uORF;

– B is the expected cost of finding one functional uORF by repeated indepen-
dent random sampling from the set of possible uORFs and analysing only
those uORFs which are predicted by the learned model as functional uORFs.

In 87 experiments out of 100, the mean RA values from the experiments with
mRNA secondary structure predictions are better than the mean RA values from
the corresponding experiments without mRNA secondary structure predictions
(see Fig. 2). The result from a Wilcoxon Signed Rank test shows that there was a
statistically significant increase from the mean RA values from the experiments
without mRNA secondary structure predictions to those from the correspond-
ing experiments with mRNA secondary structure predictions (mean RA values:
mean without=34.05, mean with=61.53, p < 0.0005).

The analysis made so far is based on the mean RA values from our ex-
periments. However, RA is less well known than other performance measures
such as precision, recall (also known as sensitivity), specificity, and F1 score.
Therefore, to support our analysis, we also measured the precision, recall, speci-
ficity6, and F1 score. We found that there were statistically significant increases
in the values of precision, recall, specificity, and F1 score from the experiments
6 In this case, specificity measures the fraction of randoms which are predicted as

randoms.
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Fig. 2. Comparison of mean RA values from 100 experiments with and without mRNA
secondary structure predictions. Experiments are sorted with respect to mean RA
values from the experiments without mRNA secondary structure predictions. In 87
experiments, the mean RA values from experiments with mRNA secondary structure
predictions are better than those from experiments without mRNA secondary structure
predictions.

Table 4. Spearman’s rank correlation between mean RA and other performance mea-
sures from 100 experiments with and without mRNA secondary structure predictions.

Experiment Precision Recall Specificity F1 score

with Mean RA 0.94 -0.02 0.73 0.74

without Mean RA 0.91 -0.05 0.72 0.70

Note: There is no significant correlation between mean RA and
recall. All other correlations are significant with p < 0.0005.

without mRNA secondary structure predictions to those from the correspond-
ing experiments with mRNA secondary structure predictions (precision: mean
without=0.45, mean with=0.63; recall: mean without=0.77, mean with=0.87;
specificity: mean without=0.94, mean with=0.96; F1 score: mean without=0.54,
mean with=0.70; all were based on Wilcoxon Signed Ranks test with p < 0.0005).

Spearman’s rank correlation was used to find out whether there are relation-
ships between RA and the other measures (Table 4). We conclude that mean
RA has a strong positive correlation with precision and specificity. Spearman’s
correlation also shows that there was a strong positive correlation between mean
RA and F1 score. This is due to the strong positive correlation between mean
RA and precision, since there was no significant correlation between mean RA
and recall; precision and recall are the two components used for calculating F1

score.
The content of the hypotheses were also analysed. The hypotheses from the

10 experiments that give the 10 highest average cross-validation performances
(mean RA) suggest that mRNA secondary structure influences uORFs’ ability
to regulate gene expression in the yeast S. cerevisiae. The rules also suggest that
a functional uORF is likely to lie inside a stem-loop structure, or to intersect
with a stem-loop structure on the uORF’s left part. In our data, 17 of the 20
functional uORFs (positive examples) lie inside stem-loop structures predicted
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in the associated UTRs. For 3 of the 20 uORFs, their left part intersect with
stem-loop structures predicted in the associated UTRs; 2 of these 3 uORFs do
not lie inside stem-loop structures predicted in the associated UTRs.

5 Discussion and Future Work

Our empirical results show that the performance of an ILP system, CProgol 4.4,
in recognising known functional uORFs in the yeast S. cerevisiae significantly
increases when mRNA secondary structure predictions are added to the back-
ground knowledge (mean RA values: mean without=34.05, mean with=61.53,
p < 0.0005). This conclusion still holds when performance is measured using
precision, recall, specificity, and F1 score, which are very well known in both
machine learning and bioinformatics domains.

In this work, the background knowledge regarding mRNA secondary struc-
ture was derived from predictions made by RNAfold on the given S. cerevisiae
sequences. However, the reliability of predictions made by RNAfold, and other
similar software based on thermodynamic energy minimisation, is often ques-
tioned because each prediction is made based on a single sequence. Therefore,
for future work, one could consider deriving the background knowledge from
mRNA secondary structures that are predicted to be conserved among yeast
species.

Here, we view the predicted mRNA secondary structure from the highest
level, and do not consider a nested stem-loop as an independent stem-loop.
Thus, we limited the type of background knowledge that was derived from the
predicted mRNA secondary structure. It would be interesting to investigate the
effect of including more detailed background knowledge of the mRNA secondary
structure predictions on the ILP system’s performance in recognising functional
uORFs.
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Abstract. In this paper we introduce a robust method for exploratory analysis 
of microarray data, which produces a number of different bi-orderings of the 
data, each uniquely determined by a bicluster, i.e., a pair of subsets of genes 
and samples. We first compare the performance of our core bi-ordering 
algorithm with several closely related existing biclustering algorithms on a 
gastric cancer dataset. We then show that the sample bi-orderings generated by 
our method are highly statistically significant with respect to both the sample 
histological annotations and biological annotations (from the Gene Ontology). 
We show that some of the gene modules associated with our most robust bi-
orderings are closely linked to gene modules that are important for gastric 
cancer tumorgenesis reported in literature, while others are novel discoveries.  

Keywords: biclustering, gene expression, gene ontology, gastric cancer 

1 Introduction 

A typical aim of exploratory analysis of genomics data is to identify potentially 
interesting genes or pathways that warrant further investigation. There is a critical 
need to streamline this type of analysis, in order to support continuing advances in 
high throughput genomics methods such as gene expression microarrays, which 
measure thousands of genes in a single assay and are the focus of this paper. Such 
assays provide noisy and incomplete measurements, which require sophisticated 
bioinformatics techniques to identify statistically and biologically significant 
associations between genes and relevant phenotypes of interest.   

Unsupervised analysis techniques cluster data without using prior information on 
the labels of samples. This enables the discovery of novel histological subtypes. 
However, there are a number of open challenges, such as how to evaluate the 
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statistical significance of the results. The major limitation of traditional clustering 
algorithms in this context is that they cluster genes into non-overlapping groups, 
based on the similarity of their expression across all samples. This limits the ability to 
find groups of genes that are “co-correlated” across only a subset of samples or 
participate in multiple cellular pathways. In spite of such limitations, there are 
examples of remarkable biologically significant discoveries. One such case revisited 
in this paper is the analysis of gastric cancer data [1]. The original paper used 
hierarchical clustering of both 7383 genes and 124 gastric cancer samples (malignant 
and pre-malignant). By inspecting the final “heat map” the authors observed a 
number of remarkable biclusters, which were then linked to various aspects of cancer 
etiology. However, the approach in [1] was heavily dependent on manual inspection 
to identify the final “biclusters”. In particular, several sets of co-expressed genes were 
not grouped together by hierarchical clustering, and needed to be grouped manually 
by expert analysis. Moreover, it is difficult to assess whether such clusters are robust 
to any changes in the analysis, and whether different clustering attempts converge to 
a stable result. Consequently, there is a need for techniques that can guide such a 
process of discovering significant and worthwhile hypotheses for follow-up analysis.  

This paper proposes such an exploratory technique. It is based on a form of 
biclustering [2], i.e., a method for automated discovery of highly correlated subsets of 
genes across a subset of samples, in combination with methods for evaluating the 
statistical significance and biological relevance of such biclusters. There are four 
main contributions that we make in this paper. First, we introduce a novel algorithm, 
called bi-ordering, which is in some respects a member of a family of biclustering 
techniques. This algorithm is benchmarked against several relevant biclustering 
algorithms in the literature [2][3][4][5]. Second, we introduce two novel statistical 
techniques for evaluating the significance of the generated groupings and orderings of 
multiple histological samples. Third, we assess the stability of the observed results by 
assessing the size of their “basin of attraction” as follows. In our experiments, random 
initializations of the algorithms yield hundreds of biclusters, which were then 
grouped into a manageable number of families of identical or very similar outcomes 
(called “super-biclusters”) by a secondary phase of clustering the generated biclusters. 
The size of such a family is interpreted as the stability of the super-bicluster. We 
found that our technique can find a small set of highly stable super-biclusters, which 
correspond to distinct histopathological types in an existing gastric cancer data set [1]. 
Fourth, we demonstrate that the discovered super-biclusters have associated Gene 
Ontology (GO) terms with very significant p-values, which can serve as a basis for 
biological interpretation of the meaning of the associated gene modules. 

2 The Bi-ordering Algorithm 

 
We introduce a protocol for identifying and characterizing modules of genes that 

exhibit high statistical, biological and clinical significance. Our protocol, named Bi-
ordering Exploratory Analysis (BEA), comprises six main stages as stated below:  
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1. Input:  gene expression data matrix of  genes for  samples.  G Sn n× Gn Sn
2. Generate biclusters based on a bi-ordering of genes and samples. 
3. Merge similar biclusters into “super-biclusters” to identify robust modules of 

co-expressed genes. 
4. Annotate biclusters with histological and biological attributes to support their 

interpretation 
5. Generate figures of merit (i.e., p-values) for: 

a.  GO annotations, 
b.  overrepresentation of histological categories in bicluster, and 
c.  concordance of sample order with various phenotype gradients. 

6. Develop biological interpretation of the results. 
 

We briefly elaborate selected key stages of this protocol later in this section. 
 

Bi-clustering – The term “biclustering”, introduced by Cheng and Church in [2], 
refers to the identification of a sub-matrix with “significantly homogeneous entries”. 
We have tested several existing biclustering algorithms, namely, Cheng and Church’s 
algorithm [2] (C&C), SAMBA [3], biclustering by Gibbs sampling [5], and the ISA 
algorithm [4], which is closest to our algorithm. We have used open source 
implementations of these algorithms in our evaluation, i.e., SAMBA is tested using 
Expander [6], Gibbs sampling has been implemented by ourselves, and the 
biclustering toolbox BicAT [7] is used for the other two algorithms. We now 
introduce a novel algorithm pivotal in the generation of our results.   

 
Algorithm 1 (Bi-Ordering Analysis - BOA) 

1. Input:  data matrix G Sn n× gsx⎡ ⎤⎣ ⎦ , two cut-off thresholds Gθ  and Sθ . 

2. Standardize data: first, for each gene (across all samples), to  and 
, then repeat this for each sample (across all genes). 

1std =
0median =

3. Initialization: A non-empty subset of sample indices }{1,..., SS n⊂ . 

4.  Repeat the Steps a-d below until convergence (i.e.,  and stabilise): G S
a. Update gene scores ( ) gs s S

f g x
∈

←  for 1,..., Gg n= , 

b. Select genes: { }1,...,
; ( ) ( )

G
Gg n

G g f g f g Sθ
=

← − > , 

c. Update sample scores ( ) gs g G
h s x

∈
←  for 1,..., Ss n= , 

d. Select samples: { }1,...,
; ( ) ( )

S
Ss n

S s h s h s Gθ
=

← − > . 

5. Output: selected genes , samples and ordering scoresG S ( )f g & . ( )h s
 
 Here ⋅ denotes an average, e.g., : /gs gsg G

g G

x x G
∈

∈

= ∑  or : /gs gss S
s S

x x S
∈

∈

= ∑ . 

Note that the ordering scores f and h are uniquely determined by the selection of 
the bicluster (G,S). Other variants of BOA are possible, such as selecting significantly 
down-regulated genes or using G and S of fixed size. The attraction of the last option  
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is that the algorithm is guaranteed to converge in such a case (formal proof not 
included), which in practice does not always happen for the previous two options.   

Merging biclusters – In order to identify a robust set of biclusters, we run BOA 
with 1000 different initial subsets of samples, each drawn randomly with probability 
0.2. For the thresholds Gθ  and Sθ  actually used in our experiments algorithm 
always converged. Some of generated biclusters were identical, while others were 
very similar to each other. We then applied a hierarchical clustering algorithm using 
complete linkage to group similar biclusters into super-biclusters (SBC). We have 
used the Jaccard coefficient on genes as a similarity measure between biclusters and a 
similarity threshold of 0.5 to generate super-biclusters. (A similar procedure could be 
applied to samples, though here we have focused on genes, which are the dominant 
and far more complex dimension to handle in this dataset.) 

Ordering score – An important aspect of our analysis protocol is the ability to 
assign an ordering score to samples, h(s), and genes, f(g), for a given bicluster. The 
gene score f orders all genes according to the average expression level across samples 
in the bicluster.  

2.1 Figures of merit 

Saturation Statistics - The homogeneity of samples in a bicluster can be evaluated 
if we are given a prior classification of each sample (e.g., its cancer subtype) as a 
label. Ideally, each bicluster should be dominated by one or more similar classes. 
Thus, we can use the p-value of the hyper-geometric distribution to evaluate the 
purity of biclusters according to the classification of samples. A similar evaluation 
was applied to the single most abundant class within a bicluster in [3]. However, if 
some genes are co-regulated across multiple classes, calculating p-values on a single 
class is not an adequate representation of accuracy. To address this limitation, we 
introduce a generalized approach where significance is calculated for the group of 
classes with the best p-value. The single-class saturation and multiple-class 
saturation are called SCS and MCS, respectively.  

Gene Ontology (GO) annotation – Given that each gene's expression in a bicluster 
is highly similar with respect to other genes in the cluster, it is expected that the 
collection of genes as a whole are likely to be involved in a similar biological process. 
In order to determine this, the structured vocabulary of the Gene Ontology [8] (GO) 
was used to help uncover the biological processes represented by each of the SBCs. 
As each gene can be annotated to one or more terms within the GO, we can determine 
which GO terms are statistically overrepresented within a group of genes. We used 
GOSTAT [9] to determine the statistically overrepresented terms within each SBC for 
the biological process branch of the GO. 

Trend statistics – Another method to evaluate the significance of a super-bicluster 
is to compare the ordering of samples h(s) generated by the super-bicluster with any 
relevant ordering y(s) of the samples based on their biology, e.g., the progression of 
the cancer in the sample. We can test the agreement of samples ordered according to 
h(s) with this progression y(s). We use the following extension of the Mann-Whitney  
statistics, }{: ( , ') ; ( ) ( ') & ( ) ( ')U s s h s h s y s y s= < < , for this purpose. For random 
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scoring h (our H0 hypothesis) this random variable has an approximately normal 
distribution with mean  (where  denotes the size of the label classes) and 

variance .  Note that other tests for 

trend statistics can also be used here, such as Jonckheere-Terpstra or Page’s test. 

/ 2iN∑ iN

( ) '
'

1 /12 / 6i j i j i j j
i j i j j

N N N N N N N
< < <

+ + +∑ ∑

3 Experimental Evaluation 

In this section, we analyze the performance of our algorithm on a real gene 
expression dataset for gastric cancer [1]. The main reason for this choice is the 
availability of local expertise in the biology of this disease. We compare the 
performance of our algorithm to the results obtained from the algorithms in [2,3,4,5] 
by using the parameter settings recommended in those papers or by observing the best 
results obtained under different parameter settings. Similar results were obtained on 
lymphoma data [10] but are omitted in this abstract due to space limits. 

 
 
 
 
 
 
 
 
 
 
 
 10-10 10-8 10-6 10-4 10-2 100100

101

102

SCS P-value

N
um

be
r o

f B
ic

lu
st

er
s

Single Class Saturation Metric

 

 

BOA
ISA
Gibbs
SAMBA
C&C

10-20 10-15 10-10 10-5 100100

101

102

MCS P-value

N
um

be
r o

f B
ic

lu
st

er
s

Multiple Classes Saturation Metric

 

 

BOA
ISA
Gibbs
SAMBA
C&C

Fig. 1. Gastric cancer benchmark results for five bi-clustering algorithms. We plot the number 
of unique biclusters (continuous lines) and super-biclusters (dotted lines) with a p-value below 
the threshold indicated by the x-axis. We have used the SCS (left sub-figure) and MCS (right 
sub-figure) metrics to calculate the p-values. We have applied 1000 random initializations for 
BOA and ISA.  

After applying the gene filtering as described in [1], we have nG = 7383 gene 
expressions evaluated for nS = 124 human tissue samples. Excluding two singletons, 
there are 6 different phenotypes in the data, of which three are subtypes of gastric 
cancer (35 Diffuse, DGC; 22 Intestinal, IGC; 7 Mixed, MGC) and the other three are 
pre-malignant conditions: 26 chronic gastritis (CG), 22 intestinal metaplasia (IM) and 
10 “normal”, i.e., non-inflamed mucosa tissue removed during surgery for the gastric 
cancer. Now we briefly discuss the algorithmic aspects and setup of the experiment. 
The biological relevance will be discussed in the following section. 

99



3.1 Specific BOA Settings and Performance for the Gastric Cancer Experiment 

We have evaluated 10 different pairs of settings for thresholds { }4,4.5,...,6Gθ ∈  

and . For those we have we found that the minimal p-values 

ranged between and 

{3,3.5,...,5.5Sθ ∈ }
104.3 10−× 91.6 10−×  (with 9 of the 11 achieving the minimum) for 

the SCS metric, and 273.4 10−× and 144.0 10−×  for the MCS metric. For further 
analysis we have chosen a mid-range pair 5Gθ =  and 4.5Sθ =  for which, 
additionally, all 1000 initialisations of BOA converged.

3.2 Biological Analysis of BOA Results 

In this section, we focus on validating the biological significance of our findings for 
the gastric cancer dataset by comparing the biclusters with those reported in a 
previous study. In [1], hierarchical clustering was applied to the gastric cancer 
(cDNA) data set and several regions of genes related to different cancer types or pre-
malignant states were annotated (labelled A – K in [1, Figures 1-2]). To validate our 
biclusters, we determined the intersection between genes in these regions identified 
and the genes appearing in the prototypes of the eight super-bi-clusters (SBC_1 – 
SBC_8) generated by the BOA algorithm. The results are shown in Table 1. Note that 
the two largest super-biclusters (SBC_6 and SBC_7) were a close match for the two 
most prominent biclusters in [1] (regions B & K). Moreover, the super-bicluster 
SBC_2 linked two separated but related biclusters in [1] (regions E & F), while the 
regions D1 to D3 that needed to be manually grouped in [1] were automatically 
grouped by our method in SBC_5. 

 
We then considered the significance of these super-biclusters in terms of the three 
types of figures of merit discussed in Section 2.1, namely, the MSC p-values, the p-
value of the most significant GO annotation, and the p-value of the correlation of the 
order according to h(s) with the “Malignancy Score” y(s) defined as follows. First, 
following advice from experts, to each sample s we allocate  y(s) = 1 for the 
phenotype =Normal, 2 for =CG, 3 for =IM and finally 4 for any gastric cancer (DGC, 
IGC or MGC sample). We then tested the significance of the agreement of the 
samples ordered according to the h(s) score generated by the BOA algorithm with 
trend y(s) (see Section 2.1). Table 2 shows that h for SBC_5 and SBC_7 and to a 
lesser extent SBC_3 are very significantly correlated with y. The heat map of SBC_7 
(Figure 2) shows that the ordering induced by the bicluster has a clear (negative) 
correlation with the Malignancy Score of the samples.  
  
Note that the sample scores h(s) have a plausible biological interpretation. As the 
genes in the BOA bi-cluster are approximately uniformly over-expressed, h(s) is a 
measure of their average over-expression, and so, of over-expression of the GO 
annotations linked with the SBC. For instance, the highly significant Malignancy 
Score for the SBC_7 (Table 2) indicates that the process of “generation of precursor  

100



 

Table 1. Overlaping genes between prototypes for super biclusters and functional regions in 
[1]. In the second row we show the number of genes in the SBC prototype. 

         Region in [Bou03] SBC_1 SBC_2 SBC_3 SBC_4 SBC_5 SBC_6 SBC_7 SBC_8

Symbol Annotation No.Genes 41 217 194 158 227 409 515 146

B Mitochondrial 665 0 0 0 0 0 1 416 9

D1-D3 Proliferation 201 0 0 0 0 76 0 0 0

E Intestinal 294 1 81 0 0 0 0 1 44

F Intestinal 157 0 112 0 0 7 1 0 27

G Squamous 37 25 0 0 0 0 0 0 0

H Inflamation 330 7 0 117 135 9 7 0 30

K Extracellular  877 3 0 67 0 74 392 1 0  

Table 2. Numerical characterisations and biological relevance of super biclusters generated by 
BOA. Note that the negative sign, `-`, in Malignancy Score for SBC_7 and SBC_8 indicates 
the significance of agreement with the reverse order. In the second column of the table, the 
numbers of biclusters that converged to a particular super-bicluster are given. 
 # biclusters                  p-value       Most significant annotation

SBC SBC
Proto-
type MCS

Malignancy 
Score

GO (most 
sign.) GO

SBC_1 11 6 9.4E-04 1.8E-13 5.1E-09 epidermis development
SBC_2 188 7 1.0E-08  7.1E-07 lipid metabolic process
SBC_3 2 1 1.5E-06 5.5E-08 3.2E-32 immune system process
SBC_4 96 2 1.8E-01  2.0E-53 immune system process
SBC_5 15 15 1.1E-18 7.7E-21 1.8E-14 cell cycle process
SBC_6 328 11 3.0E-07 4.9E-08 1.8E-20 multicellular organismal process
SBC_7 359 229 4.0E-14 -5.4E-22 3.2E-22 gen. of precursor metab. & energy
SBC_8 1 1 3.0E-10 -5.2E-08 2.2E-02  lipid metabolic process
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Fig. 2. Heat map for the most prominent super-bicluster, SBC_7, generated by the BOA 
algorithm for the gastric cancer data. We observe the strong gradation from least “malignant” 
normal samples, though CG and IM, to the malignant samples (combined intestinal, diffuse and 
mixed gastric cancers). The probability of obtaining such or better ordering by random chance 
was estimated as < 5.4×10-22 using the trend statistics, Section 2.1. The vertical axis shows the 
515 most significant genes, while the horizontal axis shows the final order of samples 
generated by the BOA algorithm. The white vertical line indicates the right boundary of 
samples in the bicluster.  
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metabolism & energy” is over active in pre-malignant samples relatively to the 
malignant cases. On the over hand, the results for SBC_5 strongly indicate that “cell 
cycle process” is significantly more active in the malignant samples. 

 
The generated results including the GO and clinical correlations were the basis of an 
evaluation by expert biologists and clinicians who judged that the formal data 
processing protocols as discussed generated a number of significant biological 
hypotheses warranting follow-up wet lab experiments. In summary, the BOA results 
have shed new light on preexisting themes in gastric cancer etiology. The resulting 
bi-orderings represent successive steps in cancer progression and distinct 
histopathological types of the disease. Specifically, SBC_1 represents epithelial 
morphology, typical to squamous samples; SBC_2 and SBC_8 are typical intestinal 
lipid metabolism signatures, observed in intestinal metaplasia premalignant samples; 
SBC_3 and SBC_4 represent a novel split of the inflammatory signature that in [1] 
were merged as one signature; SBC_5 represents the proliferation signature described 
in [1] for intestinal type gastric cancer; SBC_6 reflects the extracellular matrix 
deposition typical to diffuse type cancer, and elevated in all cancer samples compared 
to premalignant samples; SBC_7 represents the metabolic stress observed in chronic 
gastritis samples, possibly due to elevated H. Pylori infection. A more detailed 
discussion will be included into the full version of the paper. 

3.3 Brief comparison to ISA and Gibbs Algorithms 

The BOA algorithm is very similar to ISA. However, the main objective of ISA is 
discerning “co-regulated’’ gene modules, while the association with phenotype 
classes (conditions) is not important, whereas it is of prime interest for our medical 
application. The main formal differences resulting in different performance are: (i) 
ISA starts with an initialisation of a subset of genes; (ii) the two sided test is used for 
the selection of samples; (iii) samples are weighted, with possibly negative weights, 
so different conditions, say with up-regulated and down-regulated genes, can be 
joined in the same bi-cluster. Consequently, ISA aims at generating “constant 
column’’ biclusters while BOA’s objective is the “constant’’ bicluster [11]. Figure 2 
shows that BOA generates more significant biclusters in terms of SCS and MCS.  
 
The evaluation of GO annotation for both ISA and Gibbs shows that they are capable 
of generating biclusters of significance comparable to BOA. These algorithms 
generated 6 and 5 SBCs, respectively, with similar gene sets to the SBCs of BOA. 
For example, the GO annotations “generation of precursor metabolites and 
energy“ and “oxidative phosphorylation’’ significantly associated with SBC7 of BOA 
(p-value are 3e-22 and 4e-18, see Table 2) are also found by the ISA algorithm (p-
value 3e-8 and 4e-6) and Gibbs algorithm (p-value 1e-30 and 5e-13). Similarly, the 
“multicellular organismal process’’ and “multicellular organismal development’’ 
annotations (significant for diffuse-type gastric cancer) in SBC6 of BOA, were also 
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found by the ISA and Gibbs algorithms. However, we have observed that the BOA 
algorithm usually has better performance than either ISA of Gibbs in terms of trend 
statistics, in particular, the evaluation of malignant progression (Section 3.2). 

Conclusions 

In this paper we have presented a novel method of bi-ordering genes and samples 
from microarray data, together with two novel statistical techniques for evaluating the 
significance of the generated groupings and orderings of multiple histological 
samples. In comparison to several existing algorithms in the literature, our method is 
able to generate highly robust and statistically significant gene modules with respect 
to sample histological annotations on a gastric cancer dataset. The results of our 
analysis closely match reported theories of gastric cancer tumorgenesis, and have 
helped to identify promising hypotheses for further investigation in cancer research. 
We also show that other biclustering algorithms can be utilized as a basis of 
exploratory bi-ordering analysis of genomic data. 
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Raw genotypes vs haplotype blocks for genome
wide association studies by random forests
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Abstract. We consider two different representations of the input data
for genome-wide association studies using random forests, namely raw
genotypes described by a few thousand to a few hundred thousand dis-
crete variables each one describing a single nucleotide polymorphism,
and haplotype block contents, represented by the combinations of about
10 to 100 adjacent and correlated genotypes. We adapt random forests
to exploit haplotype blocks, and compare this with the use of raw geno-
types, in terms of predictive power and localization of causal mutations,
by using simulated datasets with one or two interacting effects.

Key words: Random forests, genome-wide association studies, complex
diseases, variable importance measures

1 Introduction

The majority of important medical disorders (f.i. susceptibility to cancer, cardio-
vascular diseases, diabetes, Crohn’s disease) are said to be complex. This means
that these diseases are influenced by multiple, possibly interacting environmen-
tal and genetic risk factors. The fact that individuals differ in terms of exposure
to environmental as well as genetic factors explains the observed inter-individual
variation in disease outcome (i.e. phenotype). The proportion of the phenotypic
variance that is due to genetic factors (heritability) typically ranges from less
than 10 to over 60 % for the traits of interest. The identification of genes influenc-
ing susceptibility to complex traits reveals novel targets for drug development,
and allows for the implementation of strategies towards personalized medicine.

Recent advances in marker genotyping technology allow for the genotyping of
hundreds of thousands of Single Nucleotide Polymorphisms (SNP) per individual
at less than 0.1 eurocents per genotype. The identification of genomic regions
(i.e. loci) that influence susceptibility to a given disease can now be obtained
by means of so-called “genome-wide association studies” (GWAS). Basically, the
idea behind GWAS of complex diseases is to genotype a collection of affected
(cases) and unaffected (controls) individuals for a very large number of genetic
markers spread over the entire genome. Typically, one disposes of a cohort of a
few hundred to a few thousand individuals, a fraction of them (typically about
50%) having a certain phenotype (e.g. disease status, or treatment response
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status), and the rest of them being controls (individuals representative of the
genetic variation in the studied population and who do not present the stud-
ied phenotype). In this domain, supervised learning, and in particular Random
Forests, has been recently proposed to circumvent the limitations of standard
approaches based on univariate statistical tests [1–3].

In this paper, we study two different representations of the input data for
the application of supervised learning in GWAS, namely the raw SNP genotypes
on the one hand, and on the other hand new features derived from groups of
strongly correlated SNPs (i.e. the haplotype blocks; those blocks are transmitted
from parents to offspring during the recombination of parental chromosomes).
We propose an adaptation of Random Forests to handle haplotype blocks as
well as SNPs. Currently, available real-life datasets are still being investigated
by the geneticists, for this reason, as a first step, we compare the two approaches
empirically on simulated datasets with one or two independent or interacting
causal mutations. Our two contributions with respect to previous work are the
exploitation of haplotype blocks and its systematic evaluation on high density
simulated datasets, both for genetic risk assessment and for the localization of
causal mutations.

The rest of the paper is organized as follows. In Section 2, we describe the al-
gorithms, while Section 3 presents the simulated datasets and simulation results.
We conclude in Section 4 with discussions and future work directions.

2 Methods and algorithms

2.1 Random forests

From a machine learning point of view, a GWAS of a complex disease is a
binary classification problem, with a very large number of raw variables, each
one corresponding to a different SNP and having only three possible values
(homozygous wild, heterozygous and homozygous mutant). On top of this very
high p/n ratio, these problems are also generally highly noisy, and the raw input
variables are strongly correlated (due to linkage disequilibrium).

The nature of the problem puts several constraints on candidate supervised
learning methods. The method needs to find a small number of relevant variables
among a very large number of irrelevant ones, and thus incorporate some feature
selection mechanism. It needs to be sufficiently expressive to take into account
possible interactions between SNPs. Computationally, the algorithm should fur-
thermore be able to cope with hundreds of thousands of variables and thousands
of individuals. Tree-based ensemble methods provide a good tradeoff along these
criteria. Among existing ensemble methods, we focus in this paper on the Ran-
dom Forests algorithm [4]. This algorithm grows each tree of the ensemble from
a bootstrap sample drawn from the original data, using the CART algorithm
(without pruning) with a modified node splitting procedure. At each test node,
the algorithm selects the best split using the standard CART procedure but from
a subset of only K attributes selected at random among all candidate attributes.
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Fig. 1. Database transformation from SNPs to haplotype blocks.

The algorithm performances depend on the number T of trees in the ensemble
(the larger the better) and on the number K of selected attributes at each test
node, whose optimal value is problem dependent.

2.2 Individual SNP and haplotype block representations

Figure 1 shows the two representations of input data that we will use for growing
Random Forests, and how the block contents are computed from the SNPs.
SNPs are arranged as they appear along the chromosome and the integer values
{0, 1, 2} represent the number of mutant alleles at the corresponding position.

In order to apply Random Forests on the raw genotype data, we merely
consider each SNP as a numerical variable. To handle attributes representing
the contents of haplotype blocks, we propose the following adaptation of the
node-splitting procedure:

– At each test-node, K blocks are selected at random.
– For each block b, we proceed as follows:
• for each SNP i in b, we compute from the subset of cases (resp. controls)

at the test-node the frequency of its three possible values (f b
i,j)case (resp.

(f b
i,j)control) (i = 1, . . . , lb, j = 0, 1, 2), where lb denotes the number of

SNPs in b;
• for each case or control x, we compute the two probabilities :

P (x|case, b, node) =
lb∏

i=1

(f b
j,si(b,x))case (1)

and

P (x|control, b, node) =
lb∏

i=1

(f b
j,si(b,x))control, (2)

where si(b, x) denotes the value of the ith SNP of b for this individual
x;4

4 This is a maximum likelihood based estimation of the conditional probability that the
observed haplotype is drawn from the population of cases (resp. controls) reaching
the current node, assuming class conditional independance of the SNPs in the block
b.
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• then, an optimal cutoff is determined on the probability ratio:

P (x|case, b, node)
P (x|control, b, node)

(3)

using the standard CART procedure for numerical variables.
– The best split among the K optimal splits is selected to split the node.

Notice that the motivation behind the block-wise approach is to reduce the
number of features by grouping correlated SNPs, and thus to improve the ro-
bustness of the method. In our description, we left open the question of the de-
termination of the blocks. In our experiments, we will compare two approaches.
First, haplotype blocks delimited by HapMap hotspot list generated from a panel
of 5 populations from which our simulated data will be derived, second, haplo-
type blocks reconstructed from a linkage disequilibrium map computed by the
Haploview software [5] applied on our simulated datasets.

2.3 Localization of causal mutations

Several importance measures have been proposed in the literature to derive from
a tree ensemble a ranking of candidate attributes according to their relevance for
predicting the output. In the context of GWAS, such measures may be used to
identify the SNPs or haplotype blocks closest to the causal mutation loci. In our
simulations we use to this end the information theoretic measure proposed in [6]
computing for each attribute the total reduction of class entropy (the sum over
all test-nodes of the ensemble where this attribute is used, of the local reduction
in entropy weighted by the local sample size).

3 Experiments

3.1 Simulated dataset

We used gs [7] to generate samples based on HapMap data [8] with linkage
disequilibrium patterns similar to those in actual human populations. We focus
our experiments on chromosome 5 (because its size is close to the mean size of
other human chromosomes). The raw input variables were obtained by taking
SNPs spaced by 10 kilobases from the HapMap pool to reproduce classical GWAS
conditions, and the causal disease loci were removed from the input variables.

Five different disease models were tested: two models with one disease locus,
and three models with two interacting loci. Tables 1 and 2 give the penetrance
matrix for each model. These tables report the probabilities of being affected
for each possible genotype of the locus or loci. Lower case letters (a, b) denote
wild alleles and upper case letters (A, B) denote mutant alleles. We introduce
a noise level of 0.005 to simulate environmental effects. The 3 two loci models
were selected among the most common disease models referenced in [9].
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Table 1. The one-locus disease models that were investigated in this study.

1A 1aA

aa(0) aA(1) AA(2) aa(0) aA(1) AA(2)

0.005 0.005 0.100 0.005 0.100 0.250

Table 2. The two-locus disease models that were investigated in this study.

2DD 2RD 2XOR

bb(0) bB(1) BB(2) bb(0) bB(1) BB(2) bb(0) bB(1) BB(2)

aa(0) 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.100
aA(1) 0.005 0.100 0.100 0.005 0.005 0.005 0.005 0.005 0.100
AA(2) 0.005 0.100 0.100 0.005 0.100 0.100 0.100 0.100 0.005

The first two disease models (Table 1) contain one susceptibility locus. In the
first one, 1A, two copies of the mutant allele increase the risk of being affected.
The second one 1aA is additive: the risk increases with the number of mutant
alleles present at the susceptibility locus. The three disease models described in
Table 2 involve two susceptibility loci. For the 2DD model (dominant-dominant),
the two loci are dominant, meaning that at least one copy of the mutant allele
at the two loci is required for the risk to increase. The 2RD model (recessive-
dominant) requires two copies of disease alleles from the first locus and at least
one disease allele from the second. Finally, in the 2XOR model, two mutant copies
at one locus or three mutant copies at any of them increase the disease risk.

In the first (raw) data representation, the different databases are composed
of about 14000 numerical variables. This number was reduced to 2000 variables
of HapMap blocks and 6500 variables of blocks obtained with Haploview.

3.2 Protocol

For each disease model, we generated 7000 individuals (with 50% of cases) that
we divided into 2000 individuals for learning and 5000 individuals for testing.
The learning sample was divided into 4 subsets of size 500. A model was produced
for each subset of size 500. We report average results (and standard deviations)
over all subsets.

The predictive power was assessed using the area under the ROC curves
(AUC) computed on the 5000 test samples and averaged over the training set
and compared to the AUC obtained on the test samples with the Bayes optimal
model deduced directly from the selected disease model. The latter is denoted
as “Ref AUC” in the tables and figures reported below.
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Fig. 2. Influence of parameter K on the five disease models. In plain: SNP; in dotted:
HapMap; in dashed: Haploview ; in gray: the ratio AUC
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of candidate attributes for each type of representation.

3.3 Empirical results

Parameter sensitivity. We first carried out some preliminary experiments to
see the effect of the two parameters of the Random Forests algorithm. Given
the important number of attributes, we observed that a quite large number of
trees is necessary for the error to converge. In all our experiments, we therefore
conservatively fixed T to 2000 trees. We also observed that small values of K
(< 200) yield to suboptimal AUC values, and we therefore only explored higher
values of K.

Figure 2 shows the evolution of the AUC for the five disease models with
the K parameter and all three approaches (RF with raw SNPs, HapMap and
Haploview blocks). Note that in this graph, N is very different from one method
to another (resp. 14000, 2000, and 6500 for SNP, HapMap and Haploview). We
observe that HapMap and Haploview produce slightly better results than SNPs
for the models 1A, 2DD, 2RD, and 2XOR. Typically, larger values of K yield
very close to optimal results. Note however that the maximal AUC is usually
already obtained with significantly lower values of K (1600), which correspond
also to smaller computational requirements. In our experiments below, we will
thus present only the results for this setting.
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Table 3. AUC (average ± std. dev.) for K=1600.

SNP HapMap Haploview Ref AUC

1A 0.7311 ± 0.0048 0.7296 ± 0.0061 0.7315 ± 0.0048 0.7386
1aA 0.7901 ± 0.0016 0.7800 ± 0.0025 0.7820 ± 0.0020 0.8142
2DD 0.8112 ± 0.0012 0.8131 ± 0.0012 0.8124 ± 0.0011 0.8198
2RD 0.6377 ± 0.0072 0.6358 ± 0.0044 0.6403 ± 0.0033 0.6354
2XOR 0.7927 ± 0.0037 0.7969 ± 0.0040 0.7944 ± 0.0012 0.7984

Predictive power. Table 3 reports AUCs for the different methods for all
considered disease models with K = 1600. Overall, the results of the SNP rep-
resentation and the two types of blocks are very close to each other and to the
“Ref AUC” on most of the models. Blocks outperform the SNPs on 1A, 2DD,
2RD and 2XOR. The HapMap blocks outperform the Haploview on 1A, 2DD
and 2XOR.

Localisation of causal mutations. For the one locus model the causal mu-
tation (A) is located at position 1599; for the two-loci model the first causal
mutation (A) is located also at position 1599, while the second one (B) is lo-
cated far away, at position 11175. Figure 3 shows the SNP importances over the
chromosome 5, while Figure 4 provides a zoom of the variable importances of
the three methods over the regions close to the two causal loci of the two-loci
disease models. We observe that in all cases, except for 2RD, the genomic regions
containing the two causal mutations are very well localized.

4 Conclusions

The preliminary results obtained in this paper show promising perspectives. In
particular, the different methods obtain rather good AUCs as compared with the
theoretical upper bound derived from the disease models. The different methods
are also able to predict and to localize the disease loci, rather well. We observed
that most often our adaptation of Random Forests to the block representation
of the data provides marginally superior results in terms of risk prediction than
their direct application to the raw genotype data. Results not reported in this
paper with different ensembles of trees do not contradict these findings.

An interesting direction of future research will be the refinement of the treate-
ment of the haplotype block structure in supervised learning. In the context of
tree-based methods, we envisage two extensions of the splitting procedure: first,
there are various possible ways to improve the way likelihoods are computed
within a block, e.g. by relaxing class-conditional independance; second, one could
use overlapping (and of randomized length) block structures or greedily search
for optimal block size around a SNP of interest locally at each tree node, instead
of exploiting an a priori fixed block structure. More generally, we believe that
the simultaneous exploitation of blocks and SNPs may also be of interest.

111



8 Vincent Botta et al.

Future work will also consider more complex disease models, real-life datasets,
quantitative traits, as well as even higher density genotyping, in the limit towards
the next generation of full genomic resequencing based genotyping.
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Fig. 3. Variable importances with SNP: overview over chromosome 5 (average normal-
ized values over 4 learning samples), K = 1600, T = 2000.
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Despite the grand promises of the postgenomic era, such as personalized pre-
vention, diagnosis, drugs, and treatments, the landscape of biomedicine looks
more and more complex, particularly in genetic association studies (GAS) (e.g.,
see [16, 15, 20, 8]). A promising trend in data analysis is the Bayesian approach,
which is able to cope with small sample size, fusion of data and knowledge, chal-
lenges of multiple testing, meta-analysis, and positive results bias [24, 3, 18, 26,
25, 12]. Within this approach we introduced the methodology of the Bayesian
Multilevel Analysis of the relevance of input variables [1, 2]. It uses Bayesian
networks [9] for the analysis of relevance at the levels of Markov Blanket Mem-
berships, Markov Blanket sets, and Markov Blanket graphs, which correspond
to the pairwise, multivariate, and the multivariate-interactionist levels.

Beside data analysis another bottleneck in GAS research is the interpreta-
tion of the results. There is a lot of additional information for the molecular
“grounding” of effects of genetic variations both w.r.t. genetic regulation and
in protein functions (e.g., see [11, 4, 14, 17, 10, 7]), and its their integration is
challenging, particularly the integration of the structural knowledge or the net-
works of mechanisms [19, 21, 22]. These methods, e.g. the Ingenuity System [22],
allow for the fusion of literature, expert knowledge, and the results of statistical
data using a (1) pairwise (univariate), (2) diagrammatic (propositional), and (3)
deterministic framework.

We developed and implemented a general Bayesian method, which supports
such a fusion at the multivariate level with interactions exploiting the power
of probabilistic first-order logic [13]. In this poster we present the proposed
Bayesian logic, enumerate the main types of inference, and illustrate typical
queries in GAS.

Finally, we present links to recent, related developments in the field of prob-
abilistic world-wide web and probabilistic databases [5, 6]. The genomics of
asthma will serve as an application domain [23].
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Abstract. The growing number of bio-ontologies begs for tools to in-
teract with them. Such tools are essential to exploit what ontologies can
offer in terms of standardization of terminologies. In addition, ontologies
can be used for data integration and hypotheses generation, key elements
in a systems biology approach. We implemented an integrated resource,
named BioGateway, comprising the entire set of the OBO foundry candi-
date ontologies, the whole set of GOA files, the SwissProt protein collec-
tion and several in-house ontologies. The BioGateway provides a single
entry point to exploit these resources with queries through SPARQL
and constitutes a step towards a semantic integration of biological data.
Access to the system and supplementary information (a tutorial, a list-
ing of the data sources in RDF, and sample queries) can be found at
http://www.semantic-systems-biology.org/biogateway

1 Rationale

The biosciences need a versatile and comprehensive knowledge integration frame-
work. Although the concept of a portal is useful and several portals are currently
in use providing significant amounts of data and information, it is rather diffi-
cult to ask simple questions e.g. like: “which human diabetes-related proteins
are located in the nucleus (of a part of it) and interacting with proteins related
to pancreatic cancer”. Such questions need integration of multiple orthogonal
sources of information at a basic level. This integrated knowledge resource may
even allow the deployment of advanced computational reasoning approaches to
generate new hypotheses about the functionality of biological systems, enabling
a new concept that we have named Semantic Systems Biology. Here, we intro-
duce an integrated knowledge repository named BioGateway, which enables the
exploration and a combined querying of the entire set of the candidate OBO
foundry ontologies, the GOA files, the SwissProt repository as well as in-house
ontologies. The BioGateway provides a single entry point for exploiting these re-
sources and constitutes a step towards a semantic web integration of biological
data.
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Abstract. Enzymes are the workhorses of living cells, producing energy
and building blocks for cell growth as well as participating in maintaining
and regulation of the metabolic states of the cells. Reliable assignment
of enzyme function, that is, the biochemical reactions catalyzed by the
enzymes, is a prerequisite of high-quality metabolic reconstruction and
the analysis of metabolic fluxes.
Existing prediction tools of enzyme function are tied to set of functions
already described in biological databases, with no capabilities of pre-
dicting previously unknown enzymatic function. Hence it can be argued
their use is limited in, e.g., metabolic reconstruction of new organisms
that have no close relatives with function annotation. We propose tack-
ling this deficiency via structured output prediction with reaction ker-
nels, a setup that allows us to interpolate and extrapolate in the space
of enzymatic function.
We discuss the properties that a successful reaction kernel should have
and the similarity notions that arise from the properties. First, different
kernels may be designed to measure the similarity of reactant molecules
and the reaction mechanism. Second, sensitivity to reaction direction
may be a useful or a harmful properties, depending on the application.
Based on these notions, we devise a family of reaction kernels to be used
in metabolic modelling tasks. All of the presented reaction kernels are
very efficient to compute, given an underlying kernel for the reactant
molecules.
We illustrate the potential of these kernels to capture different similar-
ity notions, and to complement the standard EC taxonomy for reaction
classification.

? This work has been supported Academy of Finland under the grant 110514 (UR-
ENZYMES), in part by Centre of Excellence Algodan (grant: 118653), and by the
ICT Programme of the European Community, under the PASCAL2 Network of
Excellence.
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The problem studied herein is to design a microarray plate by choosing a
subset of clones from a large initial pool. The array must remain as general as
possible and not be tailored towards specific phenotypes. As such, this is an
unsupervised selection problem.

An Unsupervised feature selection method By the Hilbert-Schmidt indepen-
dence criterion (UBHSIC) – a dependence measure between two random vari-
ables that is closely related to kernel target alignment and maximum mean
discrepancy – is proposed and evaluated for this task on three cancer genomics
datasets: the Alon colon cancer dataset, the van ’t Veer breast cancer dataset,
and a multiclass cancer of unknown primary (CUP) dataset. The multiclass
CUP dataset is an ideal dataset to study as the goal is to select a small subset
of features for the development of a clinical test.

Results

The effects and performance of several kernels (the Radial Basis Function (RBF),
Linear, Polynomial, and a variance kernel) were evaluated on the various datasets.
The variance kernel was chosen to encode a preference for uncorrelated features.
Each dataset was analysed by applying UBHSIC with the various kernels to
reduce the full dataset followed by supervised classification.

In summary, the results show that unsupervised pre-filtering does not de-
grade the classification performance and can actually improve the performance.
Aggressive feature reduction down to 50 features for the two-class datasets and
100 features for the CUP dataset showed surprisingly good performance, sug-
gesting that the full datasets contains significant redundancy and can be highly
compressed without significant loss of performance.

Conclusions

The UBHSIC method was evaluated on several bioinformatics datasets and
demonstrated good performance; the classification performance after pre-filtering
using UBHSIC was equivalent or better than the performance obtained using the
full dataset.

The high level of classification performance observed after unsupervised se-
lection strongly suggests shifting to a lower resolution platform by selecting a
subset of clones using UBHSIC is a viable option.
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Abstract. Biclustering is an increasingly popular technique to identify
gene regulatory modules that are linked to biological processes. We de-
scribe a novel method, called ProBic, that was developed within the
framework of Probabilistic Relational Models (PRMs). ProBic is an effi-
cient biclustering algorithm that simultaneously identifies a set of poten-
tially overlapping biclusters in a gene expression dataset. The algorithm
can be applied in both a query-driven and a global setting.
The results on a wide range of synthetic datasets show that ProBic suc-
cessfully identifies biclusters under various levels of noise, overlap and
missing values and this in both the query-driven and global setting. Ad-
ditional expert knowledge can be introduced through a number of prior
distribution parameters. Our results on synthetic data show that PRMs
can be used to identify overlapping biclusters in an efficient and robust
manner.
Key words: biclustering, probabilistic relational model, gene expression,
regulatory module, expectation-maximization.
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The reconstruction of the cellular signaling pathways is one of the foremost
challenges in systems biology [1]. While a large amount of high throughput ’omics
data are available, the reconstruction of this signaling network still remains
a highly underdetermined problem. Currently, insufficient data is available to
uniquely identify all the interactions and their parameters in the model. How-
ever, regulatory networks exhibit a modular organization [2], an aspect that is
successfully exploited in a number of biclustering and module inference methods
[3]. Biclustering algorithms for gene expression data [4] perform simultaneous
clustering in both the gene and condition dimensions. The result is a subset of
genes that are coexpressed under a subset of conditions.

The ProBic model uses a hybrid query-driven and model-based approach.
This allows researchers to both identify biclusters using a global approach and
to incorporate prior knowledge by performing directed queries around genes of
interest. Although some other algorithms also allow for query-driven searches
such as for instance, the iterative signature algorithm [5], Gene Expression Min-
ing Server [6], Gene Recommender [7] and QDB [8], they do not combine the
advantages of the query-driven search with a model based approach for identify-
ing overlapping biclusters. We present an alternative approach to identify over-
lapping biclusters in gene expression data using Probabilistic Relational Models
[9–11]. ProBic can be applied in both a query-driven and a global setting. More-
over, ProBic was designed such that it is easily extensible towards additional
data types.

An extensive evaluation of the algorithm was performed on synthetic data to
investigate the behavior of the algorithm under various parameter settings and
input data. Firstly, we tested the robustness of the algorithm w.r.t. noise and
amount of missing values. Results for synthetic datasets with 500 genes and 200
conditions show that perfect bicluster reconstruction was achieved for bicluster
noise levels up to 70% of the background noise. Secondly, the presence of up
to 60% of missing values in the dataset does not interfere with the detection of
the true bicluster genes and conditions (a precision and recall of about 100%
is obtained for both the genes and conditions) for lower bicluster noise levels
(< 0.5). Even in the presence of high noise levels (1.0), the presence of up to
20% missing values does not considerably deteriorate the algorithms recall and
precision (recall levels of 0.9 and 0.88 for the genes and conditions respectively).
We show that prior knowledge in the form of a set of query genes guides the
algorithm towards biclusters of interest to a biologist. Moreover, the bicluster
identification using query genes is quite robust as the set of query genes can
contain several ’noisy’ genes that are not part of the bicluster of interest, a
situation that often occurs in practice.

In conclusion, ProBic is an efficient biclustering algorithm that simultane-
ously identifies a set of overlapping biclusters in a gene expression dataset. It
can be used in both a query-based and a global mode. Experiments on synthetic
data showed that biclusters are successfully identified under various settings,
both in the query-driven and the global setting.
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Motivation: Although microarray technology allows the investigation of the
complete transcriptomic make-up of a tumour in one experiment, the transcrip-
tome doesn’t tell the full story due to alternative splicing or post-translational
modifications as well as the influence of cell type and pathological conditions
(e.g. cancer) on translation. The likeliness that multiple views contain different,
partly independent and complementary information makes the fusion of various
types of genome-wide data an increasingly important topic in bioinformatics.
The current increase in the amount of available data emphasizes the need for a
methodological framework to integrate different omics data sources.

Method: Kernel methods are increasingly used in bioinformatics due to their
reliability, accuracy and computational efficiency. We propose a kernel-based
framework for the development of classifiers in clinical decision support in which
high-throughput data sources can be combined over time and multiple levels in
the genome. For the fusion of multiple data sets, an intermediate integration
approach was opted for in which each data set is represented by a kernel matrix
before training a classifier on the explicitly heterogeneous kernel matrix. Because
in two-class problems data sets are often skewed such that the contribution of
false negative and false positive errors are not balanced, we used as supervised
classification algorithm the weighted Least Squares Support Vector Machine
(wLS-SVM), an extension of the standard SVM which takes the unbalancedness
of data sets into account. Selection of the most relevant features was embedded
in training the wLS-SVM models.

Results: This framework has been applied on microarray and proteomics data,
gathered at two timepoints during preoperative treatment of patients with rectal
cancer. Different grades of integration (over time and over multiple levels in the
genome) were considered and compared to models built on individual data sets.
Two prognostic factors determined at moment of surgery could be predicted
optimally with an accuracy of 94.4% using both microarray and proteomics data
one week after start of therapy. Also for the two regression grades registered
during surgery, models integrating data from multiple levels in the genome gave
the best results (83.3% and 88.9%). The advance of the classification performance
when considering diverse experimental data confirms the need for an integration
framework presented on the poster.
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Gene expression analyses on model organisms have been widely used to study
the genetic response to a certain stimulus, but this response can vary between
species. A comparative study of gene expression levels between two species can
give us valuable information about how conserved the mechanism is that re-
sponds to a given stimulus.

In this study we compared the response to vitaminD in human and mouse
based on the gene coexpression derived from microarray experiments. In order
to distinguish between general differences due to the used species and cell type
from those induced by the stimulus of interest (vitaminD), we performed for
each organism a control and a treatment response experiment. We used the Dif-
ferential Clustering Algorithm [1] to evaluate the degree of conservation of gene
expression between both, human and mouse.

References
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Partial genome screening studies (PGSS) and genome-wide association stud-
ies (GWAS) are essential tools in genetic association studies (GAS). Their role
are complementary because of their cost w.r.t. sample size and dimensionality,
which will probably remain in the near future. In the design of a fixed cost
PGSS for a given biomedical problem, central questions are the selection of
SNPs, plates, and the question of sample sizes. Interestingly, the selection of a
SNP set based on prior knowledge can be an equally important issue in the data
analysis of GWA studies to diminish the problem of multiple testing.

In SNP selection there are many aspects to consider: the technological con-
straints of the high-throughput device (GC content, primer design, etc.), the
haplotype structure of the target population (e.g., see [6, 10, 8]), the domain
knowledge about genes (e.g., see [16, 18, 1]), and the possible functional effect of
SNPs (e.g., see [12, 5, 14, 15, 11, 7]). To support these aspects, especially to take
into consideration the measurement device at the Department of Genetics, Cell-
and Immunobiology of Semmelweis University, we implemented a decision sup-
port system for filtering, univariate scoring, and multivariate scoring of SNPs.
Currently the multivariate property reflects only the haplotype dependency and
joint coverage of target regions of the SNPs.

An important open problem is the principled use of earlier data sets in a
subsequent study design. In the poster we present the use of sequential Bayesian
data analysis of earlier data sets in study design (for the Bayesian approach in
GAS, see e.g. [20, 4, 17, 22, 21, 13]). Specifically, we illustrate the use of the re-
sults of Bayesian Multilevel Analysis (BMLA) for sample size selection and SNP
selection. The BMLA uses Bayesian networks [9] for the analysis of relevance at
the pairwise, multivariate, and multivariate-interactionist levels [2, 3].

Finally, we discuss the use of the Bayesian approach to perform a value of
further information analysis in designing PGSSs by predicting the effects of a
future data set with size N. The genomics of asthma will serve as an application
domain [19].
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The process of biomarker discovery is equivalent to the process of feature
ranking and selection in machine learning. Each marker has a relevance measure
assigned to it by a ranking algorithm. Typically, the ranking is produced with
respect to a single target variable (e.g. outcome of a disease). But, the clinical
data for a patient is much more complex and it contains multiple variables of
interest.

Here, we address the problem of feature ranking in the context of multiple
targets. In particular, we propose an extension of feature ranking with Random
Forests (RFs) by enabling the method to handle multiple target variables simul-
taneously. The feature importance measure is calculated by randomly permuting
the values of the features and measuring the out-of-bag (OOB) error estimates.
The rationale is that if a feature is important for the target concepts it should
have an increased error rate when its values are randomly permuted.

We apply the proposed method for feature ranking with multiple targets to
Neuroblastoma microarray data associated with clinical data containing multiple
variables of interest. We produce ranked lists of genes with respect to different
(single) clinical parameters and compare these ranked lists with the one produced
by considering multiple target variables simultaneously. We compare the ranked
lists by using so-called average testing error curves (ATEs), which give us an
estimate of the predictive performance of the highly ranked genes (markers).
The results show an increase in the predictive performance of the highly ranked
genes, when considering multiple target variables as compared to the ones from
the ranked lists for each target variable individually. It is important to note that
the same set of markers produced by the multiple target approach can be used
for predicting the different clinical variables instead of having a different set of
markers for each one.

In summary, we consider the process of biomarker discovery from a perspec-
tive of single vs. multiple target variables. The intuition behind using multiple
target variables simultaneously comes from the usual complexity of the diseases
under consideration (e.g. cancer) and the associated multi-variable patient clin-
ical data. Our initial results show that the multiple target approach is beneficial
as compared to the single target variable approach. The produced ranked list of
biomarkers is more accurate, in terms of predictive performance, and it can be
applied to each of the target variables separately.
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Computational approaches for de novo discovery of Transcription Factor
Binding Sites (TFBSs) are commonly focused around the Transcription Start
Site (TSS), typically 1kb to 10kb upstream. This promoter proximal search space
is largely due to the study of model organisms such as yeast, where the majority
of binding sites lie close to the TSS. This search space may not be suitable in
humans.In fact, a study into a cis-acting regulator causing preaxial polydactyly
demonstrated a case where a TF was empirically determined to act over a dis-
tance of around 800kb [1].

Recently, chromatin immunoprecipitation coupled with high-throughput se-
quencing technologies has provided the ability to empirically observe the be-
havior of particular Transcription Factors (TFs) and map their binding sites
genome-wide, providing a valuable tool for the validation of TFBS discovery
methods and elucidation of gene regulatory networks.

We compiled a study of four different ChIP-PET datasets identifying TFBSs
for ER [2], STAT1 [3], Myc [4] and p53 [5]. We matched TFBSs with their target
genes, highlighting typical genomic distances of TF action. We observed the
following:
(i) An average of only 27% of genes had a TFBS within 10000bp of their TSSs
(ii) All TFs showed equal distributions of upstream vs downstream binding
(iii) An average of 33% of genes had TFBSs beyond 200000bp of their TSSs
(iv) 55% of the binding site target gene pairs had genes residing between the
binding site and the TSS of the target gene

Conclusion. Computational identification of TFBSs must shift focus to
genomic regions outside the proximity of the TSS. Careful consideration also
needs to be given to genes deemed as direct targets of a TF. Unfortunately, with
large input sequences, the majority of current computational TFBS discovery
approaches suffer from many false positive predictions. With intelligent use of
the increasing amount of high-throughput genomic data, we believe that current
approaches can be improved to scale well when applied to the large genomic
search spaces required in humans.
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Clustering gene expression profiles can facilitate the identification of the bi-
ological program causing genes co-expression. Standard clustering methods may
fail to capture weak expression correlations causing genes in the same biological
process to be grouped separately. To improve the clustering process additional
information such as The Gene Ontology (GO)[1] can be introduced to ensure
genes with similar function can be clustered together.

Previous attempts[2-5] at using the GO to cluster microarrays use similarity
metrics between pairs of genes based on the GO graph structure. This approach
suffers from two fundamental drawbacks: firstly, the abstraction of terms across
each level of the ontology can be such that two genes with a single shared parent
term, may be extremely diverse in terms of their specific function; secondly,
having genes annotated to the same term does not necessarily imply they have
similar function or share a biological pathway, in the context of their expression
patterns.

To account for this we have developed GOMAC: Gene Ontology assisted Mi-
croArray Clustering. GOMAC is a modified k-means clustering algorithm which
incorporates GO information only when it is relevant to the gene’s context, thus
avoiding problems with irrelevant gene similarities. The key difference between
our approach and previous attempts at clustering using the GO is that only
terms that are statistically over-represented within a cluster are used to calcu-
late the similarity between genes. This ensures that only GO terms within the
genes expression context are used.

GOMAC was tested on a multi-class cancer dataset with respect to its use-
fullness in biological hypothesis generation. Our results demonstrate that in-
corporation of additional biological information into the microarray clustering
process in a biologically justified manner, can enhance the interpretability of
microarray data. Specifically, we show the potential of such a method to unravel
the complex nature of the biological processes involved in cancer.
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Genetic studies and high-throughput genome wide screens can identify genes
and proteins that are candidate members for a biological process of interest (such
as disease and pathways). The disadvantage of the screens is their identification
of tens or hundreds of candidate genes. Aerts et al. (2006) developed gene prior-
itization methods that rank candidate genes based on their similarity to genes
already associated with a disease or process, using multiple data sources (such
as sequence, expression, literature, etc). However, this method cannot prioritize
candidates if no similar genes can be identified a priori. This prevents the method
from tackling truly innovative discoveries, when little is known about a disease.
Currently, there are no well-established gene prioritization strategies without a
set of training genes. The new strategy we are working on, consists of checking
not only the expression of a candidate, but also of its ”partner” genes in a gene
network derived from multiple sources. A strong candidate should have many
partners that are differentially expressed, meaning that it belongs to a disrupted
expression module.

A mouse model network was built using protein-protein interactions ex-
tracted from the STRING database (http://string.embl.de), a comprehen-
sive dataset containing functional linkages (labeled with scores), for which the
similarities between the single genes could be computed. Candidate genes with
genes in their neighborhood having highly differentially expressed indices are
strong candidates. Different kernel matrices were used as global distance mea-
sures to capture global relationship within the network, e.g. the Exponential dif-
fusion Kernel (Konder et al. 2002), the Commute time Kernel (Fouss et al. 2006),
the Von Neumann Kernel (Kandola et al. 2003). To improve the enormous com-
puting time, the kernel matrices were approximated by the Incomplete Cholesky
decomposition (Fine and Scheinberg 2001) and the Reduced Eigenvalue decom-
position. The outcoming kernel matrix contains global relationships within the
fully connected protein-protein interaction network. From this matrix an appro-
priate neighborhood for each candidate gene can be defined, i.e. which genes act
as neighbors in the network.

Knowing the similarities between single genes in the network, the differ-
entially expression index of the genes themselves, as well as the differentially
expression index of adjacent genes can be considered, based on microarray ex-
periments. We chose an expression dataset published in Battle et al. (2006) of
a HNF4 knockout experiment, and added the expression data to the network.
The candidate genes can then be ranked considering the similarity to highly
differentially expressed neighbor genes.

In the future this method will be applied to congenital heart defects studies
ongoing at Leuven University Hospitals.
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Natural variation of Arabidopsis thaliana ecotypes from Europe, Africa, and Africa is re-
flected to a substantial degree in their genome sequences. In this study, array comparative
genomic hybridization (Array-CGH) is used to quantify the natural variation of different
ecotypes at the DNA level. A new approach based on Hidden Markov Models (HMMs)
is presented to predict copy number variants of such Array-CGH experiments. The HMM
approach provides an improved genome-wide characterization of DNA segments with de-
creased or increased copy numbers in comparison to the routinely used SegMNT algorithm
[1]. The identification of significantly altered chromosome fragments helps to establish a
faithful genome-wide map of DNA copy number variants of different ecotypes. DNA copy
number variants are further investigated by making use of mappings to the TAIR8 genome
annotation. Particular enrichment of TAIR8 categories is assessed by resampling statis-
tics. Another major benefit is that the presented method can be transferred to other array
analyses, such as ChIP/chip studies [2].

[1] Roch NimbleGen, Inc. (2008). A Performance Comparison of Two CGH Segmenta-
tion Analysis Algorithms: DNACopy and segMNT. (http://www.nimblegen.com)

[2] Michael Seifert, Jens Keilwagen, Marc Strickert, and Ivo Grosse (2008): Utilizing
promoter pair orientations for HMM-based analysis of ChIP-chip data, Lecture Notes in
Informatics, GCB 2008, Dresden.
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Abstract. Traditional approaches to analyze microarray data are useful for describing changes in gene
expression, however they are of limited use to describe cellular responses in the context of available
biological knowledge. In order to find out gene sets that are biologically more meaningful, biological
information should be integrated during the analysis of microarray data or after the identification of
differentially expressed gene lists. Therefore recent effort focuses on the discovery of biological pathways
rather than individual gene analysis. Several gene prioritization methods attempt to determine the sim-
ilarity between candidate genes and genes known to play a role in defined biological processes or diseases
[1, 2]. In this study, the aim was to extract the clusters of functionally related genes over the short-time
series microarray data based on unsupervised methods and to automatically perform biological annota-
tion of the extracted clusters. We used both public annotations and function predictions coming from
a function prediction tool (SPMap) and then clustered differentially expressed gene lists by applying
a progressive clustering method [3]. Original microarray data was composed of 54000 probe sets of 3
days expression samples for 2 experimental conditions, HepG2 and HepG2-2.2.15, and experimented in
our laboratory. The aim of microarray experiment is to observe selenium deficiency in hepatocellular
carcinoma cells under oxidative stress. Original data was evaluated as short-time series data due to
limited number of observations and their time dependence. Initially, short-time series microarray ex-
pression data was clustered according to similar expression profiles by applying k-means algorithm with
k = 100 setting. Gene expressions were represented with piece-wise linear functions and the difference
between the slopes of these functions was used as distance measure in k-means clustering phase. After
completion of k-means clustering, we selected 12 clusters as candidate patterns since their expression
profiles were consistent with pre-defined expression profiles which were supposed to be responsible of
resistance to oxidative stress. In the second phase, we integrated Gene Ontology (GO) annotations and
expression data of the genes in these clusters to obtain more biological information related with these
genes. We preferred to use an “information content” based distance measure to represent the semantic
distance of two genes in the GO hierarchy [4]. SPMap was applied to predict GO annotations of genes
with unknown functions. The genes with known protein sequences were given to SPMap which predicts
GO terms of a given protein sequence by considering 300 “molecular function” terms of GO hierarchy.
The semantic and expression distances of genes were combined using a weighted scheme. The combined
distance matrix contains only pairwise distances between genes. Therefore instead of using traditional
clustering algorithms we applied a graph partitioning method: spectral clustering algorithm (k = 6
setting). After completion of spectral clustering, each resulting sub-component contained 3-10 genes
which share similar patterns in terms of both gene expression level and molecular function.
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Louis Wehenkel1, and Pierre Geurts1

1 Department of Electrical Engineering and Computer Science, GIGA-Research,
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The general goal of this research is to develop a bioinformatic strategy to
discover new candidate biomarkers for some specific disease, by integrating bio-
logical knowledge available in public databases and experimental data related to
this disease obtained from high-throughput instrumentations, such as transcrip-
tomic (microarray), proteomic (mass spectrometry), and genomic (SNP) data.
The resulting strategy will be implemented in a generic and flexible software
platform that will allow biologists to easily instantiate this strategy on their
own datasets. This research is part of the Keymarker project (Biowin), whose
general goal is to identify biomarkers for molecular imagery.

Currently, the developed software is decomposed into several independent
modules. A filtering module allows to (manually) select genes/proteins using
simple rules based on biological annotations and/or experimental data. A clus-
tering module automatically identifies groups of genes/proteins that behave sim-
ilarly in one or several experiments. A classification module exploits supervised
classification methods to select groups of genes/proteins whose behaviour allows
to discriminate between several pre-defined biological conditions. Finally, an en-
richment analysis module helps to better characterize the groups of relevant
biomarkers highlighted by the other modules (by exploiting existing annotations
of the corresponding genes or proteins in biological databases).

One of the originality of the software is that it integrates all steps in a common
platform, making thus easy the interaction between the different modules. The
platform is accessible as a web service as well as a standalone application. Future
modules will be added to allow the joint analysis of different types of expression
data (mRNA, microRNA, transcription factors...) and the integration of different
experimental data sources (transcriptomic, proteomic, and genomic).

Acknowledgements This work is supported by ”Pôles de compétitivité de la
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1   Motivation 
As one of the basic tasks in automatic discovery and extraction of information from bio-
logical texts, protein name extraction is still a challenge. Extracting protein names from 
unstructured texts is a prerequisite for the increasing demand in automatic discovery and 
extraction of information from biological texts. Locating the information on different levels 
can be seen as a layered structure and this layered structure makes different extraction tasks 
interdependent. Because the output of a task at a layer is input to the next layer, the success 
of a former task affects the performance of the others. For instance, how well we locate the 
protein names in a text has an impact on how well we find the interactions between the 
proteins. 

2   Method 
In order to identify protein names, we study using bigram language model, a special case 

of N-gram which is used in various areas of statistical natural language processing, along 
with the hierarchically categorized syntactic word types. We determine 21 syntactic token 
types categorized under five main classes to generalize protein names: single, abbreviation, 
delimiter, regular, and other. 

After learning the necessary model parameters, a probability estimate is produced for 
every possible fragment in the test data. We use sliding-window technique to determine the 
fragments. Fragments with the highest likelihood, exceeding a certain threshold value, are 
extracted as protein names. 

3   Results 
Table 1 compares performance values of our method (Bigram) with the values published 

for several methods. Our method has a comparable performance to the others with respect 
to F-score. The comparison also shows that our method is effective and competitive.  

Table 1. Comparison of methods for protein name extraction. 

 Recall Precision F-score 
Bigram 67.5% 60.2% 63.6 % 
YAPEX [1] 59.9% 62.0% 61.0 % 
SemiCRF [2] 76.1% 58.9% 66.1 % 
DictHMM [2] 45.1% 69.7% 54.8 % 
Prob [3] 60.1% 66.9% 63.3 % 
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Abstract. Genome-wide experimental methods to identify disease genes
(such as linkage analysis and association studies) often generate large
list of candidate genes from which only a few are interesting. Endeavour
(http://www.esat.kuleuven.be/endeavour), a web resource for the priori-
tization of genes, indicates which genes are the most promising ones. Our
approach relies on gene similarity; it is based on evidence that similar
phenotypes are caused by genes with similar functions. Our algorithm
consists of (i) inferring several models (based on various genomic data
sources) from a training set of genes, (ii) applying each model to the can-
didate genes to rank them and, (iii) merging the several rankings into
a final ranking of the candidate genes. Recently, we have extended En-
deavour to make it a multiple-species tool. Nowadays, the tool supports
Homo sapiens, Drosophila melanogaster, Mus musculus, Rattus norvegi-
cus and Caenorhabditis elegans.
As a functional validation, Endeavour was used to optimize a genetic
screen performed in Drosophila melanogaster. The goal was to find genes
that interact physically with atonal. The regions outputted by the ge-
netic screen were prioritized and the validation showed that Endeavour
ranked the true interactors in the top of the regions.
We next applied this concept to heart disorders. Starting from patients
with heart defects for which the causal gene is unknown, regions of in-
terest were defined using the array-CGH technology. They were then
prioritized in order to find the most promising candidates for further ex-
periments. The first in-situ validations show that Endeavour ranks the
best candidates on top, decreasing thus the cost of the validation. In con-
clusion, we present Endeavour, a framework that can prioritize selected
candidate genes or whole genomes in five major organisms, and for which
the results were experimentally validated.
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Motivation: The ability to examine the human genome at high resolution has been 
enhanced with the introduction of microarray technology with inter-probe distances 
of less than 1 kilobase in recent releases of the Affymetrix SNP arrays. The ability to 
identify DNA mutations will assist our understanding of the pathogenesis of cancer, 
particularly if they are consistent across multiple tumour samples. Narrow regions of 
change in the human genome often go undetected as algorithms tend to regard 
individual outlying points as noise and exclude them from the analysis. We address 
the presence of noise at the sample level with various calibration techniques and 
compute a set of independent statistics to elucidate consensus change across the 
genome down to the resolution of a single probe. 

 
Results: Applying our methodology to the Tumour Sequencing Project dataset on 
lung adenocarcinoma [4], we are able to detect many hundreds of narrow consensus 
peaks sitting above the Bonferroni-correction threshold. Many identified peaks reside 
in regions of widely-implicated oncogenes and tumour suppressor genes prompting 
the need for further biological verification. Our results also show examples of 
differential peaks between phenotypes, most notably between gender which agrees 
with known clinic-pathological gender differences in lung cancer. Differences 
between tumour grades and stages were also examined with results consistent with 
the characteristics of these phenotypes. The significance of our methodology was 
independently corroborated by analysis of synthetic data and independent results of 
more systematic validation using an expanded ovarian cancer dataset form [2]. 
 
Conclusion: While other approaches such as GLAD [3] or GISTIC [1] are driven by 
the amplitudes and frequency of a limited percentage of samples, we take a 
complementary approach to provide a consensus analysis across all samples in 
identifying significant narrow regions that are consistently amplified or deleted in the 
sample space. Our results are largely orthogonal and complementary to all methods 
for copy number analysis known to us, which often regard micro-regions of change as 
outliers and exclude them from their analysis. However, we argue that statistically 
significant micro-regions can be identified from analysis across multiple samples. 
These micro-regions of aberration could be indicative of concealed biology which 
may not have otherwise surfaced through the application of other fore mentioned 
techniques. 
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Proteins are essential gene products for living organisms. They have important functions for the contin-
uation of life. Annotating functions of proteins is an important problem for biologists due to the increasing
number of identified proteins. The difficulty of manually curating the annotations of proteins necessitate the
use of computational methods. Sequence similarity based systems are mostly used by biologists because of
the majority of known sequences. There are two approaches used for functional annotation of proteins in the
literature. The first approach is based on transferring annotations of homologous proteins according to the
results of sequence similarity search in a database of proteins with known annotations. We call this method
as transfer approach. The second method is the classification approach treating the functions as classes and
proteins as the samples to be classified. In this method the positive and negative training datasets of a class
are used for training the classifier and this classifier is used to determine the annotation of the query pro-
tein. Our aim in this study is to make an accurate comparison between these two approaches using specific
organisms. We use 9 model organisms for our experiments. We select 300 molecular function terms from
Gene Ontology (GO). We extract the proteins of model organisms annotated with these 300 terms from the
Gene Ontology annotation file and their sequences from UNIPROT database. For the transfer approach we
prepare a database of proteins from 8 organisms as the training data and use the proteins of the remaining
organism as the test data. For each protein in the test organism we search the database by using BLAST
and transfer the annotations of the proteins which have e-values below a specific threshold. We compare
these annotations with real annotations of the protein and assess these comparisons based on sensitivity and
specificity values. For the classification approach we prepare positive and negative datasets for each term
considering the directed acyclic graph structure of GO. 8 of the organisms are used to generate the training
set and one organism is used to generate the test set. We apply BLAST-kNN(k nearest neighbor) algorithm
to the training dataset, classify the proteins in the test organism and calculate the sensitivity and specificity
values. BLAST-kNN is selected in order to make a fair comparison with transfer approach by using BLAST
for both approaches.
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Two trends underlie the work described in this poster. First, while clustering
genes based on microarray expression data is a staple of computational biology,
how to cluster genes based on multiple types of heterogeneous data remains a
largely open question. Second, data integration across heterogeneous data types
using kernel methods have been recently proposed for supervised learning and
novelty detection. However, few clustering methods have yet been developed
within the same framework. In real-world problems, clustering problem often
faces with diverse information obtained from multiple measurements or hetero-
geneous data sources. The idea of combining information from heterogeneous
genomic data sources to endow clustering algorithm with the ability to retrieve
similar or complementary information about the underlying partitions of the
same set of objects has started to attract interest. The key motivation behind
our work is that kernel methods provide a principled framework to integrate mul-
tiple types of heterogeneous data - an approach we call genomic data fusion. We
propose here a novel adaptive kernel K-means clustering algorithm that goes
beyond our previous work on supervised learning and novelty detection. The
main advantage of the proposed method is that it fuse the information from
heterogeneous data sources as a weighted combinations of similarity matrices
(and thus of kernel matrices). By going through a representation of the data as
similarity matrices, we “isolate” ourselves from the fact that the different data
are often vastly different as to their dimensionality and the type of features that
describe their data (be it vector data, sequences or even graphs). Because the
kernels are all represented in matrices of the same size, they can be - in a first
instance - combined straightforwardly and elegantly in a linear model with uni-
form weights (i.e., averaging the kernels). Obviously, different data sources can
have a different relevance to the problem at hand, so that we want to go beyond
a simple average of kernels. In a first step, only a subset of data sources can be
selected manually based on knowledge of the data integration problem at hand
(i.e., which data sources are likely to be informative based on expert knowledge).
A more satisfactory approach is to carry out the combination of kernels through
a weighted combination of the individual kernels and to determine those weights
through machine learning and optimization.

As our main application domain is the discovery of human disease-causing
genes, our method is assessed against a benchmark of clustering human disease
genes and compared to several other clustering strategies. For this problem,
the proposed method outperforms other methods and performs better than any
clustering result obtained on any single type of data; hereby demonstrating the
effectiveness of our clustering strategy and the usefulness of data fusion.
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Endeavour is a web platform for the prioritization of genes powered by ge-
nomic data fusion. Kernel Endeavour is a latest update version which combines
Endeavour with kernel methods. In Kernel Endeavour, gene prioritization is
regarded as a kernel based novelty detection problem and information from mul-
tiple data sources is integrated as a weighted combination of kernels. It has been
shown in previous research that Kernel Endeavour has better performance than
Endeavour in disease based genes validation (De Bie et al., 2007).

Kernel Endeavour avoid the difficult parameter tuning problem in kernel
construction by adaptive fusion of a series of pre-computed kernels. In our im-
plementation, each data source has 5 pre-computed kernels (1 linear kernel and
4 RBF kernels). The parameter of RBF kernels are selected empirically. The
key strength of Kernel Endeavour is that it can combine a series of kernels and
the prioritization algorithm is capable to weigh these kernels adaptively. This
adaptivity in data fusion reinforces the robustness to noisy information, which
might represented by some kernels constructed by bad parameters. This adap-
tivity also guarantee that if the series of input kernels do not contain the optimal
kernel but does contain some suboptimal kernels, the final prioritization result
after data fusion is still reliable.

Another challenge of Kernel Endeavour is that the construction of kernel
matrices representing the whole genome information is very computational ex-
pensive. In order to tackle this problem, we apply incomplete cholesky decompo-
sition (ICD) to reduce the dimensionalities of kernel matrices. The original gene
expression data is retrieved from Endeavour database and the complete kernel
matrix of the whole genomic data is computed. Then, we apply ICD on these
full-size kernel matrices and obtain side matrices of smaller size. The kernel
matrices in run-time are reconstructed as the scalar product of these reduce-
size side matrices. The overall application is separated into online and offline
parts. The offline application handles all the computational heavy procedures
such as kernel computation, ICD. The online application loads the decomposed
side matrices, retrieves information about the relevant genes and reconstructs
the corresponding kernel matrices. The optimization problem of kernel based
prioritization is solved by MOSEK toolbox. Due to this online-offline separa-
tion, Kernel Endeavour is able to give user an efficient response in genome-wide
prioritization.
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In computational biology, objects of interest such as proteins or genes can be described from 
various points of view as sequences, trees, nodes in a graph, vectors... Often only similarity 
matrices are available to represent each of these heterogeneous views. Investigating the 
relationships among these data is an important step toward understanding the biological functions. 
Existing data mining approaches, which deal with heterogeneous data, aim to extract objects that 
are similar among all the views. As the number of datasets increases, it is often not possible to find 
subsets of objects simultaneously similar according all the views, except in trivial cases. 
We thus propose an extension of biclustering, called multi-spectral biclustering, that allows to find 
subgroups of objects that are similar to each other according some of the views. The new algorithm 
is based on multiple low dimensional embeddings of the data using Laplacian of graphs weighted 
by the various similarities and a generalization of the squared residue minimization biclustering 
algorithm ([1,5]). We also propose to select biclustering parameters using a stability criterion [2]. 
We have sucessuflly tested muti-spectral biclustering on two biological applications and obtained 
very good results. The first application concerns two classes of proteins (membrane proteins and 
ribosomal proteins) described by several data sets (the protein sequences, the hydropathy profiles of 
the proteins, etc.) [4]. The second one deals with yeast time series genes expressions measured in 
several conditions differing by the kind of the strain (wt, mec1, dun1) and the type of stress (MMS, 
Gamma, mock) [3]. 
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